Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.173
      1 /*	$NetBSD: uvm_glue.c,v 1.173 2019/12/27 12:51:57 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     37  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.173 2019/12/27 12:51:57 ad Exp $");
     66 
     67 #include "opt_kgdb.h"
     68 #include "opt_kstack.h"
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_glue.c: glue functions
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/kernel.h>
     77 
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/syncobj.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/lwp.h>
     86 #include <sys/asan.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pgflcache.h>
     90 
     91 /*
     92  * uvm_kernacc: test if kernel can access a memory region.
     93  *
     94  * => Currently used only by /dev/kmem driver (dev/mm.c).
     95  */
     96 bool
     97 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
     98 {
     99 	vaddr_t saddr = trunc_page((vaddr_t)addr);
    100 	vaddr_t eaddr = round_page(saddr + len);
    101 	bool rv;
    102 
    103 	vm_map_lock_read(kernel_map);
    104 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    105 	vm_map_unlock_read(kernel_map);
    106 
    107 	return rv;
    108 }
    109 
    110 #ifdef KGDB
    111 /*
    112  * Change protections on kernel pages from addr to addr+len
    113  * (presumably so debugger can plant a breakpoint).
    114  *
    115  * We force the protection change at the pmap level.  If we were
    116  * to use vm_map_protect a change to allow writing would be lazily-
    117  * applied meaning we would still take a protection fault, something
    118  * we really don't want to do.  It would also fragment the kernel
    119  * map unnecessarily.  We cannot use pmap_protect since it also won't
    120  * enforce a write-enable request.  Using pmap_enter is the only way
    121  * we can ensure the change takes place properly.
    122  */
    123 void
    124 uvm_chgkprot(void *addr, size_t len, int rw)
    125 {
    126 	vm_prot_t prot;
    127 	paddr_t pa;
    128 	vaddr_t sva, eva;
    129 
    130 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    131 	eva = round_page((vaddr_t)addr + len);
    132 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    133 		/*
    134 		 * Extract physical address for the page.
    135 		 */
    136 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    137 			panic("%s: invalid page", __func__);
    138 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    139 	}
    140 	pmap_update(pmap_kernel());
    141 }
    142 #endif
    143 
    144 /*
    145  * uvm_vslock: wire user memory for I/O
    146  *
    147  * - called from physio and sys___sysctl
    148  * - XXXCDC: consider nuking this (or making it a macro?)
    149  */
    150 
    151 int
    152 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    153 {
    154 	struct vm_map *map;
    155 	vaddr_t start, end;
    156 	int error;
    157 
    158 	map = &vs->vm_map;
    159 	start = trunc_page((vaddr_t)addr);
    160 	end = round_page((vaddr_t)addr + len);
    161 	error = uvm_fault_wire(map, start, end, access_type, 0);
    162 	return error;
    163 }
    164 
    165 /*
    166  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    167  *
    168  * - called from physio and sys___sysctl
    169  * - XXXCDC: consider nuking this (or making it a macro?)
    170  */
    171 
    172 void
    173 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    174 {
    175 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    176 		round_page((vaddr_t)addr + len));
    177 }
    178 
    179 /*
    180  * uvm_proc_fork: fork a virtual address space
    181  *
    182  * - the address space is copied as per parent map's inherit values
    183  */
    184 void
    185 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    186 {
    187 
    188 	if (shared == true) {
    189 		p2->p_vmspace = NULL;
    190 		uvmspace_share(p1, p2);
    191 	} else {
    192 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    193 	}
    194 
    195 	cpu_proc_fork(p1, p2);
    196 }
    197 
    198 /*
    199  * uvm_lwp_fork: fork a thread
    200  *
    201  * - a new PCB structure is allocated for the child process,
    202  *	and filled in by MD layer
    203  * - if specified, the child gets a new user stack described by
    204  *	stack and stacksize
    205  * - NOTE: the kernel stack may be at a different location in the child
    206  *	process, and thus addresses of automatic variables may be invalid
    207  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    208  *	after cpu_lwp_fork returns.
    209  */
    210 void
    211 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    212     void (*func)(void *), void *arg)
    213 {
    214 
    215 	/* Fill stack with magic number. */
    216 	kstack_setup_magic(l2);
    217 
    218 	/*
    219 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    220  	 * to run.  If this is a normal user fork, the child will exit
    221 	 * directly to user mode via child_return() on its first time
    222 	 * slice and will not return here.  If this is a kernel thread,
    223 	 * the specified entry point will be executed.
