Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.30
      1 /*	$NetBSD: uvm_glue.c,v 1.30 1999/11/13 00:24:38 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_uvmhist.h"
     70 #include "opt_sysv.h"
     71 
     72 /*
     73  * uvm_glue.c: glue functions
     74  */
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/proc.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/buf.h>
     81 #include <sys/user.h>
     82 #ifdef SYSVSHM
     83 #include <sys/shm.h>
     84 #endif
     85 
     86 #include <vm/vm.h>
     87 #include <vm/vm_page.h>
     88 #include <vm/vm_kern.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpu.h>
     93 
     94 /*
     95  * local prototypes
     96  */
     97 
     98 static void uvm_swapout __P((struct proc *));
     99 
    100 /*
    101  * XXXCDC: do these really belong here?
    102  */
    103 
    104 unsigned maxdmap = MAXDSIZ;	/* kern_resource.c: RLIMIT_DATA max */
    105 unsigned maxsmap = MAXSSIZ;	/* kern_resource.c: RLIMIT_STACK max */
    106 
    107 int readbuffers = 0;		/* allow KGDB to read kern buffer pool */
    108 				/* XXX: see uvm_kernacc */
    109 
    110 
    111 /*
    112  * uvm_sleep: atomic unlock and sleep for UVM_UNLOCK_AND_WAIT().
    113  */
    114 
    115 void
    116 uvm_sleep(event, slock, canintr, msg, timo)
    117 	void *event;
    118 	struct simplelock *slock;
    119 	boolean_t canintr;
    120 	const char *msg;
    121 	int timo;
    122 {
    123 	int s, pri;
    124 
    125 	pri = PVM;
    126 	if (canintr)
    127 		pri |= PCATCH;
    128 
    129 	s = splhigh();
    130 	if (slock != NULL)
    131 		simple_unlock(slock);
    132 	(void) tsleep(event, pri, msg, timo);
    133 	splx(s);
    134 }
    135 
    136 /*
    137  * uvm_kernacc: can the kernel access a region of memory
    138  *
    139  * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
    140  */
    141 
    142 boolean_t
    143 uvm_kernacc(addr, len, rw)
    144 	caddr_t addr;
    145 	size_t len;
    146 	int rw;
    147 {
    148 	boolean_t rv;
    149 	vaddr_t saddr, eaddr;
    150 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    151 
    152 	saddr = trunc_page(addr);
    153 	eaddr = round_page(addr+len);
    154 	vm_map_lock_read(kernel_map);
    155 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    156 	vm_map_unlock_read(kernel_map);
    157 
    158 	/*
    159 	 * XXX there are still some things (e.g. the buffer cache) that
    160 	 * are managed behind the VM system's back so even though an
    161 	 * address is accessible in the mind of the VM system, there may
    162 	 * not be physical pages where the VM thinks there is.  This can
    163 	 * lead to bogus allocation of pages in the kernel address space
    164 	 * or worse, inconsistencies at the pmap level.  We only worry
    165 	 * about the buffer cache for now.
    166 	 */
    167 	if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
    168 			     saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
    169 		rv = FALSE;
    170 	return(rv);
    171 }
    172 
    173 /*
    174  * uvm_useracc: can the user access it?
    175  *
    176  * - called from physio() and sys___sysctl().
    177  */
    178 
    179 boolean_t
    180 uvm_useracc(addr, len, rw)
    181 	caddr_t addr;
    182 	size_t len;
    183 	int rw;
    184 {
    185 	vm_map_t map;
    186 	boolean_t rv;
    187 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    188 
    189 	/* XXX curproc */
    190 	map = &curproc->p_vmspace->vm_map;
    191 
    192 	vm_map_lock_read(map);
    193 	rv = uvm_map_checkprot(map, trunc_page(addr), round_page(addr+len),
    194 	    prot);
    195 	vm_map_unlock_read(map);
    196 
    197 	return(rv);
    198 }
    199 
    200 #ifdef KGDB
    201 /*
    202  * Change protections on kernel pages from addr to addr+len
    203  * (presumably so debugger can plant a breakpoint).
    204  *
    205  * We force the protection change at the pmap level.  If we were
    206  * to use vm_map_protect a change to allow writing would be lazily-
    207  * applied meaning we would still take a protection fault, something
    208  * we really don't want to do.  It would also fragment the kernel
    209  * map unnecessarily.  We cannot use pmap_protect since it also won't
    210  * enforce a write-enable request.  Using pmap_enter is the only way
    211  * we can ensure the change takes place properly.
