uvm_glue.c revision 1.37 1 /* $NetBSD: uvm_glue.c,v 1.37 2000/06/26 14:21:17 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_sysv.h"
71
72 /*
73 * uvm_glue.c: glue functions
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/resourcevar.h>
80 #include <sys/buf.h>
81 #include <sys/user.h>
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85
86 #include <vm/vm.h>
87
88 #include <uvm/uvm.h>
89
90 #include <machine/cpu.h>
91
92 /*
93 * local prototypes
94 */
95
96 static void uvm_swapout __P((struct proc *));
97
98 /*
99 * XXXCDC: do these really belong here?
100 */
101
102 unsigned maxdmap = MAXDSIZ; /* kern_resource.c: RLIMIT_DATA max */
103 unsigned maxsmap = MAXSSIZ; /* kern_resource.c: RLIMIT_STACK max */
104
105 int readbuffers = 0; /* allow KGDB to read kern buffer pool */
106 /* XXX: see uvm_kernacc */
107
108
109 /*
110 * uvm_kernacc: can the kernel access a region of memory
111 *
112 * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
113 */
114
115 boolean_t
116 uvm_kernacc(addr, len, rw)
117 caddr_t addr;
118 size_t len;
119 int rw;
120 {
121 boolean_t rv;
122 vaddr_t saddr, eaddr;
123 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
124
125 saddr = trunc_page((vaddr_t)addr);
126 eaddr = round_page((vaddr_t)addr+len);
127 vm_map_lock_read(kernel_map);
128 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
129 vm_map_unlock_read(kernel_map);
130
131 /*
132 * XXX there are still some things (e.g. the buffer cache) that
133 * are managed behind the VM system's back so even though an
134 * address is accessible in the mind of the VM system, there may
135 * not be physical pages where the VM thinks there is. This can
136 * lead to bogus allocation of pages in the kernel address space
137 * or worse, inconsistencies at the pmap level. We only worry
138 * about the buffer cache for now.
139 */
140 if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
141 saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
142 rv = FALSE;
143 return(rv);
144 }
145
146 /*
147 * uvm_useracc: can the user access it?
148 *
149 * - called from physio() and sys___sysctl().
150 */
151
152 boolean_t
153 uvm_useracc(addr, len, rw)
154 caddr_t addr;
155 size_t len;
156 int rw;
157 {
158 vm_map_t map;
159 boolean_t rv;
160 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
161
162 /* XXX curproc */
163 map = &curproc->p_vmspace->vm_map;
164
165 vm_map_lock_read(map);
166 rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
167 round_page((vaddr_t)addr+len), prot);
168 vm_map_unlock_read(map);
169
170 return(rv);
171 }
172
173 #ifdef KGDB
174 /*
175 * Change protections on kernel pages from addr to addr+len
176 * (presumably so debugger can plant a breakpoint).
177 *
178 * We force the protection change at the pmap level. If we were
179 * to use vm_map_protect a change to allow writing would be lazily-
180 * applied meaning we would still take a protection fault, something
181 * we really don't want to do. It would also fragment the kernel
182 * map unnecessarily. We cannot use pmap_protect since it also won't
183 * enforce a write-enable request. Using pmap_enter is the only way
184 * we can ensure the change takes place properly.
185 */
186 void
187 uvm_chgkprot(addr, len, rw)
188 caddr_t addr;
189 size_t len;
190 int rw;
191 {
192 vm_prot_t prot;
193 paddr_t pa;
194 vaddr_t sva, eva;
195
196 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
197 eva = round_page((vaddr_t)addr + len);
198 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
199 /*
200 * Extract physical address for the page.
201 * We use a cheezy hack to differentiate physical
202 * page 0 from an invalid mapping, not that it
203 * really matters...
204 */
205 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
206 panic("chgkprot: invalid page");
207 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
208 }
209 }
210 #endif
211
212 /*
213 * vslock: wire user memory for I/O
214 *
215 * - called from physio and sys___sysctl
216 * - XXXCDC: consider nuking this (or making it a macro?)
