uvm_glue.c revision 1.44.2.1 1 /* $NetBSD: uvm_glue.c,v 1.44.2.1 2001/03/05 22:50:10 nathanw Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_uvmhist.h"
70 #include "opt_sysv.h"
71
72 /*
73 * uvm_glue.c: glue functions
74 */
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/lwp.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/user.h>
83 #ifdef SYSVSHM
84 #include <sys/shm.h>
85 #endif
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpu.h>
90
91 /*
92 * local prototypes
93 */
94
95 static void uvm_swapout __P((struct lwp *));
96
97 /*
98 * XXXCDC: do these really belong here?
99 */
100
101 int readbuffers = 0; /* allow KGDB to read kern buffer pool */
102 /* XXX: see uvm_kernacc */
103
104
105 /*
106 * uvm_kernacc: can the kernel access a region of memory
107 *
108 * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
109 */
110
111 boolean_t
112 uvm_kernacc(addr, len, rw)
113 caddr_t addr;
114 size_t len;
115 int rw;
116 {
117 boolean_t rv;
118 vaddr_t saddr, eaddr;
119 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120
121 saddr = trunc_page((vaddr_t)addr);
122 eaddr = round_page((vaddr_t)addr + len);
123 vm_map_lock_read(kernel_map);
124 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 vm_map_unlock_read(kernel_map);
126
127 /*
128 * XXX there are still some things (e.g. the buffer cache) that
129 * are managed behind the VM system's back so even though an
130 * address is accessible in the mind of the VM system, there may
131 * not be physical pages where the VM thinks there is. This can
132 * lead to bogus allocation of pages in the kernel address space
133 * or worse, inconsistencies at the pmap level. We only worry
134 * about the buffer cache for now.
135 */
136 if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
137 saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
138 rv = FALSE;
139 return(rv);
140 }
141
142 /*
143 * uvm_useracc: can the user access it?
144 *
145 * - called from physio() and sys___sysctl().
146 */
147
148 boolean_t
149 uvm_useracc(addr, len, rw)
150 caddr_t addr;
151 size_t len;
152 int rw;
153 {
154 vm_map_t map;
155 boolean_t rv;
156 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
157
158 /* XXX curproc */
159 map = &curproc->l_proc->p_vmspace->vm_map;
160
161 vm_map_lock_read(map);
162 rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
163 round_page((vaddr_t)addr + len), prot);
164 vm_map_unlock_read(map);
165
166 return(rv);
167 }
168
169 #ifdef KGDB
170 /*
171 * Change protections on kernel pages from addr to addr+len
172 * (presumably so debugger can plant a breakpoint).
173 *
174 * We force the protection change at the pmap level. If we were
175 * to use vm_map_protect a change to allow writing would be lazily-
176 * applied meaning we would still take a protection fault, something
177 * we really don't want to do. It would also fragment the kernel
178 * map unnecessarily. We cannot use pmap_protect since it also won't
179 * enforce a write-enable request. Using pmap_enter is the only way
180 * we can ensure the change takes place properly.
181 */
182 void
183 uvm_chgkprot(addr, len, rw)
184 caddr_t addr;
185 size_t len;
186 int rw;
187 {
188 vm_prot_t prot;
189 paddr_t pa;
190 vaddr_t sva, eva;
191
192 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
193 eva = round_page((vaddr_t)addr + len);
194 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
195 /*
196 * Extract physical address for the page.
197 * We use a cheezy hack to differentiate physical
198 * page 0 from an invalid mapping, not that it
199 * really matters...
200 */
201 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
202 panic("chgkprot: invalid page");
203 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
204 }
205 }
206 #endif
207
208 /*
209 * vslock: wire user memory for I/O
210 *
211 * - called from physio and sys___sysctl
212 * - XXXCDC: consider nuking this (or making it a macro?)
