uvm_glue.c revision 1.44 1 /* $NetBSD: uvm_glue.c,v 1.44 2001/02/06 19:54:44 eeh Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_sysv.h"
71
72 /*
73 * uvm_glue.c: glue functions
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/proc.h>
79 #include <sys/resourcevar.h>
80 #include <sys/buf.h>
81 #include <sys/user.h>
82 #ifdef SYSVSHM
83 #include <sys/shm.h>
84 #endif
85
86 #include <uvm/uvm.h>
87
88 #include <machine/cpu.h>
89
90 /*
91 * local prototypes
92 */
93
94 static void uvm_swapout __P((struct proc *));
95
96 /*
97 * XXXCDC: do these really belong here?
98 */
99
100 int readbuffers = 0; /* allow KGDB to read kern buffer pool */
101 /* XXX: see uvm_kernacc */
102
103
104 /*
105 * uvm_kernacc: can the kernel access a region of memory
106 *
107 * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
108 */
109
110 boolean_t
111 uvm_kernacc(addr, len, rw)
112 caddr_t addr;
113 size_t len;
114 int rw;
115 {
116 boolean_t rv;
117 vaddr_t saddr, eaddr;
118 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
119
120 saddr = trunc_page((vaddr_t)addr);
121 eaddr = round_page((vaddr_t)addr + len);
122 vm_map_lock_read(kernel_map);
123 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
124 vm_map_unlock_read(kernel_map);
125
126 /*
127 * XXX there are still some things (e.g. the buffer cache) that
128 * are managed behind the VM system's back so even though an
129 * address is accessible in the mind of the VM system, there may
130 * not be physical pages where the VM thinks there is. This can
131 * lead to bogus allocation of pages in the kernel address space
132 * or worse, inconsistencies at the pmap level. We only worry
133 * about the buffer cache for now.
134 */
135 if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
136 saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
137 rv = FALSE;
138 return(rv);
139 }
140
141 /*
142 * uvm_useracc: can the user access it?
143 *
144 * - called from physio() and sys___sysctl().
145 */
146
147 boolean_t
148 uvm_useracc(addr, len, rw)
149 caddr_t addr;
150 size_t len;
151 int rw;
152 {
153 vm_map_t map;
154 boolean_t rv;
155 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
156
157 /* XXX curproc */
158 map = &curproc->p_vmspace->vm_map;
159
160 vm_map_lock_read(map);
161 rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
162 round_page((vaddr_t)addr + len), prot);
163 vm_map_unlock_read(map);
164
165 return(rv);
166 }
167
168 #ifdef KGDB
169 /*
170 * Change protections on kernel pages from addr to addr+len
171 * (presumably so debugger can plant a breakpoint).
172 *
173 * We force the protection change at the pmap level. If we were
174 * to use vm_map_protect a change to allow writing would be lazily-
175 * applied meaning we would still take a protection fault, something
176 * we really don't want to do. It would also fragment the kernel
177 * map unnecessarily. We cannot use pmap_protect since it also won't
178 * enforce a write-enable request. Using pmap_enter is the only way
179 * we can ensure the change takes place properly.
180 */
181 void
182 uvm_chgkprot(addr, len, rw)
183 caddr_t addr;
184 size_t len;
185 int rw;
186 {
187 vm_prot_t prot;
188 paddr_t pa;
189 vaddr_t sva, eva;
190
191 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
192 eva = round_page((vaddr_t)addr + len);
193 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
194 /*
195 * Extract physical address for the page.
196 * We use a cheezy hack to differentiate physical
197 * page 0 from an invalid mapping, not that it
198 * really matters...
199 */
200 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
201 panic("chgkprot: invalid page");
202 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
203 }
204 }
205 #endif
206
207 /*
208 * vslock: wire user memory for I/O
209 *
210 * - called from physio and sys___sysctl
211 * - XXXCDC: consider nuking this (or making it a macro?)
