Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.51
      1 /*	$NetBSD: uvm_glue.c,v 1.51 2001/09/10 21:19:42 chris Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include "opt_kgdb.h"
     70 #include "opt_sysv.h"
     71 #include "opt_uvmhist.h"
     72 
     73 /*
     74  * uvm_glue.c: glue functions
     75  */
     76 
     77 #include <sys/param.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 #include <sys/resourcevar.h>
     81 #include <sys/buf.h>
     82 #include <sys/user.h>
     83 #ifdef SYSVSHM
     84 #include <sys/shm.h>
     85 #endif
     86 
     87 #include <uvm/uvm.h>
     88 
     89 #include <machine/cpu.h>
     90 
     91 /*
     92  * local prototypes
     93  */
     94 
     95 static void uvm_swapout __P((struct proc *));
     96 
     97 /*
     98  * XXXCDC: do these really belong here?
     99  */
    100 
    101 int readbuffers = 0;		/* allow KGDB to read kern buffer pool */
    102 				/* XXX: see uvm_kernacc */
    103 
    104 
    105 /*
    106  * uvm_kernacc: can the kernel access a region of memory
    107  *
    108  * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
    109  */
    110 
    111 boolean_t
    112 uvm_kernacc(addr, len, rw)
    113 	caddr_t addr;
    114 	size_t len;
    115 	int rw;
    116 {
    117 	boolean_t rv;
    118 	vaddr_t saddr, eaddr;
    119 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    120 
    121 	saddr = trunc_page((vaddr_t)addr);
    122 	eaddr = round_page((vaddr_t)addr + len);
    123 	vm_map_lock_read(kernel_map);
    124 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    125 	vm_map_unlock_read(kernel_map);
    126 
    127 	/*
    128 	 * XXX there are still some things (e.g. the buffer cache) that
    129 	 * are managed behind the VM system's back so even though an
    130 	 * address is accessible in the mind of the VM system, there may
    131 	 * not be physical pages where the VM thinks there is.  This can
    132 	 * lead to bogus allocation of pages in the kernel address space
    133 	 * or worse, inconsistencies at the pmap level.  We only worry
    134 	 * about the buffer cache for now.
    135 	 */
    136 	if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
    137 			     saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
    138 		rv = FALSE;
    139 	return(rv);
    140 }
    141 
    142 /*
    143  * uvm_useracc: can the user access it?
    144  *
    145  * - called from physio() and sys___sysctl().
    146  */
    147 
    148 boolean_t
    149 uvm_useracc(addr, len, rw)
    150 	caddr_t addr;
    151 	size_t len;
    152 	int rw;
    153 {
    154 	struct vm_map *map;
    155 	boolean_t rv;
    156 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    157 
    158 	/* XXX curproc */
    159 	map = &curproc->p_vmspace->vm_map;
    160 
    161 	vm_map_lock_read(map);
    162 	rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
    163 	    round_page((vaddr_t)addr + len), prot);
    164 	vm_map_unlock_read(map);
    165 
    166 	return(rv);
    167 }
    168 
    169 #ifdef KGDB
    170 /*
    171  * Change protections on kernel pages from addr to addr+len
    172  * (presumably so debugger can plant a breakpoint).
    173  *
    174  * We force the protection change at the pmap level.  If we were
    175  * to use vm_map_protect a change to allow writing would be lazily-
    176  * applied meaning we would still take a protection fault, something
    177  * we really don't want to do.  It would also fragment the kernel
    178  * map unnecessarily.  We cannot use pmap_protect since it also won't
    179  * enforce a write-enable request.  Using pmap_enter is the only way
    180  * we can ensure the change takes place properly.
    181  */
    182 void
    183 uvm_chgkprot(addr, len, rw)
    184 	caddr_t addr;
    185 	size_t len;
    186 	int rw;
    187 {
    188 	vm_prot_t prot;
    189 	paddr_t pa;
    190 	vaddr_t sva, eva;
    191 
    192 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    193 	eva = round_page((vaddr_t)addr + len);
    194 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    195 		/*
    196 		 * Extract physical address for the page.
    197 		 */
    198 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
    199 			panic("chgkprot: invalid page");
    200 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    201 	}
    202 	pmap_update(pmap_kernel());
    203 }
    204 #endif
    205 
    206 /*
    207  * vslock: wire user memory for I/O
    208  *
    209  * - called from physio and sys___sysctl
    210  * - XXXCDC: consider nuking this (or making it a macro?)