213 */
214
215 int
216 uvm_vslock(p, addr, len, access_type)
217 struct proc *p;
218 caddr_t addr;
219 size_t len;
220 vm_prot_t access_type;
221 {
222 vm_map_t map;
223 vaddr_t start, end;
224 int rv;
225
226 map = &p->p_vmspace->vm_map;
227 start = trunc_page((vaddr_t)addr);
228 end = round_page((vaddr_t)addr + len);
229
230 rv = uvm_fault_wire(map, start, end, access_type);
231
232 return (rv);
233 }
234
235 /*
236 * vslock: wire user memory for I/O
237 *
238 * - called from physio and sys___sysctl
239 * - XXXCDC: consider nuking this (or making it a macro?)
240 */
241
242 void
243 uvm_vsunlock(p, addr, len)
244 struct proc *p;
245 caddr_t addr;
246 size_t len;
247 {
248 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
249 round_page((vaddr_t)addr + len));
250 }
251
252 /*
253 * uvm_proc_fork: fork a virtual address space
254 *
255 * - the address space is copied as per parent map's inherit values
256 */
257 void
258 uvm_proc_fork(p1, p2, shared)
259 struct proc *p1, *p2;
260 boolean_t shared;
261 {
262
263 if (shared == TRUE) {
264 p2->p_vmspace = NULL;
265 uvmspace_share(p1, p2); /* share vmspace */
266 } else {
267 p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
268 }
269 }
270
271
272 /*
273 * uvm_lwp_fork: fork a thread
274 *
275 * - a new "user" structure is allocated for the child process
276 * [filled in by MD layer...]
277 * - if specified, the child gets a new user stack described by
278 * stack and stacksize
279 * - NOTE: the kernel stack may be at a different location in the child
280 * process, and thus addresses of automatic variables may be invalid
281 * after cpu_fork returns in the child process. We do nothing here
282 * after cpu_fork returns.
283 * - XXXCDC: we need a way for this to return a failure value rather
284 * than just hang
285 */
286 void
287 uvm_lwp_fork(l1, l2, stack, stacksize, func, arg)
288 struct lwp *l1, *l2;
289 void *stack;
290 size_t stacksize;
291 void (*func) __P((void *));
292 void *arg;
293 {
294 struct user *up = l2->l_addr;
295 int rv;
296
297 /*
298 * Wire down the U-area for the process, which contains the PCB
299 * and the kernel stack. Wired state is stored in p->p_flag's
300 * P_INMEM bit rather than in the vm_map_entry's wired count
301 * to prevent kernel_map fragmentation.
302 *
303 * Note the kernel stack gets read/write accesses right off
304 * the bat.
305 */
306 rv = uvm_fault_wire(kernel_map, (vaddr_t)up,
307 (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
308 if (rv != KERN_SUCCESS)
309 panic("uvm_fork: uvm_fault_wire failed: %d", rv);
310
311 /*
312 * cpu_fork() copy and update the pcb, and make the child ready
313 * to run. If this is a normal user fork, the child will exit
314 * directly to user mode via child_return() on its first time
315 * slice and will not return here. If this is a kernel thread,
316 * the specified entry point will be executed.
317 */
318 cpu_fork(l1, l2, stack, stacksize, func, arg);
319 }
320
321 /*
322 * uvm_exit: exit a virtual address space
323 *
324 * - the process passed to us is a dead (pre-zombie) process; we
325 * are running on a different context now (the reaper).
326 * - we must run in a separate thread because freeing the vmspace
327 * of the dead process may block.
328 */
329 void
330 uvm_proc_exit(p)
331 struct proc *p;
332 {
333 uvmspace_free(p->p_vmspace);
334 }
335
336 void
337 uvm_lwp_exit(l)
338 struct lwp *l;
339 {
340 vaddr_t va = (vaddr_t)l->l_addr;
341
342 uvm_fault_unwire(kernel_map, va, va + USPACE);
343 uvm_km_free(kernel_map, va, USPACE);
344
345 l->l_flag &= ~L_INMEM;
346 l->l_addr = NULL;
347 }
348
349 /*
350 * uvm_init_limit: init per-process VM limits
351 *
352 * - called for process 0 and then inherited by all others.