212 */
213
214 int
215 uvm_vslock(p, addr, len, access_type)
216 struct proc *p;
217 caddr_t addr;
218 size_t len;
219 vm_prot_t access_type;
220 {
221 vm_map_t map;
222 vaddr_t start, end;
223 int rv;
224
225 map = &p->p_vmspace->vm_map;
226 start = trunc_page((vaddr_t)addr);
227 end = round_page((vaddr_t)addr + len);
228
229 rv = uvm_fault_wire(map, start, end, access_type);
230
231 return (rv);
232 }
233
234 /*
235 * vslock: wire user memory for I/O
236 *
237 * - called from physio and sys___sysctl
238 * - XXXCDC: consider nuking this (or making it a macro?)
239 */
240
241 void
242 uvm_vsunlock(p, addr, len)
243 struct proc *p;
244 caddr_t addr;
245 size_t len;
246 {
247 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
248 round_page((vaddr_t)addr + len));
249 }
250
251 /*
252 * uvm_fork: fork a virtual address space
253 *
254 * - the address space is copied as per parent map's inherit values
255 * - a new "user" structure is allocated for the child process
256 * [filled in by MD layer...]
257 * - if specified, the child gets a new user stack described by
258 * stack and stacksize
259 * - NOTE: the kernel stack may be at a different location in the child
260 * process, and thus addresses of automatic variables may be invalid
261 * after cpu_fork returns in the child process. We do nothing here
262 * after cpu_fork returns.
263 * - XXXCDC: we need a way for this to return a failure value rather
264 * than just hang
265 */
266 void
267 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
268 struct proc *p1, *p2;
269 boolean_t shared;
270 void *stack;
271 size_t stacksize;
272 void (*func) __P((void *));
273 void *arg;
274 {
275 struct user *up = p2->p_addr;
276 int rv;
277
278 if (shared == TRUE) {
279 p2->p_vmspace = NULL;
280 uvmspace_share(p1, p2); /* share vmspace */
281 } else
282 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
283
284 /*
285 * Wire down the U-area for the process, which contains the PCB
286 * and the kernel stack. Wired state is stored in p->p_flag's
287 * P_INMEM bit rather than in the vm_map_entry's wired count
288 * to prevent kernel_map fragmentation.
289 *
290 * Note the kernel stack gets read/write accesses right off
291 * the bat.
292 */
293 rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
294 (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
295 if (rv != KERN_SUCCESS)
296 panic("uvm_fork: uvm_fault_wire failed: %d", rv);
297
298 /*
299 * p_stats currently points at a field in the user struct. Copy
300 * parts of p_stats, and zero out the rest.
301 */
302 p2->p_stats = &up->u_stats;
303 memset(&up->u_stats.pstat_startzero, 0,
304 ((caddr_t)&up->u_stats.pstat_endzero -
305 (caddr_t)&up->u_stats.pstat_startzero));
306 memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
307 ((caddr_t)&up->u_stats.pstat_endcopy -
308 (caddr_t)&up->u_stats.pstat_startcopy));
309
310 /*
311 * cpu_fork() copy and update the pcb, and make the child ready
312 * to run. If this is a normal user fork, the child will exit
313 * directly to user mode via child_return() on its first time
314 * slice and will not return here. If this is a kernel thread,
315 * the specified entry point will be executed.
316 */
317 cpu_fork(p1, p2, stack, stacksize, func, arg);
318 }
319
320 /*
321 * uvm_exit: exit a virtual address space
322 *
323 * - the process passed to us is a dead (pre-zombie) process; we
324 * are running on a different context now (the reaper).
325 * - we must run in a separate thread because freeing the vmspace
326 * of the dead process may block.
327 */
328 void
329 uvm_exit(p)
330 struct proc *p;
331 {
332 vaddr_t va = (vaddr_t)p->p_addr;
333
334 uvmspace_free(p->p_vmspace);
335 p->p_flag &= ~P_INMEM;
336 uvm_fault_unwire(kernel_map, va, va + USPACE);
337 uvm_km_free(kernel_map, va, USPACE);
338 p->p_addr = NULL;
339 }
340
341 /*
342 * uvm_init_limit: init per-process VM limits
343 *
344 * - called for process 0 and then inherited by all others.