    224 	 */
    225 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    226 
    227 	/* Inactive emap for new LWP. */
    228 	l2->l_emap_gen = UVM_EMAP_INACTIVE;
    229 }
    230 
    231 #ifndef USPACE_ALIGN
    232 #define	USPACE_ALIGN	0
    233 #endif
    234 
    235 static pool_cache_t uvm_uarea_cache;
    236 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    237 static pool_cache_t uvm_uarea_system_cache;
    238 #else
    239 #define uvm_uarea_system_cache uvm_uarea_cache
    240 #endif
    241 
    242 static void *
    243 uarea_poolpage_alloc(struct pool *pp, int flags)
    244 {
    245 
    246 	KASSERT((flags & PR_WAITOK) != 0);
    247 
    248 #if defined(PMAP_MAP_POOLPAGE)
    249 	while (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    250 		struct vm_page *pg;
    251 		vaddr_t va;
    252 #if defined(PMAP_ALLOC_POOLPAGE)
    253 		pg = PMAP_ALLOC_POOLPAGE(0);
    254 #else
    255 		pg = uvm_pagealloc(NULL, 0, NULL, 0);
    256 #endif
    257 		if (pg == NULL) {
    258 			uvm_wait("uarea");
    259 			continue;
    260 		}
    261 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    262 		KASSERT(va != 0);
    263 		return (void *)va;
    264 	}
    265 #endif
    266 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    267 	void *va = cpu_uarea_alloc(false);
    268 	if (va)
    269 		return (void *)va;
    270 #endif
    271 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    272 	    USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
    273 }
    274 
    275 static void
    276 uarea_poolpage_free(struct pool *pp, void *addr)
    277 {
    278 #if defined(PMAP_MAP_POOLPAGE)
    279 	if (USPACE == PAGE_SIZE && USPACE_ALIGN == 0) {
    280 		paddr_t pa;
    281 
    282 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    283 		KASSERT(pa != 0);
    284 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    285 		return;
    286 	}
    287 #endif
    288 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    289 	if (cpu_uarea_free(addr))
    290 		return;
    291 #endif
    292 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    293 	    UVM_KMF_WIRED);
    294 }
    295 
    296 static struct pool_allocator uvm_uarea_allocator = {
    297 	.pa_alloc = uarea_poolpage_alloc,
    298 	.pa_free = uarea_poolpage_free,
    299 	.pa_pagesz = USPACE,
    300 };
    301 
    302 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    303 static void *
    304 uarea_system_poolpage_alloc(struct pool *pp, int flags)
    305 {
    306 	void * const va = cpu_uarea_alloc(true);
    307 	if (va != NULL)
    308 		return va;
    309 
    310 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    311 	    USPACE_ALIGN, UVM_KMF_WIRED |
    312 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
    313 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    314 }
    315 
    316 static void
    317 uarea_system_poolpage_free(struct pool *pp, void *addr)
    318 {
    319 	if (cpu_uarea_free(addr))
    320 		return;
    321 
    322 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    323 	    UVM_KMF_WIRED);
    324 }
    325 
    326 static struct pool_allocator uvm_uarea_system_allocator = {
    327 	.pa_alloc = uarea_system_poolpage_alloc,
    328 	.pa_free = uarea_system_poolpage_free,
    329 	.pa_pagesz = USPACE,
    330 };
    331 #endif /* __HAVE_CPU_UAREA_ROUTINES */
    332 
    333 void
    334 uvm_uarea_init(void)
    335 {
    336 	int flags = PR_NOTOUCH;
    337 
    338 	/*
    339 	 * specify PR_NOALIGN unless the alignment provided by
    340 	 * the backend (USPACE_ALIGN) is sufficient to provide
    341 	 * pool page size (UPSACE) alignment.