353 */
354 void
355 uvm_init_limits(p)
356 struct proc *p;
357 {
358
359 /*
360 * Set up the initial limits on process VM. Set the maximum
361 * resident set size to be all of (reasonably) available memory.
362 * This causes any single, large process to start random page
363 * replacement once it fills memory.
364 */
365
366 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
367 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
368 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
369 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
370 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
371 }
372
373 #ifdef DEBUG
374 int enableswap = 1;
375 int swapdebug = 0;
376 #define SDB_FOLLOW 1
377 #define SDB_SWAPIN 2
378 #define SDB_SWAPOUT 4
379 #endif
380
381 /*
382 * uvm_swapin: swap in a process's u-area.
383 */
384
385 void
386 uvm_swapin(l)
387 struct lwp *l;
388 {
389 vaddr_t addr;
390 int s;
391
392 addr = (vaddr_t)l->l_addr;
393 /* make L_INMEM true */
394 uvm_fault_wire(kernel_map, addr, addr + USPACE,
395 VM_PROT_READ | VM_PROT_WRITE);
396
397 /*
398 * Some architectures need to be notified when the user area has
399 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
400 */
401 cpu_swapin(l);
402 SCHED_LOCK(s);
403 if (l->l_stat == LSRUN)
404 setrunqueue(l);
405 l->l_flag |= L_INMEM;
406 SCHED_UNLOCK(s);
407 l->l_swtime = 0;
408 ++uvmexp.swapins;
409 }
410
411 /*
412 * uvm_scheduler: process zero main loop
413 *
414 * - attempt to swapin every swaped-out, runnable process in order of
415 * priority.
416 * - if not enough memory, wake the pagedaemon and let it clear space.
417 */
418
419 void
420 uvm_scheduler()
421 {
422 struct lwp *l, *ll;
423 int pri;
424 int ppri;
425
426 loop:
427 #ifdef DEBUG
428 while (!enableswap)
429 tsleep(&proc0, PVM, "noswap", 0);
430 #endif
431 ll = NULL; /* process to choose */
432 ppri = INT_MIN; /* its priority */
433 proclist_lock_read();
434
435 LIST_FOREACH(l, &alllwp, l_list) {
436 /* is it a runnable swapped out process? */
437 if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
438 pri = l->l_swtime + l->l_slptime -
439 (l->l_proc->p_nice - NZERO) * 8;
440 if (pri > ppri) { /* higher priority? remember it. */
441 ll = l;
442 ppri = pri;
443 }
444 }
445 }
446 /*
447 * XXXSMP: possible unlock/sleep race between here and the
448 * "scheduler" tsleep below..
449 */
450 proclist_unlock_read();
451
452 #ifdef DEBUG
453 if (swapdebug & SDB_FOLLOW)
454 printf("scheduler: running, procp %p pri %d\n", ll, ppri);
455 #endif
456 /*
457 * Nothing to do, back to sleep
458 */
459 if ((l = ll) == NULL) {
460 tsleep(&proc0, PVM, "scheduler", 0);
461 goto loop;
462 }
463
464 /*
465 * we have found swapped out process which we would like to bring
466 * back in.
467 *
468 * XXX: this part is really bogus cuz we could deadlock on memory
469 * despite our feeble check
470 */
471 if (uvmexp.free > atop(USPACE)) {
472 #ifdef DEBUG
473 if (swapdebug & SDB_SWAPIN)
474 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
475 l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
476 #endif
477 uvm_swapin(l);
478 goto loop;
479 }
480 /*
481 * not enough memory, jab the pageout daemon and wait til the coast
482 * is clear
483 */
484 #ifdef DEBUG
485 if (swapdebug & SDB_FOLLOW)
486 printf("scheduler: no room for pid %d(%s), free %d\n",
487 l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
488 #endif
489 uvm_wait("schedpwait");
490 #ifdef DEBUG
491 if (swapdebug & SDB_FOLLOW)
492 printf("scheduler: room again, free %d\n", uvmexp.free);
493 #endif
494 goto loop;
495 }
496
497 /*
498 * swappable: is LWP "l" swappable?