    211  */
    212 
    213 int
    214 uvm_vslock(p, addr, len, access_type)
    215 	struct proc *p;
    216 	caddr_t	addr;
    217 	size_t	len;
    218 	vm_prot_t access_type;
    219 {
    220 	struct vm_map *map;
    221 	vaddr_t start, end;
    222 	int error;
    223 
    224 	map = &p->p_vmspace->vm_map;
    225 	start = trunc_page((vaddr_t)addr);
    226 	end = round_page((vaddr_t)addr + len);
    227 	error = uvm_fault_wire(map, start, end, access_type);
    228 	return error;
    229 }
    230 
    231 /*
    232  * vslock: wire user memory for I/O
    233  *
    234  * - called from physio and sys___sysctl
    235  * - XXXCDC: consider nuking this (or making it a macro?)
    236  */
    237 
    238 void
    239 uvm_vsunlock(p, addr, len)
    240 	struct proc *p;
    241 	caddr_t	addr;
    242 	size_t	len;
    243 {
    244 	uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
    245 		round_page((vaddr_t)addr + len));
    246 }
    247 
    248 /*
    249  * uvm_fork: fork a virtual address space
    250  *
    251  * - the address space is copied as per parent map's inherit values
    252  * - a new "user" structure is allocated for the child process
    253  *	[filled in by MD layer...]
    254  * - if specified, the child gets a new user stack described by
    255  *	stack and stacksize
    256  * - NOTE: the kernel stack may be at a different location in the child
    257  *	process, and thus addresses of automatic variables may be invalid
    258  *	after cpu_fork returns in the child process.  We do nothing here
    259  *	after cpu_fork returns.
    260  * - XXXCDC: we need a way for this to return a failure value rather
    261  *   than just hang
    262  */
    263 void
    264 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
    265 	struct proc *p1, *p2;
    266 	boolean_t shared;
    267 	void *stack;
    268 	size_t stacksize;
    269 	void (*func) __P((void *));
    270 	void *arg;
    271 {
    272 	struct user *up = p2->p_addr;
    273 	int error;
    274 
    275 	if (shared == TRUE) {
    276 		p2->p_vmspace = NULL;
    277 		uvmspace_share(p1, p2);			/* share vmspace */
    278 	} else
    279 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace); /* fork vmspace */
    280 
    281 	/*
    282 	 * Wire down the U-area for the process, which contains the PCB
    283 	 * and the kernel stack.  Wired state is stored in p->p_flag's
    284 	 * P_INMEM bit rather than in the vm_map_entry's wired count
    285 	 * to prevent kernel_map fragmentation.
    286 	 *
    287 	 * Note the kernel stack gets read/write accesses right off
    288 	 * the bat.
    289 	 */
    290 	error = uvm_fault_wire(kernel_map, (vaddr_t)up,
    291 	    (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
    292 	if (error)
    293 		panic("uvm_fork: uvm_fault_wire failed: %d", error);
    294 
    295 	/*
    296 	 * p_stats currently points at a field in the user struct.  Copy
    297 	 * parts of p_stats, and zero out the rest.
    298 	 */
    299 	p2->p_stats = &up->u_stats;
    300 	memset(&up->u_stats.pstat_startzero, 0,
    301 	       ((caddr_t)&up->u_stats.pstat_endzero -
    302 		(caddr_t)&up->u_stats.pstat_startzero));
    303 	memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
    304 	       ((caddr_t)&up->u_stats.pstat_endcopy -
    305 		(caddr_t)&up->u_stats.pstat_startcopy));
    306 
    307 	/*
    308 	 * cpu_fork() copy and update the pcb, and make the child ready
    309 	 * to run.  If this is a normal user fork, the child will exit
    310 	 * directly to user mode via child_return() on its first time
    311 	 * slice and will not return here.  If this is a kernel thread,
    312 	 * the specified entry point will be executed.
    313 	 */
    314 	cpu_fork(p1, p2, stack, stacksize, func, arg);
    315 }
    316 
    317 /*
    318  * uvm_exit: exit a virtual address space
    319  *
    320  * - the process passed to us is a dead (pre-zombie) process; we
    321  *   are running on a different context now (the reaper).
    322  * - we must run in a separate thread because freeing the vmspace
    323  *   of the dead process may block.
    324  */
    325 void
    326 uvm_exit(p)
    327 	struct proc *p;
    328 {
    329 	vaddr_t va = (vaddr_t)p->p_addr;
    330 
    331 	uvmspace_free(p->p_vmspace);
    332 	p->p_flag &= ~P_INMEM;
    333 	uvm_fault_unwire(kernel_map, va, va + USPACE);
    334 	uvm_km_free(kernel_map, va, USPACE);
    335 	p->p_addr = NULL;
    336 }
    337 
    338 /*
    339  * uvm_init_limit: init per-process VM limits
    340  *
    341  * - called for process 0 and then inherited by all others.
