uvm_glue.c revision 1.43 1 /* $NetBSD: uvm_glue.c,v 1.43 2000/11/25 06:27:59 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_sysv.h"
71
72 /*
73 * uvm_glue.c: glue functions
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/resourcevar.h>
80 #include <sys/buf.h>
81 #include <sys/user.h>
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85
86 #include <uvm/uvm.h>
87
88 #include <machine/cpu.h>
89
90 /*
91 * local prototypes
92 */
93
94 static void uvm_swapout __P((struct proc *));
95
96 /*
97 * XXXCDC: do these really belong here?
98 */
99
100 unsigned maxdmap = MAXDSIZ; /* kern_resource.c: RLIMIT_DATA max */
101 unsigned maxsmap = MAXSSIZ; /* kern_resource.c: RLIMIT_STACK max */
102
103 int readbuffers = 0; /* allow KGDB to read kern buffer pool */
104 /* XXX: see uvm_kernacc */
105
106
107 /*
108 * uvm_kernacc: can the kernel access a region of memory
109 *
110 * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
111 */
112
113 boolean_t
114 uvm_kernacc(addr, len, rw)
115 caddr_t addr;
116 size_t len;
117 int rw;
118 {
119 boolean_t rv;
120 vaddr_t saddr, eaddr;
121 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
122
123 saddr = trunc_page((vaddr_t)addr);
124 eaddr = round_page((vaddr_t)addr + len);
125 vm_map_lock_read(kernel_map);
126 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
127 vm_map_unlock_read(kernel_map);
128
129 /*
130 * XXX there are still some things (e.g. the buffer cache) that
131 * are managed behind the VM system's back so even though an
132 * address is accessible in the mind of the VM system, there may
133 * not be physical pages where the VM thinks there is. This can
134 * lead to bogus allocation of pages in the kernel address space
135 * or worse, inconsistencies at the pmap level. We only worry
136 * about the buffer cache for now.
137 */
138 if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
139 saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
140 rv = FALSE;
141 return(rv);
142 }
143
144 /*
145 * uvm_useracc: can the user access it?
146 *
147 * - called from physio() and sys___sysctl().
148 */
149
150 boolean_t
151 uvm_useracc(addr, len, rw)
152 caddr_t addr;
153 size_t len;
154 int rw;
155 {
156 vm_map_t map;
157 boolean_t rv;
158 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
159
160 /* XXX curproc */
161 map = &curproc->p_vmspace->vm_map;
162
163 vm_map_lock_read(map);
164 rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
165 round_page((vaddr_t)addr + len), prot);
166 vm_map_unlock_read(map);
167
168 return(rv);
169 }
170
171 #ifdef KGDB
172 /*
173 * Change protections on kernel pages from addr to addr+len
174 * (presumably so debugger can plant a breakpoint).
175 *
176 * We force the protection change at the pmap level. If we were
177 * to use vm_map_protect a change to allow writing would be lazily-
178 * applied meaning we would still take a protection fault, something
179 * we really don't want to do. It would also fragment the kernel
180 * map unnecessarily. We cannot use pmap_protect since it also won't
181 * enforce a write-enable request. Using pmap_enter is the only way
182 * we can ensure the change takes place properly.
183 */
184 void
185 uvm_chgkprot(addr, len, rw)
186 caddr_t addr;
187 size_t len;
188 int rw;
189 {
190 vm_prot_t prot;
191 paddr_t pa;
192 vaddr_t sva, eva;
193
194 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
195 eva = round_page((vaddr_t)addr + len);
196 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
197 /*
198 * Extract physical address for the page.
199 * We use a cheezy hack to differentiate physical
200 * page 0 from an invalid mapping, not that it
201 * really matters...
202 */
203 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
204 panic("chgkprot: invalid page");
205 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
206 }
207 }
208 #endif
209
210 /*
211 * vslock: wire user memory for I/O
212 *
213 * - called from physio and sys___sysctl
214 * - XXXCDC: consider nuking this (or making it a macro?)
