Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.180
      1 /*	$NetBSD: uvm_glue.c,v 1.180 2020/06/11 19:20:47 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     37  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.180 2020/06/11 19:20:47 ad Exp $");
     66 
     67 #include "opt_kgdb.h"
     68 #include "opt_kstack.h"
     69 #include "opt_uvmhist.h"
     70 
     71 /*
     72  * uvm_glue.c: glue functions
     73  */
     74 
     75 #include <sys/param.h>
     76 #include <sys/kernel.h>
     77 
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/syncobj.h>
     83 #include <sys/cpu.h>
     84 #include <sys/atomic.h>
     85 #include <sys/lwp.h>
     86 #include <sys/asan.h>
     87 
     88 #include <uvm/uvm.h>
     89 #include <uvm/uvm_pdpolicy.h>
     90 #include <uvm/uvm_pgflcache.h>
     91 
     92 /*
     93  * uvm_kernacc: test if kernel can access a memory region.
     94  *
     95  * => Currently used only by /dev/kmem driver (dev/mm.c).
     96  */
     97 bool
     98 uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
     99 {
    100 	vaddr_t saddr = trunc_page((vaddr_t)addr);
    101 	vaddr_t eaddr = round_page(saddr + len);
    102 	bool rv;
    103 
    104 	vm_map_lock_read(kernel_map);
    105 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    106 	vm_map_unlock_read(kernel_map);
    107 
    108 	return rv;
    109 }
    110 
    111 #ifdef KGDB
    112 /*
    113  * Change protections on kernel pages from addr to addr+len
    114  * (presumably so debugger can plant a breakpoint).
    115  *
    116  * We force the protection change at the pmap level.  If we were
    117  * to use vm_map_protect a change to allow writing would be lazily-
    118  * applied meaning we would still take a protection fault, something
    119  * we really don't want to do.  It would also fragment the kernel
    120  * map unnecessarily.  We cannot use pmap_protect since it also won't
    121  * enforce a write-enable request.  Using pmap_enter is the only way
    122  * we can ensure the change takes place properly.
    123  */
    124 void
    125 uvm_chgkprot(void *addr, size_t len, int rw)
    126 {
    127 	vm_prot_t prot;
    128 	paddr_t pa;
    129 	vaddr_t sva, eva;
    130 
    131 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    132 	eva = round_page((vaddr_t)addr + len);
    133 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    134 		/*
    135 		 * Extract physical address for the page.
    136 		 */
    137 		if (pmap_extract(pmap_kernel(), sva, &pa) == false)
    138 			panic("%s: invalid page", __func__);
    139 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    140 	}
    141 	pmap_update(pmap_kernel());
    142 }
    143 #endif
    144 
    145 /*
    146  * uvm_vslock: wire user memory for I/O
    147  *
    148  * - called from physio and sys___sysctl
    149  * - XXXCDC: consider nuking this (or making it a macro?)
    150  */
    151 
    152 int
    153 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    154 {
    155 	struct vm_map *map;
    156 	vaddr_t start, end;
    157 	int error;
    158 
    159 	map = &vs->vm_map;
    160 	start = trunc_page((vaddr_t)addr);
    161 	end = round_page((vaddr_t)addr + len);
    162 	error = uvm_fault_wire(map, start, end, access_type, 0);
    163 	return error;
    164 }
    165 
    166 /*
    167  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    168  *
    169  * - called from physio and sys___sysctl
    170  * - XXXCDC: consider nuking this (or making it a macro?)
    171  */
    172 
    173 void
    174 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    175 {
    176 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    177 		round_page((vaddr_t)addr + len));
    178 }
    179 
    180 /*
    181  * uvm_proc_fork: fork a virtual address space
    182  *
    183  * - the address space is copied as per parent map's inherit values
    184  */
    185 void
    186 uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
    187 {
    188 
    189 	if (shared == true) {
    190 		p2->p_vmspace = NULL;
    191 		uvmspace_share(p1, p2);
    192 	} else {
    193 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    194 	}
    195 
    196 	cpu_proc_fork(p1, p2);
    197 }
    198 
    199 /*
    200  * uvm_lwp_fork: fork a thread
    201  *
    202  * - a new PCB structure is allocated for the child process,
    203  *	and filled in by MD layer
    204  * - if specified, the child gets a new user stack described by
    205  *	stack and stacksize
    206  * - NOTE: the kernel stack may be at a different location in the child
    207  *	process, and thus addresses of automatic variables may be invalid
    208  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    209  *	after cpu_lwp_fork returns.
    210  */
    211 void
    212 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    213     void (*func)(void *), void *arg)
    214 {
    215 
    216 	/* Fill stack with magic number. */
    217 	kstack_setup_magic(l2);
    218 
    219 	/*
    220 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    221  	 * to run.  If this is a normal user fork, the child will exit
    222 	 * directly to user mode via child_return() on its first time
    223 	 * slice and will not return here.  If this is a kernel thread,
    224 	 * the specified entry point will be executed.