217 */
218
219 int
220 uvm_vslock(p, addr, len, access_type)
221 struct proc *p;
222 caddr_t addr;
223 size_t len;
224 vm_prot_t access_type;
225 {
226 vm_map_t map;
227 vaddr_t start, end;
228 int rv;
229
230 map = &p->p_vmspace->vm_map;
231 start = trunc_page((vaddr_t)addr);
232 end = round_page((vaddr_t)addr + len);
233
234 rv = uvm_fault_wire(map, start, end, access_type);
235
236 return (rv);
237 }
238
239 /*
240 * vslock: wire user memory for I/O
241 *
242 * - called from physio and sys___sysctl
243 * - XXXCDC: consider nuking this (or making it a macro?)
244 */
245
246 void
247 uvm_vsunlock(p, addr, len)
248 struct proc *p;
249 caddr_t addr;
250 size_t len;
251 {
252 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
253 round_page((vaddr_t)addr+len));
254 }
255
256 /*
257 * uvm_fork: fork a virtual address space
258 *
259 * - the address space is copied as per parent map's inherit values
260 * - a new "user" structure is allocated for the child process
261 * [filled in by MD layer...]
262 * - if specified, the child gets a new user stack described by
263 * stack and stacksize
264 * - NOTE: the kernel stack may be at a different location in the child
265 * process, and thus addresses of automatic variables may be invalid
266 * after cpu_fork returns in the child process. We do nothing here
267 * after cpu_fork returns.
268 * - XXXCDC: we need a way for this to return a failure value rather
269 * than just hang
270 */
271 void
272 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
273 struct proc *p1, *p2;
274 boolean_t shared;
275 void *stack;
276 size_t stacksize;
277 void (*func) __P((void *));
278 void *arg;
279 {
280 struct user *up = p2->p_addr;
281 int rv;
282
283 if (shared == TRUE)
284 uvmspace_share(p1, p2); /* share vmspace */
285 else
286 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
287
288 /*
289 * Wire down the U-area for the process, which contains the PCB
290 * and the kernel stack. Wired state is stored in p->p_flag's
291 * P_INMEM bit rather than in the vm_map_entry's wired count
292 * to prevent kernel_map fragmentation.
293 *
294 * Note the kernel stack gets read/write accesses right off
295 * the bat.
296 */
297 rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
298 (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
299 if (rv != KERN_SUCCESS)
300 panic("uvm_fork: uvm_fault_wire failed: %d", rv);
301
302 /*
303 * p_stats currently points at a field in the user struct. Copy
304 * parts of p_stats, and zero out the rest.
305 */
306 p2->p_stats = &up->u_stats;
307 memset(&up->u_stats.pstat_startzero, 0,
308 (unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
309 (caddr_t)&up->u_stats.pstat_startzero));
310 memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
311 ((caddr_t)&up->u_stats.pstat_endcopy -
312 (caddr_t)&up->u_stats.pstat_startcopy));
313
314 /*
315 * cpu_fork() copy and update the pcb, and make the child ready
316 * to run. If this is a normal user fork, the child will exit
317 * directly to user mode via child_return() on its first time
318 * slice and will not return here. If this is a kernel thread,
319 * the specified entry point will be executed.
320 */
321 cpu_fork(p1, p2, stack, stacksize, func, arg);
322 }
323
324 /*
325 * uvm_exit: exit a virtual address space
326 *
327 * - the process passed to us is a dead (pre-zombie) process; we
328 * are running on a different context now (the reaper).
329 * - we must run in a separate thread because freeing the vmspace
330 * of the dead process may block.
331 */
332 void
333 uvm_exit(p)
334 struct proc *p;
335 {
336
337 uvmspace_free(p->p_vmspace);
338 uvm_km_free(kernel_map, (vaddr_t)p->p_addr, USPACE);
339 p->p_addr = NULL;
340 }
341
342 /*
343 * uvm_init_limit: init per-process VM limits
344 *
345 * - called for process 0 and then inherited by all others.