215 */
216
217 int
218 uvm_vslock(p, addr, len, access_type)
219 struct proc *p;
220 caddr_t addr;
221 size_t len;
222 vm_prot_t access_type;
223 {
224 vm_map_t map;
225 vaddr_t start, end;
226 int rv;
227
228 map = &p->p_vmspace->vm_map;
229 start = trunc_page((vaddr_t)addr);
230 end = round_page((vaddr_t)addr + len);
231
232 rv = uvm_fault_wire(map, start, end, access_type);
233
234 return (rv);
235 }
236
237 /*
238 * vslock: wire user memory for I/O
239 *
240 * - called from physio and sys___sysctl
241 * - XXXCDC: consider nuking this (or making it a macro?)
242 */
243
244 void
245 uvm_vsunlock(p, addr, len)
246 struct proc *p;
247 caddr_t addr;
248 size_t len;
249 {
250 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
251 round_page((vaddr_t)addr + len));
252 }
253
254 /*
255 * uvm_fork: fork a virtual address space
256 *
257 * - the address space is copied as per parent map's inherit values
258 * - a new "user" structure is allocated for the child process
259 * [filled in by MD layer...]
260 * - if specified, the child gets a new user stack described by
261 * stack and stacksize
262 * - NOTE: the kernel stack may be at a different location in the child
263 * process, and thus addresses of automatic variables may be invalid
264 * after cpu_fork returns in the child process. We do nothing here
265 * after cpu_fork returns.
266 * - XXXCDC: we need a way for this to return a failure value rather
267 * than just hang
268 */
269 void
270 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
271 struct proc *p1, *p2;
272 boolean_t shared;
273 void *stack;
274 size_t stacksize;
275 void (*func) __P((void *));
276 void *arg;
277 {
278 struct user *up = p2->p_addr;
279 int rv;
280
281 if (shared == TRUE) {
282 p2->p_vmspace = NULL;
283 uvmspace_share(p1, p2); /* share vmspace */
284 } else
285 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
286
287 /*
288 * Wire down the U-area for the process, which contains the PCB
289 * and the kernel stack. Wired state is stored in p->p_flag's
290 * P_INMEM bit rather than in the vm_map_entry's wired count
291 * to prevent kernel_map fragmentation.
292 *
293 * Note the kernel stack gets read/write accesses right off
294 * the bat.
295 */
296 rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
297 (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
298 if (rv != KERN_SUCCESS)
299 panic("uvm_fork: uvm_fault_wire failed: %d", rv);
300
301 /*
302 * p_stats currently points at a field in the user struct. Copy
303 * parts of p_stats, and zero out the rest.
304 */
305 p2->p_stats = &up->u_stats;
306 memset(&up->u_stats.pstat_startzero, 0,
307 ((caddr_t)&up->u_stats.pstat_endzero -
308 (caddr_t)&up->u_stats.pstat_startzero));
309 memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
310 ((caddr_t)&up->u_stats.pstat_endcopy -
311 (caddr_t)&up->u_stats.pstat_startcopy));
312
313 /*
314 * cpu_fork() copy and update the pcb, and make the child ready
315 * to run. If this is a normal user fork, the child will exit
316 * directly to user mode via child_return() on its first time
317 * slice and will not return here. If this is a kernel thread,
318 * the specified entry point will be executed.
319 */
320 cpu_fork(p1, p2, stack, stacksize, func, arg);
321 }
322
323 /*
324 * uvm_exit: exit a virtual address space
325 *
326 * - the process passed to us is a dead (pre-zombie) process; we
327 * are running on a different context now (the reaper).
328 * - we must run in a separate thread because freeing the vmspace
329 * of the dead process may block.
330 */
331 void
332 uvm_exit(p)
333 struct proc *p;
334 {
335 vaddr_t va = (vaddr_t)p->p_addr;
336
337 uvmspace_free(p->p_vmspace);
338 p->p_flag &= ~P_INMEM;
339 uvm_fault_unwire(kernel_map, va, va + USPACE);
340 uvm_km_free(kernel_map, va, USPACE);
341 p->p_addr = NULL;
342 }
343
344 /*
345 * uvm_init_limit: init per-process VM limits
346 *
347 * - called for process 0 and then inherited by all others.