    342  */
    343 void
    344 uvm_init_limits(p)
    345 	struct proc *p;
    346 {
    347 
    348 	/*
    349 	 * Set up the initial limits on process VM.  Set the maximum
    350 	 * resident set size to be all of (reasonably) available memory.
    351 	 * This causes any single, large process to start random page
    352 	 * replacement once it fills memory.
    353 	 */
    354 
    355 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    356 	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
    357 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    358 	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
    359 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    360 }
    361 
    362 #ifdef DEBUG
    363 int	enableswap = 1;
    364 int	swapdebug = 0;
    365 #define	SDB_FOLLOW	1
    366 #define SDB_SWAPIN	2
    367 #define SDB_SWAPOUT	4
    368 #endif
    369 
    370 /*
    371  * uvm_swapin: swap in a process's u-area.
    372  */
    373 
    374 void
    375 uvm_swapin(p)
    376 	struct proc *p;
    377 {
    378 	vaddr_t addr;
    379 	int s;
    380 
    381 	addr = (vaddr_t)p->p_addr;
    382 	/* make P_INMEM true */
    383 	uvm_fault_wire(kernel_map, addr, addr + USPACE,
    384 	    VM_PROT_READ | VM_PROT_WRITE);
    385 
    386 	/*
    387 	 * Some architectures need to be notified when the user area has
    388 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    389 	 */
    390 	cpu_swapin(p);
    391 	SCHED_LOCK(s);
    392 	if (p->p_stat == SRUN)
    393 		setrunqueue(p);
    394 	p->p_flag |= P_INMEM;
    395 	SCHED_UNLOCK(s);
    396 	p->p_swtime = 0;
    397 	++uvmexp.swapins;
    398 }
    399 
    400 /*
    401  * uvm_scheduler: process zero main loop
    402  *
    403  * - attempt to swapin every swaped-out, runnable process in order of
    404  *	priority.
    405  * - if not enough memory, wake the pagedaemon and let it clear space.
    406  */
    407 
    408 void
    409 uvm_scheduler()
    410 {
    411 	struct proc *p;
    412 	int pri;
    413 	struct proc *pp;
    414 	int ppri;
    415 
    416 loop:
    417 #ifdef DEBUG
    418 	while (!enableswap)
    419 		tsleep(&proc0, PVM, "noswap", 0);
    420 #endif
    421 	pp = NULL;		/* process to choose */
    422 	ppri = INT_MIN;	/* its priority */
    423 	proclist_lock_read();
    424 	LIST_FOREACH(p, &allproc, p_list) {
    425 
    426 		/* is it a runnable swapped out process? */
    427 		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
    428 			pri = p->p_swtime + p->p_slptime -
    429 			    (p->p_nice - NZERO) * 8;
    430 			if (pri > ppri) {   /* higher priority?  remember it. */
    431 				pp = p;
    432 				ppri = pri;
    433 			}
    434 		}
    435 	}
    436 	/*
    437 	 * XXXSMP: possible unlock/sleep race between here and the
    438 	 * "scheduler" tsleep below..
    439 	 */
    440 	proclist_unlock_read();
    441 
    442 #ifdef DEBUG
    443 	if (swapdebug & SDB_FOLLOW)
    444 		printf("scheduler: running, procp %p pri %d\n", pp, ppri);
    445 #endif
    446 	/*
    447 	 * Nothing to do, back to sleep
    448 	 */
    449 	if ((p = pp) == NULL) {
    450 		tsleep(&proc0, PVM, "scheduler", 0);
    451 		goto loop;
    452 	}
    453 
    454 	/*
    455 	 * we have found swapped out process which we would like to bring
    456 	 * back in.
    457 	 *
    458 	 * XXX: this part is really bogus cuz we could deadlock on memory
    459 	 * despite our feeble check
    460 	 */
    461 	if (uvmexp.free > atop(USPACE)) {
    462 #ifdef DEBUG
    463 		if (swapdebug & SDB_SWAPIN)
    464 			printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
    465 	     p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
    466 #endif
    467 		uvm_swapin(p);
    468 		goto loop;
    469 	}
    470 	/*
    471 	 * not enough memory, jab the pageout daemon and wait til the coast
    472 	 * is clear
    473 	 */
    474 #ifdef DEBUG
    475 	if (swapdebug & SDB_FOLLOW)
    476 		printf("scheduler: no room for pid %d(%s), free %d\n",
    477 	   p->p_pid, p->p_comm, uvmexp.free);
    478 #endif
    479 	uvm_wait("schedpwait");
    480 #ifdef DEBUG
    481 	if (swapdebug & SDB_FOLLOW)
    482 		printf("scheduler: room again, free %d\n", uvmexp.free);
    483 #endif
    484 	goto loop;
    485 }
    486 
    487 /*
    488  * swappable: is process "p" swappable?