    212  */
    213 void
    214 uvm_chgkprot(addr, len, rw)
    215 	register caddr_t addr;
    216 	size_t len;
    217 	int rw;
    218 {
    219 	vm_prot_t prot;
    220 	paddr_t pa;
    221 	vaddr_t sva, eva;
    222 
    223 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    224 	eva = round_page(addr + len);
    225 	for (sva = trunc_page(addr); sva < eva; sva += PAGE_SIZE) {
    226 		/*
    227 		 * Extract physical address for the page.
    228 		 * We use a cheezy hack to differentiate physical
    229 		 * page 0 from an invalid mapping, not that it
    230 		 * really matters...
    231 		 */
    232 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
    233 			panic("chgkprot: invalid page");
    234 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    235 	}
    236 }
    237 #endif
    238 
    239 /*
    240  * vslock: wire user memory for I/O
    241  *
    242  * - called from physio and sys___sysctl
    243  * - XXXCDC: consider nuking this (or making it a macro?)
    244  */
    245 
    246 int
    247 uvm_vslock(p, addr, len, access_type)
    248 	struct proc *p;
    249 	caddr_t	addr;
    250 	size_t	len;
    251 	vm_prot_t access_type;
    252 {
    253 	vm_map_t map;
    254 	vaddr_t start, end;
    255 	int rv;
    256 
    257 	map = &p->p_vmspace->vm_map;
    258 	start = trunc_page(addr);
    259 	end = round_page(addr + len);
    260 
    261 	rv = uvm_fault_wire(map, start, end, access_type);
    262 
    263 	return (rv);
    264 }
    265 
    266 /*
    267  * vslock: wire user memory for I/O
    268  *
    269  * - called from physio and sys___sysctl
    270  * - XXXCDC: consider nuking this (or making it a macro?)
    271  */
    272 
    273 void
    274 uvm_vsunlock(p, addr, len)
    275 	struct proc *p;
    276 	caddr_t	addr;
    277 	size_t	len;
    278 {
    279 	uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page(addr),
    280 		round_page(addr+len));
    281 }
    282 
    283 /*
    284  * uvm_fork: fork a virtual address space
    285  *
    286  * - the address space is copied as per parent map's inherit values
    287  * - a new "user" structure is allocated for the child process
    288  *	[filled in by MD layer...]
    289  * - if specified, the child gets a new user stack described by
    290  *	stack and stacksize
    291  * - NOTE: the kernel stack may be at a different location in the child
    292  *	process, and thus addresses of automatic variables may be invalid
    293  *	after cpu_fork returns in the child process.  We do nothing here
    294  *	after cpu_fork returns.
    295  * - XXXCDC: we need a way for this to return a failure value rather
    296  *   than just hang
    297  */
    298 void
    299 uvm_fork(p1, p2, shared, stack, stacksize)
    300 	struct proc *p1, *p2;
    301 	boolean_t shared;
    302 	void *stack;
    303 	size_t stacksize;
    304 {
    305 	struct user *up = p2->p_addr;
    306 	int rv;
    307 
    308 	if (shared == TRUE)
    309 		uvmspace_share(p1, p2);			/* share vmspace */
    310 	else
    311 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
    312 
    313 	/*
    314 	 * Wire down the U-area for the process, which contains the PCB
    315 	 * and the kernel stack.  Wired state is stored in p->p_flag's
    316 	 * P_INMEM bit rather than in the vm_map_entry's wired count
    317 	 * to prevent kernel_map fragmentation.
    318 	 *
    319 	 * Note the kernel stack gets read/write accesses right off
    320 	 * the bat.
    321 	 */
    322 	rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
    323 	    (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
    324 	if (rv != KERN_SUCCESS)
    325 		panic("uvm_fork: uvm_fault_wire failed: %d", rv);
    326 
    327 	/*
    328 	 * p_stats currently points at a field in the user struct.  Copy
    329 	 * parts of p_stats, and zero out the rest.
    330 	 */
    331 	p2->p_stats = &up->u_stats;
    332 	memset(&up->u_stats.pstat_startzero, 0,
    333 	(unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
    334 		    (caddr_t)&up->u_stats.pstat_startzero));
    335 	memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
    336 	((caddr_t)&up->u_stats.pstat_endcopy -
    337 	 (caddr_t)&up->u_stats.pstat_startcopy));
    338 
    339 	/*
    340 	 * cpu_fork will copy and update the kernel stack and pcb, and make
    341 	 * the child ready to run.  The child will exit directly to user
    342 	 * mode on its first time slice, and will not return here.
    343 	 */
    344 	cpu_fork(p1, p2, stack, stacksize);
    345 }
    346 
    347 /*
    348  * uvm_exit: exit a virtual address space
    349  *
    350  * - the process passed to us is a dead (pre-zombie) process; we
    351  *   are running on a different context now (the reaper).