346 */
347 void
348 uvm_init_limits(p)
349 struct proc *p;
350 {
351
352 /*
353 * Set up the initial limits on process VM. Set the maximum
354 * resident set size to be all of (reasonably) available memory.
355 * This causes any single, large process to start random page
356 * replacement once it fills memory.
357 */
358
359 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
360 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
361 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
362 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
363 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
364 }
365
366 #ifdef DEBUG
367 int enableswap = 1;
368 int swapdebug = 0;
369 #define SDB_FOLLOW 1
370 #define SDB_SWAPIN 2
371 #define SDB_SWAPOUT 4
372 #endif
373
374 /*
375 * uvm_swapin: swap in a process's u-area.
376 */
377
378 void
379 uvm_swapin(p)
380 struct proc *p;
381 {
382 vaddr_t addr;
383 int s;
384
385 addr = (vaddr_t)p->p_addr;
386 /* make P_INMEM true */
387 uvm_fault_wire(kernel_map, addr, addr + USPACE,
388 VM_PROT_READ | VM_PROT_WRITE);
389
390 /*
391 * Some architectures need to be notified when the user area has
392 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
393 */
394 cpu_swapin(p);
395 s = splstatclock();
396 if (p->p_stat == SRUN)
397 setrunqueue(p);
398 p->p_flag |= P_INMEM;
399 splx(s);
400 p->p_swtime = 0;
401 ++uvmexp.swapins;
402 }
403
404 /*
405 * uvm_scheduler: process zero main loop
406 *
407 * - attempt to swapin every swaped-out, runnable process in order of
408 * priority.
409 * - if not enough memory, wake the pagedaemon and let it clear space.
410 */
411
412 void
413 uvm_scheduler()
414 {
415 struct proc *p;
416 int pri;
417 struct proc *pp;
418 int ppri;
419 UVMHIST_FUNC("uvm_scheduler"); UVMHIST_CALLED(maphist);
420
421 loop:
422 #ifdef DEBUG
423 while (!enableswap)
424 tsleep((caddr_t)&proc0, PVM, "noswap", 0);
425 #endif
426 pp = NULL; /* process to choose */
427 ppri = INT_MIN; /* its priority */
428 proclist_lock_read();
429 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
430
431 /* is it a runnable swapped out process? */
432 if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
433 pri = p->p_swtime + p->p_slptime -
434 (p->p_nice - NZERO) * 8;
435 if (pri > ppri) { /* higher priority? remember it. */
436 pp = p;
437 ppri = pri;
438 }
439 }
440 }
441 proclist_unlock_read();
442
443 #ifdef DEBUG
444 if (swapdebug & SDB_FOLLOW)
445 printf("scheduler: running, procp %p pri %d\n", pp, ppri);
446 #endif
447 /*
448 * Nothing to do, back to sleep
449 */
450 if ((p = pp) == NULL) {
451 tsleep((caddr_t)&proc0, PVM, "scheduler", 0);
452 goto loop;
453 }
454
455 /*
456 * we have found swapped out process which we would like to bring
457 * back in.
458 *
459 * XXX: this part is really bogus cuz we could deadlock on memory
460 * despite our feeble check
461 */
462 if (uvmexp.free > atop(USPACE)) {
463 #ifdef DEBUG
464 if (swapdebug & SDB_SWAPIN)
465 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
466 p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
467 #endif
468 uvm_swapin(p);
469 goto loop;
470 }
471 /*
472 * not enough memory, jab the pageout daemon and wait til the coast
473 * is clear
474 */
475 #ifdef DEBUG
476 if (swapdebug & SDB_FOLLOW)
477 printf("scheduler: no room for pid %d(%s), free %d\n",
478 p->p_pid, p->p_comm, uvmexp.free);
479 #endif
480 (void) splhigh();
481 uvm_wait("schedpwait");
482 (void) spl0();
483 #ifdef DEBUG
484 if (swapdebug & SDB_FOLLOW)
485 printf("scheduler: room again, free %d\n", uvmexp.free);
486 #endif
487 goto loop;
488 }
489
490 /*
491 * swappable: is process "p" swappable?