348 */
349 void
350 uvm_init_limits(p)
351 struct proc *p;
352 {
353
354 /*
355 * Set up the initial limits on process VM. Set the maximum
356 * resident set size to be all of (reasonably) available memory.
357 * This causes any single, large process to start random page
358 * replacement once it fills memory.
359 */
360
361 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
362 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
363 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
364 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
365 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
366 }
367
368 #ifdef DEBUG
369 int enableswap = 1;
370 int swapdebug = 0;
371 #define SDB_FOLLOW 1
372 #define SDB_SWAPIN 2
373 #define SDB_SWAPOUT 4
374 #endif
375
376 /*
377 * uvm_swapin: swap in a process's u-area.
378 */
379
380 void
381 uvm_swapin(p)
382 struct proc *p;
383 {
384 vaddr_t addr;
385 int s;
386
387 addr = (vaddr_t)p->p_addr;
388 /* make P_INMEM true */
389 uvm_fault_wire(kernel_map, addr, addr + USPACE,
390 VM_PROT_READ | VM_PROT_WRITE);
391
392 /*
393 * Some architectures need to be notified when the user area has
394 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
395 */
396 cpu_swapin(p);
397 SCHED_LOCK(s);
398 if (p->p_stat == SRUN)
399 setrunqueue(p);
400 p->p_flag |= P_INMEM;
401 SCHED_UNLOCK(s);
402 p->p_swtime = 0;
403 ++uvmexp.swapins;
404 }
405
406 /*
407 * uvm_scheduler: process zero main loop
408 *
409 * - attempt to swapin every swaped-out, runnable process in order of
410 * priority.
411 * - if not enough memory, wake the pagedaemon and let it clear space.
412 */
413
414 void
415 uvm_scheduler()
416 {
417 struct proc *p;
418 int pri;
419 struct proc *pp;
420 int ppri;
421
422 loop:
423 #ifdef DEBUG
424 while (!enableswap)
425 tsleep(&proc0, PVM, "noswap", 0);
426 #endif
427 pp = NULL; /* process to choose */
428 ppri = INT_MIN; /* its priority */
429 proclist_lock_read();
430 LIST_FOREACH(p, &allproc, p_list) {
431
432 /* is it a runnable swapped out process? */
433 if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
434 pri = p->p_swtime + p->p_slptime -
435 (p->p_nice - NZERO) * 8;
436 if (pri > ppri) { /* higher priority? remember it. */
437 pp = p;
438 ppri = pri;
439 }
440 }
441 }
442 /*
443 * XXXSMP: possible unlock/sleep race between here and the
444 * "scheduler" tsleep below..
445 */
446 proclist_unlock_read();
447
448 #ifdef DEBUG
449 if (swapdebug & SDB_FOLLOW)
450 printf("scheduler: running, procp %p pri %d\n", pp, ppri);
451 #endif
452 /*
453 * Nothing to do, back to sleep
454 */
455 if ((p = pp) == NULL) {
456 tsleep(&proc0, PVM, "scheduler", 0);
457 goto loop;
458 }
459
460 /*
461 * we have found swapped out process which we would like to bring
462 * back in.
463 *
464 * XXX: this part is really bogus cuz we could deadlock on memory
465 * despite our feeble check
466 */
467 if (uvmexp.free > atop(USPACE)) {
468 #ifdef DEBUG
469 if (swapdebug & SDB_SWAPIN)
470 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
471 p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
472 #endif
473 uvm_swapin(p);
474 goto loop;
475 }
476 /*
477 * not enough memory, jab the pageout daemon and wait til the coast
478 * is clear
479 */
480 #ifdef DEBUG
481 if (swapdebug & SDB_FOLLOW)
482 printf("scheduler: no room for pid %d(%s), free %d\n",
483 p->p_pid, p->p_comm, uvmexp.free);
484 #endif
485 uvm_wait("schedpwait");
486 #ifdef DEBUG
487 if (swapdebug & SDB_FOLLOW)
488 printf("scheduler: room again, free %d\n", uvmexp.free);
489 #endif
490 goto loop;
491 }
492
493 /*
494 * swappable: is process "p" swappable?