345 */
346 void
347 uvm_init_limits(p)
348 struct proc *p;
349 {
350
351 /*
352 * Set up the initial limits on process VM. Set the maximum
353 * resident set size to be all of (reasonably) available memory.
354 * This causes any single, large process to start random page
355 * replacement once it fills memory.
356 */
357
358 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
359 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
360 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
361 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
362 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
363 }
364
365 #ifdef DEBUG
366 int enableswap = 1;
367 int swapdebug = 0;
368 #define SDB_FOLLOW 1
369 #define SDB_SWAPIN 2
370 #define SDB_SWAPOUT 4
371 #endif
372
373 /*
374 * uvm_swapin: swap in a process's u-area.
375 */
376
377 void
378 uvm_swapin(p)
379 struct proc *p;
380 {
381 vaddr_t addr;
382 int s;
383
384 addr = (vaddr_t)p->p_addr;
385 /* make P_INMEM true */
386 uvm_fault_wire(kernel_map, addr, addr + USPACE,
387 VM_PROT_READ | VM_PROT_WRITE);
388
389 /*
390 * Some architectures need to be notified when the user area has
391 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
392 */
393 cpu_swapin(p);
394 SCHED_LOCK(s);
395 if (p->p_stat == SRUN)
396 setrunqueue(p);
397 p->p_flag |= P_INMEM;
398 SCHED_UNLOCK(s);
399 p->p_swtime = 0;
400 ++uvmexp.swapins;
401 }
402
403 /*
404 * uvm_scheduler: process zero main loop
405 *
406 * - attempt to swapin every swaped-out, runnable process in order of
407 * priority.
408 * - if not enough memory, wake the pagedaemon and let it clear space.
409 */
410
411 void
412 uvm_scheduler()
413 {
414 struct proc *p;
415 int pri;
416 struct proc *pp;
417 int ppri;
418
419 loop:
420 #ifdef DEBUG
421 while (!enableswap)
422 tsleep(&proc0, PVM, "noswap", 0);
423 #endif
424 pp = NULL; /* process to choose */
425 ppri = INT_MIN; /* its priority */
426 proclist_lock_read();
427 LIST_FOREACH(p, &allproc, p_list) {
428
429 /* is it a runnable swapped out process? */
430 if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
431 pri = p->p_swtime + p->p_slptime -
432 (p->p_nice - NZERO) * 8;
433 if (pri > ppri) { /* higher priority? remember it. */
434 pp = p;
435 ppri = pri;
436 }
437 }
438 }
439 /*
440 * XXXSMP: possible unlock/sleep race between here and the
441 * "scheduler" tsleep below..
442 */
443 proclist_unlock_read();
444
445 #ifdef DEBUG
446 if (swapdebug & SDB_FOLLOW)
447 printf("scheduler: running, procp %p pri %d\n", pp, ppri);
448 #endif
449 /*
450 * Nothing to do, back to sleep
451 */
452 if ((p = pp) == NULL) {
453 tsleep(&proc0, PVM, "scheduler", 0);
454 goto loop;
455 }
456
457 /*
458 * we have found swapped out process which we would like to bring
459 * back in.
460 *
461 * XXX: this part is really bogus cuz we could deadlock on memory
462 * despite our feeble check
463 */
464 if (uvmexp.free > atop(USPACE)) {
465 #ifdef DEBUG
466 if (swapdebug & SDB_SWAPIN)
467 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
468 p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
469 #endif
470 uvm_swapin(p);
471 goto loop;
472 }
473 /*
474 * not enough memory, jab the pageout daemon and wait til the coast
475 * is clear
476 */
477 #ifdef DEBUG
478 if (swapdebug & SDB_FOLLOW)
479 printf("scheduler: no room for pid %d(%s), free %d\n",
480 p->p_pid, p->p_comm, uvmexp.free);
481 #endif
482 uvm_wait("schedpwait");
483 #ifdef DEBUG
484 if (swapdebug & SDB_FOLLOW)
485 printf("scheduler: room again, free %d\n", uvmexp.free);
486 #endif
487 goto loop;
488 }
489
490 /*
491 * swappable: is process "p" swappable?