    352  * - we must run in a separate thread because freeing the vmspace
    353  *   of the dead process may block.
    354  */
    355 void
    356 uvm_exit(p)
    357 	struct proc *p;
    358 {
    359 
    360 	uvmspace_free(p->p_vmspace);
    361 	uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
    362 }
    363 
    364 /*
    365  * uvm_init_limit: init per-process VM limits
    366  *
    367  * - called for process 0 and then inherited by all others.
    368  */
    369 void
    370 uvm_init_limits(p)
    371 	struct proc *p;
    372 {
    373 
    374 	/*
    375 	 * Set up the initial limits on process VM.  Set the maximum
    376 	 * resident set size to be all of (reasonably) available memory.
    377 	 * This causes any single, large process to start random page
    378 	 * replacement once it fills memory.
    379 	 */
    380 
    381 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    382 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    383 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    384 	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
    385 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    386 }
    387 
    388 #ifdef DEBUG
    389 int	enableswap = 1;
    390 int	swapdebug = 0;
    391 #define	SDB_FOLLOW	1
    392 #define SDB_SWAPIN	2
    393 #define SDB_SWAPOUT	4
    394 #endif
    395 
    396 /*
    397  * uvm_swapin: swap in a process's u-area.
    398  */
    399 
    400 void
    401 uvm_swapin(p)
    402 	struct proc *p;
    403 {
    404 	vaddr_t addr;
    405 	int s;
    406 
    407 	addr = (vaddr_t)p->p_addr;
    408 	/* make P_INMEM true */
    409 	uvm_fault_wire(kernel_map, addr, addr + USPACE,
    410 	    VM_PROT_READ | VM_PROT_WRITE);
    411 
    412 	/*
    413 	 * Some architectures need to be notified when the user area has
    414 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    415 	 */
    416 	cpu_swapin(p);
    417 	s = splstatclock();
    418 	if (p->p_stat == SRUN)
    419 		setrunqueue(p);
    420 	p->p_flag |= P_INMEM;
    421 	splx(s);
    422 	p->p_swtime = 0;
    423 	++uvmexp.swapins;
    424 }
    425 
    426 /*
    427  * uvm_scheduler: process zero main loop
    428  *
    429  * - attempt to swapin every swaped-out, runnable process in order of
    430  *	priority.
    431  * - if not enough memory, wake the pagedaemon and let it clear space.
    432  */
    433 
    434 void
    435 uvm_scheduler()
    436 {
    437 	register struct proc *p;
    438 	register int pri;
    439 	struct proc *pp;
    440 	int ppri;
    441 	UVMHIST_FUNC("uvm_scheduler"); UVMHIST_CALLED(maphist);
    442 
    443 loop:
    444 #ifdef DEBUG
    445 	while (!enableswap)
    446 		tsleep((caddr_t)&proc0, PVM, "noswap", 0);
    447 #endif
    448 	pp = NULL;		/* process to choose */
    449 	ppri = INT_MIN;	/* its priority */
    450 	proclist_lock_read();
    451 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    452 
    453 		/* is it a runnable swapped out process? */
    454 		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
    455 			pri = p->p_swtime + p->p_slptime -
    456 			    (p->p_nice - NZERO) * 8;
    457 			if (pri > ppri) {   /* higher priority?  remember it. */
    458 				pp = p;
    459 				ppri = pri;
    460 			}
    461 		}
    462 	}
    463 	proclist_unlock_read();
    464 
    465 #ifdef DEBUG
    466 	if (swapdebug & SDB_FOLLOW)
    467 		printf("scheduler: running, procp %p pri %d\n", pp, ppri);
    468 #endif
    469 	/*
    470 	 * Nothing to do, back to sleep
    471 	 */
    472 	if ((p = pp) == NULL) {
    473 		tsleep((caddr_t)&proc0, PVM, "scheduler", 0);
    474 		goto loop;
    475 	}
    476 
    477 	/*
    478 	 * we have found swapped out process which we would like to bring
    479 	 * back in.