    225 	 */
    226 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    227 }
    228 
    229 #ifndef USPACE_ALIGN
    230 #define	USPACE_ALIGN	0
    231 #endif
    232 
    233 static pool_cache_t uvm_uarea_cache;
    234 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    235 static pool_cache_t uvm_uarea_system_cache;
    236 #else
    237 #define uvm_uarea_system_cache uvm_uarea_cache
    238 #endif
    239 
    240 static void *
    241 uarea_poolpage_alloc(struct pool *pp, int flags)
    242 {
    243 
    244 	KASSERT((flags & PR_WAITOK) != 0);
    245 
    246 #if defined(PMAP_MAP_POOLPAGE)
    247 	while (USPACE == PAGE_SIZE &&
    248 	    (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
    249 		struct vm_page *pg;
    250 		vaddr_t va;
    251 #if defined(PMAP_ALLOC_POOLPAGE)
    252 		pg = PMAP_ALLOC_POOLPAGE(0);
    253 #else
    254 		pg = uvm_pagealloc(NULL, 0, NULL, 0);
    255 #endif
    256 		if (pg == NULL) {
    257 			uvm_wait("uarea");
    258 			continue;
    259 		}
    260 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    261 		KASSERT(va != 0);
    262 		return (void *)va;
    263 	}
    264 #endif
    265 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    266 	void *va = cpu_uarea_alloc(false);
    267 	if (va)
    268 		return (void *)va;
    269 #endif
    270 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    271 	    USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
    272 }
    273 
    274 static void
    275 uarea_poolpage_free(struct pool *pp, void *addr)
    276 {
    277 #if defined(PMAP_MAP_POOLPAGE)
    278 	if (USPACE == PAGE_SIZE &&
    279 	    (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
    280 		paddr_t pa;
    281 
    282 		pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
    283 		KASSERT(pa != 0);
    284 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    285 		return;
    286 	}
    287 #endif
    288 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    289 	if (cpu_uarea_free(addr))
    290 		return;
    291 #endif
    292 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    293 	    UVM_KMF_WIRED);
    294 }
    295 
    296 static struct pool_allocator uvm_uarea_allocator = {
    297 	.pa_alloc = uarea_poolpage_alloc,
    298 	.pa_free = uarea_poolpage_free,
    299 	.pa_pagesz = USPACE,
    300 };
    301 
    302 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    303 static void *
    304 uarea_system_poolpage_alloc(struct pool *pp, int flags)
    305 {
    306 	void * const va = cpu_uarea_alloc(true);
    307 	if (va != NULL)
    308 		return va;
    309 
    310 	return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
    311 	    USPACE_ALIGN, UVM_KMF_WIRED |
    312 	    ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
    313 	    (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
    314 }
    315 
    316 static void
    317 uarea_system_poolpage_free(struct pool *pp, void *addr)
    318 {
    319 	if (cpu_uarea_free(addr))
    320 		return;
    321 
    322 	uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
    323 	    UVM_KMF_WIRED);
    324 }
    325 
    326 static struct pool_allocator uvm_uarea_system_allocator = {
    327 	.pa_alloc = uarea_system_poolpage_alloc,
    328 	.pa_free = uarea_system_poolpage_free,
    329 	.pa_pagesz = USPACE,
    330 };
    331 #endif /* __HAVE_CPU_UAREA_ROUTINES */
    332 
    333 void
    334 uvm_uarea_init(void)
    335 {
    336 	int flags = PR_NOTOUCH;
    337 
    338 	/*
    339 	 * specify PR_NOALIGN unless the alignment provided by
    340 	 * the backend (USPACE_ALIGN) is sufficient to provide
    341 	 * pool page size (UPSACE) alignment.