    489  */
    490 
    491 #define	swappable(p)							\
    492 	(((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM &&	\
    493 	 (p)->p_holdcnt == 0)
    494 
    495 /*
    496  * swapout_threads: find threads that can be swapped and unwire their
    497  *	u-areas.
    498  *
    499  * - called by the pagedaemon
    500  * - try and swap at least one processs
    501  * - processes that are sleeping or stopped for maxslp or more seconds
    502  *   are swapped... otherwise the longest-sleeping or stopped process
    503  *   is swapped, otherwise the longest resident process...
    504  */
    505 void
    506 uvm_swapout_threads()
    507 {
    508 	struct proc *p;
    509 	struct proc *outp, *outp2;
    510 	int outpri, outpri2;
    511 	int didswap = 0;
    512 	extern int maxslp;
    513 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    514 
    515 #ifdef DEBUG
    516 	if (!enableswap)
    517 		return;
    518 #endif
    519 
    520 	/*
    521 	 * outp/outpri  : stop/sleep process with largest sleeptime < maxslp
    522 	 * outp2/outpri2: the longest resident process (its swap time)
    523 	 */
    524 	outp = outp2 = NULL;
    525 	outpri = outpri2 = 0;
    526 	proclist_lock_read();
    527 	LIST_FOREACH(p, &allproc, p_list) {
    528 		if (!swappable(p))
    529 			continue;
    530 		switch (p->p_stat) {
    531 		case SRUN:
    532 		case SONPROC:
    533 			if (p->p_swtime > outpri2) {
    534 				outp2 = p;
    535 				outpri2 = p->p_swtime;
    536 			}
    537 			continue;
    538 
    539 		case SSLEEP:
    540 		case SSTOP:
    541 			if (p->p_slptime >= maxslp) {
    542 				uvm_swapout(p);
    543 				didswap++;
    544 			} else if (p->p_slptime > outpri) {
    545 				outp = p;
    546 				outpri = p->p_slptime;
    547 			}
    548 			continue;
    549 		}
    550 	}
    551 	proclist_unlock_read();
    552 
    553 	/*
    554 	 * If we didn't get rid of any real duds, toss out the next most
    555 	 * likely sleeping/stopped or running candidate.  We only do this
    556 	 * if we are real low on memory since we don't gain much by doing
    557 	 * it (USPACE bytes).
    558 	 */
    559 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    560 		if ((p = outp) == NULL)
    561 			p = outp2;
    562 #ifdef DEBUG
    563 		if (swapdebug & SDB_SWAPOUT)
    564 			printf("swapout_threads: no duds, try procp %p\n", p);
    565 #endif
    566 		if (p)
    567 			uvm_swapout(p);
    568 	}
    569 }
    570 
    571 /*
    572  * uvm_swapout: swap out process "p"
    573  *
    574  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    575  *   the pmap.
    576  * - XXXCDC: should deactivate all process' private anonymous memory
    577  */
    578 
    579 static void
    580 uvm_swapout(p)
    581 	struct proc *p;
    582 {
    583 	vaddr_t addr;
    584 	int s;
    585 
    586 #ifdef DEBUG
    587 	if (swapdebug & SDB_SWAPOUT)
    588 		printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
    589 	   p->p_pid, p->p_comm, p->p_addr, p->p_stat,
    590 	   p->p_slptime, uvmexp.free);
    591 #endif
    592 
    593 	/*
    594 	 * Do any machine-specific actions necessary before swapout.
    595 	 * This can include saving floating point state, etc.
    596 	 */
    597 	cpu_swapout(p);
    598 
    599 	/*
    600 	 * Mark it as (potentially) swapped out.
    601 	 */
    602 	SCHED_LOCK(s);
    603 	p->p_flag &= ~P_INMEM;
    604 	if (p->p_stat == SRUN)
    605 		remrunqueue(p);
    606 	SCHED_UNLOCK(s);
    607 	p->p_swtime = 0;
    608 	++uvmexp.swapouts;
    609 
    610 	/*
    611 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    612 	 */
    613 	addr = (vaddr_t)p->p_addr;
    614 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
    615 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    616 }
    617 
    618