    342 	 */
    343 
    344 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    345 	    (USPACE_ALIGN % USPACE) != 0) {
    346 		flags |= PR_NOALIGN;
    347 	}
    348 
    349 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    350 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
    351 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    352 	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
    353 	    0, flags, "uareasys", &uvm_uarea_system_allocator,
    354 	    IPL_NONE, NULL, NULL, NULL);
    355 #endif
    356 }
    357 
    358 /*
    359  * uvm_uarea_alloc: allocate a u-area
    360  */
    361 
    362 vaddr_t
    363 uvm_uarea_alloc(void)
    364 {
    365 
    366 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    367 }
    368 
    369 vaddr_t
    370 uvm_uarea_system_alloc(struct cpu_info *ci)
    371 {
    372 #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    373 	if (__predict_false(ci != NULL))
    374 		return cpu_uarea_alloc_idlelwp(ci);
    375 #endif
    376 
    377 	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
    378 }
    379 
    380 /*
    381  * uvm_uarea_free: free a u-area
    382  */
    383 
    384 void
    385 uvm_uarea_free(vaddr_t uaddr)
    386 {
    387 
    388 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    389 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    390 }
    391 
    392 void
    393 uvm_uarea_system_free(vaddr_t uaddr)
    394 {
    395 
    396 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    397 	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
    398 }
    399 
    400 vaddr_t
    401 uvm_lwp_getuarea(lwp_t *l)
    402 {
    403 
    404 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
    405 }
    406 
    407 void
    408 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
    409 {
    410 
    411 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
    412 }
    413 
    414 /*
    415  * uvm_proc_exit: exit a virtual address space
    416  *
    417  * - borrow proc0's address space because freeing the vmspace
    418  *   of the dead process may block.
    419  */
    420 
    421 void
    422 uvm_proc_exit(struct proc *p)
    423 {
    424 	struct lwp *l = curlwp; /* XXX */
    425 	struct vmspace *ovm;
    426 
    427 	KASSERT(p == l->l_proc);
    428 	ovm = p->p_vmspace;
    429 	KASSERT(ovm != NULL);
    430 
    431 	if (__predict_false(ovm == proc0.p_vmspace))
    432 		return;
    433 
    434 	/*
    435 	 * borrow proc0's address space.
    436 	 */
    437 	kpreempt_disable();
    438 	pmap_deactivate(l);
    439 	p->p_vmspace = proc0.p_vmspace;
    440 	pmap_activate(l);
    441 	kpreempt_enable();
    442 
    443 	uvmspace_free(ovm);
    444 }
    445 
    446 void
    447 uvm_lwp_exit(struct lwp *l)
    448 {
    449 	vaddr_t va = uvm_lwp_getuarea(l);
    450 	bool system = (l->l_flag & LW_SYSTEM) != 0;
    451 
    452 	if (system)
    453 		uvm_uarea_system_free(va);
    454 	else
    455 		uvm_uarea_free(va);
    456 #ifdef DIAGNOSTIC
    457 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
    458 #endif
    459 }
    460 
    461 /*
    462  * uvm_init_limit: init per-process VM limits
    463  *
    464  * - called for process 0 and then inherited by all others.
    465  */
    466 
    467 void
    468 uvm_init_limits(struct proc *p)
    469 {
    470 
    471 	/*
    472 	 * Set up the initial limits on process VM.  Set the maximum
    473 	 * resident set size to be all of (reasonably) available memory.
    474 	 * This causes any single, large process to start random page
    475 	 * replacement once it fills memory.
    476 	 */
    477 
    478 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    479 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    480 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    481 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    482 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    483 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    484 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS,
    485 	    ctob((rlim_t)uvm_free()));
    486 }
    487 
    488 /*
    489  * uvm_scheduler: process zero main loop.
    490  */
    491 
    492 extern struct loadavg averunnable;
    493 
    494 void
    495 uvm_scheduler(void)
    496 {
    497 	lwp_t *l = curlwp;
    498 
    499 	lwp_lock(l);
    500 	l->l_class = SCHED_FIFO;
    501 	lwp_changepri(l, PRI_VM);
    502 	lwp_unlock(l);
    503 
    504 	/* Start the freelist cache. */
    505 	uvm_pgflcache_start();
    506 
    507 	for (;;) {
    508 		/* Update legacy stats for post-mortem debugging. */
    509 		uvm_update_uvmexp();
    510 
    511 		/* See if the pagedaemon needs to generate some free pages. */
    512 		uvm_kick_pdaemon();
    513 
    514 		/* Calculate process statistics. */
    515 		sched_pstats();
    516 		(void)kpause("uvm", false, hz, NULL);
    517 	}
    518 }
    519