492 */
493
494 #define swappable(p) \
495 (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
496 (p)->p_holdcnt == 0)
497
498 /*
499 * swapout_threads: find threads that can be swapped and unwire their
500 * u-areas.
501 *
502 * - called by the pagedaemon
503 * - try and swap at least one processs
504 * - processes that are sleeping or stopped for maxslp or more seconds
505 * are swapped... otherwise the longest-sleeping or stopped process
506 * is swapped, otherwise the longest resident process...
507 */
508 void
509 uvm_swapout_threads()
510 {
511 struct proc *p;
512 struct proc *outp, *outp2;
513 int outpri, outpri2;
514 int didswap = 0;
515 extern int maxslp;
516 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
517
518 #ifdef DEBUG
519 if (!enableswap)
520 return;
521 #endif
522
523 /*
524 * outp/outpri : stop/sleep process with largest sleeptime < maxslp
525 * outp2/outpri2: the longest resident process (its swap time)
526 */
527 outp = outp2 = NULL;
528 outpri = outpri2 = 0;
529 proclist_lock_read();
530 LIST_FOREACH(p, &allproc, p_list) {
531 if (!swappable(p))
532 continue;
533 switch (p->p_stat) {
534 case SRUN:
535 case SONPROC:
536 if (p->p_swtime > outpri2) {
537 outp2 = p;
538 outpri2 = p->p_swtime;
539 }
540 continue;
541
542 case SSLEEP:
543 case SSTOP:
544 if (p->p_slptime >= maxslp) {
545 uvm_swapout(p);
546 didswap++;
547 } else if (p->p_slptime > outpri) {
548 outp = p;
549 outpri = p->p_slptime;
550 }
551 continue;
552 }
553 }
554 proclist_unlock_read();
555
556 /*
557 * If we didn't get rid of any real duds, toss out the next most
558 * likely sleeping/stopped or running candidate. We only do this
559 * if we are real low on memory since we don't gain much by doing
560 * it (USPACE bytes).
561 */
562 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
563 if ((p = outp) == NULL)
564 p = outp2;
565 #ifdef DEBUG
566 if (swapdebug & SDB_SWAPOUT)
567 printf("swapout_threads: no duds, try procp %p\n", p);
568 #endif
569 if (p)
570 uvm_swapout(p);
571 }
572 pmap_update();
573 }
574
575 /*
576 * uvm_swapout: swap out process "p"
577 *
578 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
579 * the pmap.
580 * - XXXCDC: should deactivate all process' private anonymous memory
581 */
582
583 static void
584 uvm_swapout(p)
585 struct proc *p;
586 {
587 vaddr_t addr;
588 int s;
589
590 #ifdef DEBUG
591 if (swapdebug & SDB_SWAPOUT)
592 printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
593 p->p_pid, p->p_comm, p->p_addr, p->p_stat,
594 p->p_slptime, uvmexp.free);
595 #endif
596
597 /*
598 * Do any machine-specific actions necessary before swapout.
599 * This can include saving floating point state, etc.
600 */
601 cpu_swapout(p);
602
603 /*
604 * Mark it as (potentially) swapped out.
605 */
606 SCHED_LOCK(s);
607 p->p_flag &= ~P_INMEM;
608 if (p->p_stat == SRUN)
609 remrunqueue(p);
610 SCHED_UNLOCK(s);
611 p->p_swtime = 0;
612 ++uvmexp.swapouts;
613
614 /*
615 * Unwire the to-be-swapped process's user struct and kernel stack.
616 */
617 addr = (vaddr_t)p->p_addr;
618 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
619 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
620 }
621
622