492 */
493
494 #define swappable(p) \
495 (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
496 (p)->p_holdcnt == 0)
497
498 /*
499 * swapout_threads: find threads that can be swapped and unwire their
500 * u-areas.
501 *
502 * - called by the pagedaemon
503 * - try and swap at least one processs
504 * - processes that are sleeping or stopped for maxslp or more seconds
505 * are swapped... otherwise the longest-sleeping or stopped process
506 * is swapped, otherwise the longest resident process...
507 */
508 void
509 uvm_swapout_threads()
510 {
511 struct proc *p;
512 struct proc *outp, *outp2;
513 int outpri, outpri2;
514 int didswap = 0;
515 extern int maxslp;
516 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
517
518 #ifdef DEBUG
519 if (!enableswap)
520 return;
521 #endif
522
523 /*
524 * outp/outpri : stop/sleep process with largest sleeptime < maxslp
525 * outp2/outpri2: the longest resident process (its swap time)
526 */
527 outp = outp2 = NULL;
528 outpri = outpri2 = 0;
529 proclist_lock_read();
530 for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
531 if (!swappable(p))
532 continue;
533 switch (p->p_stat) {
534 case SRUN:
535 case SONPROC:
536 if (p->p_swtime > outpri2) {
537 outp2 = p;
538 outpri2 = p->p_swtime;
539 }
540 continue;
541
542 case SSLEEP:
543 case SSTOP:
544 if (p->p_slptime >= maxslp) {
545 uvm_swapout(p); /* zap! */
546 didswap++;
547 } else if (p->p_slptime > outpri) {
548 outp = p;
549 outpri = p->p_slptime;
550 }
551 continue;
552 }
553 }
554 proclist_unlock_read();
555
556 /*
557 * If we didn't get rid of any real duds, toss out the next most
558 * likely sleeping/stopped or running candidate. We only do this
559 * if we are real low on memory since we don't gain much by doing
560 * it (USPACE bytes).
561 */
562 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
563 if ((p = outp) == NULL)
564 p = outp2;
565 #ifdef DEBUG
566 if (swapdebug & SDB_SWAPOUT)
567 printf("swapout_threads: no duds, try procp %p\n", p);
568 #endif
569 if (p)
570 uvm_swapout(p);
571 }
572 }
573
574 /*
575 * uvm_swapout: swap out process "p"
576 *
577 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
578 * the pmap.
579 * - XXXCDC: should deactivate all process' private anonymous memory
580 */
581
582 static void
583 uvm_swapout(p)
584 struct proc *p;
585 {
586 vaddr_t addr;
587 int s;
588
589 #ifdef DEBUG
590 if (swapdebug & SDB_SWAPOUT)
591 printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
592 p->p_pid, p->p_comm, p->p_addr, p->p_stat,
593 p->p_slptime, uvmexp.free);
594 #endif
595
596 /*
597 * Do any machine-specific actions necessary before swapout.
598 * This can include saving floating point state, etc.
599 */
600 cpu_swapout(p);
601
602 /*
603 * Unwire the to-be-swapped process's user struct and kernel stack.
604 */
605 addr = (vaddr_t)p->p_addr;
606 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
607 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
608
609 /*
610 * Mark it as (potentially) swapped out.
611 */
612 s = splstatclock();
613 p->p_flag &= ~P_INMEM;
614 if (p->p_stat == SRUN)
615 remrunqueue(p);
616 splx(s);
617 p->p_swtime = 0;
618 ++uvmexp.swapouts;
619 }
620
621