    342 	 */
    343 
    344 	if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
    345 	    (USPACE_ALIGN % USPACE) != 0) {
    346 		flags |= PR_NOALIGN;
    347 	}
    348 
    349 	uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
    350 	    "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
    351 #if defined(__HAVE_CPU_UAREA_ROUTINES)
    352 	uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
    353 	    0, flags, "uareasys", &uvm_uarea_system_allocator,
    354 	    IPL_NONE, NULL, NULL, NULL);
    355 #endif
    356 }
    357 
    358 /*
    359  * uvm_uarea_alloc: allocate a u-area
    360  */
    361 
    362 vaddr_t
    363 uvm_uarea_alloc(void)
    364 {
    365 
    366 	return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
    367 }
    368 
    369 vaddr_t
    370 uvm_uarea_system_alloc(struct cpu_info *ci)
    371 {
    372 #ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
    373 	if (__predict_false(ci != NULL))
    374 		return cpu_uarea_alloc_idlelwp(ci);
    375 #endif
    376 
    377 	return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
    378 }
    379 
    380 /*
    381  * uvm_uarea_free: free a u-area
    382  */
    383 
    384 void
    385 uvm_uarea_free(vaddr_t uaddr)
    386 {
    387 
    388 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    389 	pool_cache_put(uvm_uarea_cache, (void *)uaddr);
    390 }
    391 
    392 void
    393 uvm_uarea_system_free(vaddr_t uaddr)
    394 {
    395 
    396 	kasan_mark((void *)uaddr, USPACE, USPACE, 0);
    397 	pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
    398 }
    399 
    400 vaddr_t
    401 uvm_lwp_getuarea(lwp_t *l)
    402 {
    403 
    404 	return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
    405 }
    406 
    407 void
    408 uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
    409 {
    410 
    411 	l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
    412 }
    413 
    414 /*
    415  * uvm_proc_exit: exit a virtual address space
    416  *
    417  * - borrow proc0's address space because freeing the vmspace
    418  *   of the dead process may block.
    419  */
    420 
    421 void
    422 uvm_proc_exit(struct proc *p)
    423 {
    424 	struct lwp *l = curlwp; /* XXX */
    425 	struct vmspace *ovm;
    426 
    427 	KASSERT(p == l->l_proc);
    428 	ovm = p->p_vmspace;
    429 	KASSERT(ovm != NULL);
    430 
    431 	if (__predict_false(ovm == proc0.p_vmspace))
    432 		return;
    433 
    434 	/*
    435 	 * borrow proc0's address space.
    436 	 */
    437 	kpreempt_disable();
    438 	pmap_deactivate(l);
    439 	p->p_vmspace = proc0.p_vmspace;
    440 	pmap_activate(l);
    441 	kpreempt_enable();
    442 
    443 	uvmspace_free(ovm);
    444 }
    445 
    446 void
    447 uvm_lwp_exit(struct lwp *l)
    448 {
    449 	vaddr_t va = uvm_lwp_getuarea(l);
    450 	bool system = (l->l_flag & LW_SYSTEM) != 0;
    451 
    452 	if (system)
    453 		uvm_uarea_system_free(va);
    454 	else
    455 		uvm_uarea_free(va);
    456 #ifdef DIAGNOSTIC
    457 	uvm_lwp_setuarea(l, (vaddr_t)NULL);
    458 #endif
    459 }
    460 
    461 /*
    462  * uvm_init_limit: init per-process VM limits
    463  *
    464  * - called for process 0 and then inherited by all others.
    465  */
    466 
    467 void
    468 uvm_init_limits(struct proc *p)
    469 {
    470 
    471 	/*
    472 	 * Set up the initial limits on process VM.  Set the maximum
    473 	 * resident set size to be all of (reasonably) available memory.
    474 	 * This causes any single, large process to start random page
    475 	 * replacement once it fills memory.
    476 	 */
    477 
    478 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    479 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    480 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    481 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    482 	p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
    483 	p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
    484 	p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS,
    485 	    ctob((rlim_t)uvm_availmem(false)));
    486 }
    487 
    488 /*
    489  * uvm_scheduler: process zero main loop.
    490  */
    491 
    492 extern struct loadavg averunnable;
    493 
    494 void
    495 uvm_scheduler(void)
    496 {
    497 	lwp_t *l = curlwp;
    498 
    499 	lwp_lock(l);
    500 	l->l_class = SCHED_FIFO;
    501 	lwp_changepri(l, PRI_VM);
    502 	lwp_unlock(l);
    503 
    504 	/* Start the freelist cache. */
    505 	uvm_pgflcache_start();
    506 
    507 	for (;;) {
    508 		/* Update legacy stats for post-mortem debugging. */
    509 		uvm_update_uvmexp();
    510 
    511 		/* See if the pagedaemon needs to generate some free pages. */
    512 		uvm_kick_pdaemon();
    513 
    514 		/* Calculate process statistics. */
    515 		sched_pstats();
    516 		(void)kpause("uvm", false, hz, NULL);
    517 	}
    518 }
    519 
    520 /*
    521  * uvm_idle: called from the idle loop.
    522  */
    523 
    524 void
    525 uvm_idle(void)
    526 {
    527 	struct cpu_info *ci = curcpu();
    528 	struct uvm_cpu *ucpu = ci->ci_data.cpu_uvm;
    529 
    530 	KASSERT(kpreempt_disabled());
    531 
    532 	if (!ci->ci_want_resched)
    533 		uvmpdpol_idle(ucpu);
    534 	if (!ci->ci_want_resched)
    535 		uvm_pageidlezero();
    536 
    537 }
    538