499 */
500
501 #define swappable(l) \
502 (((l)->l_flag & (L_INMEM)) && \
503 ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
504 (l)->l_holdcnt == 0)
505
506 /*
507 * swapout_threads: find threads that can be swapped and unwire their
508 * u-areas.
509 *
510 * - called by the pagedaemon
511 * - try and swap at least one processs
512 * - processes that are sleeping or stopped for maxslp or more seconds
513 * are swapped... otherwise the longest-sleeping or stopped process
514 * is swapped, otherwise the longest resident process...
515 */
516 void
517 uvm_swapout_threads()
518 {
519 struct lwp *l;
520 struct lwp *outl, *outl2;
521 int outpri, outpri2;
522 int didswap = 0;
523 extern int maxslp;
524 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
525
526 #ifdef DEBUG
527 if (!enableswap)
528 return;
529 #endif
530
531 /*
532 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
533 * outl2/outpri2: the longest resident thread (its swap time)
534 */
535 outl = outl2 = NULL;
536 outpri = outpri2 = 0;
537 proclist_lock_read();
538 LIST_FOREACH(l, &alllwp, l_list) {
539 if (!swappable(l))
540 continue;
541 switch (l->l_stat) {
542 case LSRUN:
543 case LSONPROC:
544 if (l->l_swtime > outpri2) {
545 outl2 = l;
546 outpri2 = l->l_swtime;
547 }
548 continue;
549
550 case LSSLEEP:
551 case LSSTOP:
552 if (l->l_slptime >= maxslp) {
553 uvm_swapout(l);
554 didswap++;
555 } else if (l->l_slptime > outpri) {
556 outl = l;
557 outpri = l->l_slptime;
558 }
559 continue;
560 }
561 }
562 proclist_unlock_read();
563
564 /*
565 * If we didn't get rid of any real duds, toss out the next most
566 * likely sleeping/stopped or running candidate. We only do this
567 * if we are real low on memory since we don't gain much by doing
568 * it (USPACE bytes).
569 */
570 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
571 if ((l = outl) == NULL)
572 l = outl2;
573 #ifdef DEBUG
574 if (swapdebug & SDB_SWAPOUT)
575 printf("swapout_threads: no duds, try procp %p\n", l);
576 #endif
577 if (l)
578 uvm_swapout(l);
579 }
580 pmap_update();
581 }
582
583 /*
584 * uvm_swapout: swap out lwp "l"
585 *
586 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
587 * the pmap.
588 * - XXXCDC: should deactivate all process' private anonymous memory
589 */
590
591 static void
592 uvm_swapout(l)
593 struct lwp *l;
594 {
595 vaddr_t addr;
596 int s;
597 struct proc *p = l->l_proc;
598
599 #ifdef DEBUG
600 if (swapdebug & SDB_SWAPOUT)
601 printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
602 p->p_pid, p->p_comm, l->l_addr, l->l_stat,
603 l->l_slptime, uvmexp.free);
604 #endif
605
606 /*
607 * Do any machine-specific actions necessary before swapout.
608 * This can include saving floating point state, etc.
609 */
610 cpu_swapout(l);
611
612 /*
613 * Unwire the to-be-swapped process's user struct and kernel stack.
614 */
615 addr = (vaddr_t)l->l_addr;
616 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
617 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
618
619 /*
620 * Mark it as (potentially) swapped out.
621 */
622 SCHED_LOCK(s);
623 s = splstatclock();
624 l->l_flag &= ~L_INMEM;
625 if (l->l_stat == LSRUN)
626 remrunqueue(l);
627 SCHED_UNLOCK(s);
628 l->l_swtime = 0;
629 ++uvmexp.swapouts;
630
631 /*
632 * Unwire the to-be-swapped process's user struct and kernel stack.
633 */
634 addr = (vaddr_t)l->l_addr;
635 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
636 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
637 }
638
639