495 */
496
497 #define swappable(p) \
498 (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
499 (p)->p_holdcnt == 0)
500
501 /*
502 * swapout_threads: find threads that can be swapped and unwire their
503 * u-areas.
504 *
505 * - called by the pagedaemon
506 * - try and swap at least one processs
507 * - processes that are sleeping or stopped for maxslp or more seconds
508 * are swapped... otherwise the longest-sleeping or stopped process
509 * is swapped, otherwise the longest resident process...
510 */
511 void
512 uvm_swapout_threads()
513 {
514 struct proc *p;
515 struct proc *outp, *outp2;
516 int outpri, outpri2;
517 int didswap = 0;
518 extern int maxslp;
519 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
520
521 #ifdef DEBUG
522 if (!enableswap)
523 return;
524 #endif
525
526 /*
527 * outp/outpri : stop/sleep process with largest sleeptime < maxslp
528 * outp2/outpri2: the longest resident process (its swap time)
529 */
530 outp = outp2 = NULL;
531 outpri = outpri2 = 0;
532 proclist_lock_read();
533 LIST_FOREACH(p, &allproc, p_list) {
534 if (!swappable(p))
535 continue;
536 switch (p->p_stat) {
537 case SRUN:
538 case SONPROC:
539 if (p->p_swtime > outpri2) {
540 outp2 = p;
541 outpri2 = p->p_swtime;
542 }
543 continue;
544
545 case SSLEEP:
546 case SSTOP:
547 if (p->p_slptime >= maxslp) {
548 uvm_swapout(p);
549 didswap++;
550 } else if (p->p_slptime > outpri) {
551 outp = p;
552 outpri = p->p_slptime;
553 }
554 continue;
555 }
556 }
557 proclist_unlock_read();
558
559 /*
560 * If we didn't get rid of any real duds, toss out the next most
561 * likely sleeping/stopped or running candidate. We only do this
562 * if we are real low on memory since we don't gain much by doing
563 * it (USPACE bytes).
564 */
565 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
566 if ((p = outp) == NULL)
567 p = outp2;
568 #ifdef DEBUG
569 if (swapdebug & SDB_SWAPOUT)
570 printf("swapout_threads: no duds, try procp %p\n", p);
571 #endif
572 if (p)
573 uvm_swapout(p);
574 }
575 pmap_update();
576 }
577
578 /*
579 * uvm_swapout: swap out process "p"
580 *
581 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
582 * the pmap.
583 * - XXXCDC: should deactivate all process' private anonymous memory
584 */
585
586 static void
587 uvm_swapout(p)
588 struct proc *p;
589 {
590 vaddr_t addr;
591 int s;
592
593 #ifdef DEBUG
594 if (swapdebug & SDB_SWAPOUT)
595 printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
596 p->p_pid, p->p_comm, p->p_addr, p->p_stat,
597 p->p_slptime, uvmexp.free);
598 #endif
599
600 /*
601 * Do any machine-specific actions necessary before swapout.
602 * This can include saving floating point state, etc.
603 */
604 cpu_swapout(p);
605
606 /*
607 * Mark it as (potentially) swapped out.
608 */
609 SCHED_LOCK(s);
610 p->p_flag &= ~P_INMEM;
611 if (p->p_stat == SRUN)
612 remrunqueue(p);
613 SCHED_UNLOCK(s);
614 p->p_swtime = 0;
615 ++uvmexp.swapouts;
616
617 /*
618 * Unwire the to-be-swapped process's user struct and kernel stack.
619 */
620 addr = (vaddr_t)p->p_addr;
621 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
622 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
623 }
624
625