    480 	 *
    481 	 * XXX: this part is really bogus cuz we could deadlock on memory
    482 	 * despite our feeble check
    483 	 */
    484 	if (uvmexp.free > atop(USPACE)) {
    485 #ifdef DEBUG
    486 		if (swapdebug & SDB_SWAPIN)
    487 			printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
    488 	     p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
    489 #endif
    490 		uvm_swapin(p);
    491 		goto loop;
    492 	}
    493 	/*
    494 	 * not enough memory, jab the pageout daemon and wait til the coast
    495 	 * is clear
    496 	 */
    497 #ifdef DEBUG
    498 	if (swapdebug & SDB_FOLLOW)
    499 		printf("scheduler: no room for pid %d(%s), free %d\n",
    500 	   p->p_pid, p->p_comm, uvmexp.free);
    501 #endif
    502 	(void) splhigh();
    503 	uvm_wait("schedpwait");
    504 	(void) spl0();
    505 #ifdef DEBUG
    506 	if (swapdebug & SDB_FOLLOW)
    507 		printf("scheduler: room again, free %d\n", uvmexp.free);
    508 #endif
    509 	goto loop;
    510 }
    511 
    512 /*
    513  * swappable: is process "p" swappable?
    514  */
    515 
    516 #define	swappable(p)							\
    517 	(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM &&	\
    518 	 (p)->p_holdcnt == 0)
    519 
    520 /*
    521  * swapout_threads: find threads that can be swapped and unwire their
    522  *	u-areas.
    523  *
    524  * - called by the pagedaemon
    525  * - try and swap at least one processs
    526  * - processes that are sleeping or stopped for maxslp or more seconds
    527  *   are swapped... otherwise the longest-sleeping or stopped process
    528  *   is swapped, otherwise the longest resident process...
    529  */
    530 void
    531 uvm_swapout_threads()
    532 {
    533 	register struct proc *p;
    534 	struct proc *outp, *outp2;
    535 	int outpri, outpri2;
    536 	int didswap = 0;
    537 	extern int maxslp;
    538 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    539 
    540 #ifdef DEBUG
    541 	if (!enableswap)
    542 		return;
    543 #endif
    544 
    545 	/*
    546 	 * outp/outpri  : stop/sleep process with largest sleeptime < maxslp
    547 	 * outp2/outpri2: the longest resident process (its swap time)
    548 	 */
    549 	outp = outp2 = NULL;
    550 	outpri = outpri2 = 0;
    551 	proclist_lock_read();
    552 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
    553 		if (!swappable(p))
    554 			continue;
    555 		switch (p->p_stat) {
    556 		case SRUN:
    557 			if (p->p_swtime > outpri2) {
    558 				outp2 = p;
    559 				outpri2 = p->p_swtime;
    560 			}
    561 			continue;
    562 
    563 		case SSLEEP:
    564 		case SSTOP:
    565 			if (p->p_slptime >= maxslp) {
    566 				uvm_swapout(p);			/* zap! */
    567 				didswap++;
    568 			} else if (p->p_slptime > outpri) {
    569 				outp = p;
    570 				outpri = p->p_slptime;
    571 			}
    572 			continue;
    573 		}
    574 	}
    575 	proclist_unlock_read();
    576 
    577 	/*
    578 	 * If we didn't get rid of any real duds, toss out the next most
    579 	 * likely sleeping/stopped or running candidate.  We only do this
    580 	 * if we are real low on memory since we don't gain much by doing
    581 	 * it (USPACE bytes).
    582 	 */
    583 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    584 		if ((p = outp) == NULL)
    585 			p = outp2;
    586 #ifdef DEBUG
    587 		if (swapdebug & SDB_SWAPOUT)
    588 			printf("swapout_threads: no duds, try procp %p\n", p);
    589 #endif
    590 		if (p)
    591 			uvm_swapout(p);
    592 	}
    593 }
    594 
    595 /*
    596  * uvm_swapout: swap out process "p"
    597  *
    598  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    599  *   the pmap.
    600  * - XXXCDC: should deactivate all process' private anonymous memory
    601  */
    602 
    603 static void
    604 uvm_swapout(p)
    605 	register struct proc *p;
    606 {
    607 	vaddr_t addr;
    608 	int s;
    609 
    610 #ifdef DEBUG
    611 	if (swapdebug & SDB_SWAPOUT)
    612 		printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
    613 	   p->p_pid, p->p_comm, p->p_addr, p->p_stat,
    614 	   p->p_slptime, uvmexp.free);
    615 #endif
    616 
    617 	/*
    618 	 * Do any machine-specific actions necessary before swapout.
    619 	 * This can include saving floating point state, etc.
    620 	 */
    621 	cpu_swapout(p);
    622 
    623 	/*
    624 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    625 	 */
    626 	addr = (vaddr_t)p->p_addr;
    627 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
    628 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    629 
    630 	/*
    631 	 * Mark it as (potentially) swapped out.
    632 	 */
    633 	s = splstatclock();
    634 	p->p_flag &= ~P_INMEM;
    635 	if (p->p_stat == SRUN)
    636 		remrunqueue(p);
    637 	splx(s);
    638 	p->p_swtime = 0;
    639 	++uvmexp.swapouts;
    640 }
    641 
    642