uvm_glue.c revision 1.52 1 /* $NetBSD: uvm_glue.c,v 1.52 2001/09/15 20:36:45 chs Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include "opt_kgdb.h"
70 #include "opt_sysv.h"
71 #include "opt_uvmhist.h"
72
73 /*
74 * uvm_glue.c: glue functions
75 */
76
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/resourcevar.h>
81 #include <sys/buf.h>
82 #include <sys/user.h>
83 #ifdef SYSVSHM
84 #include <sys/shm.h>
85 #endif
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpu.h>
90
91 /*
92 * local prototypes
93 */
94
95 static void uvm_swapout __P((struct proc *));
96
97 /*
98 * XXXCDC: do these really belong here?
99 */
100
101 int readbuffers = 0; /* allow KGDB to read kern buffer pool */
102 /* XXX: see uvm_kernacc */
103
104
105 /*
106 * uvm_kernacc: can the kernel access a region of memory
107 *
108 * - called from malloc [DIAGNOSTIC], and /dev/kmem driver (mem.c)
109 */
110
111 boolean_t
112 uvm_kernacc(addr, len, rw)
113 caddr_t addr;
114 size_t len;
115 int rw;
116 {
117 boolean_t rv;
118 vaddr_t saddr, eaddr;
119 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120
121 saddr = trunc_page((vaddr_t)addr);
122 eaddr = round_page((vaddr_t)addr + len);
123 vm_map_lock_read(kernel_map);
124 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 vm_map_unlock_read(kernel_map);
126
127 /*
128 * XXX there are still some things (e.g. the buffer cache) that
129 * are managed behind the VM system's back so even though an
130 * address is accessible in the mind of the VM system, there may
131 * not be physical pages where the VM thinks there is. This can
132 * lead to bogus allocation of pages in the kernel address space
133 * or worse, inconsistencies at the pmap level. We only worry
134 * about the buffer cache for now.
135 */
136 if (!readbuffers && rv && (eaddr > (vaddr_t)buffers &&
137 saddr < (vaddr_t)buffers + MAXBSIZE * nbuf))
138 rv = FALSE;
139 return(rv);
140 }
141
142 /*
143 * uvm_useracc: can the user access it?
144 *
145 * - called from physio() and sys___sysctl().
146 */
147
148 boolean_t
149 uvm_useracc(addr, len, rw)
150 caddr_t addr;
151 size_t len;
152 int rw;
153 {
154 struct vm_map *map;
155 boolean_t rv;
156 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
157
158 /* XXX curproc */
159 map = &curproc->p_vmspace->vm_map;
160
161 vm_map_lock_read(map);
162 rv = uvm_map_checkprot(map, trunc_page((vaddr_t)addr),
163 round_page((vaddr_t)addr + len), prot);
164 vm_map_unlock_read(map);
165
166 return(rv);
167 }
168
169 #ifdef KGDB
170 /*
171 * Change protections on kernel pages from addr to addr+len
172 * (presumably so debugger can plant a breakpoint).
173 *
174 * We force the protection change at the pmap level. If we were
175 * to use vm_map_protect a change to allow writing would be lazily-
176 * applied meaning we would still take a protection fault, something
177 * we really don't want to do. It would also fragment the kernel
178 * map unnecessarily. We cannot use pmap_protect since it also won't
179 * enforce a write-enable request. Using pmap_enter is the only way
180 * we can ensure the change takes place properly.
181 */
182 void
183 uvm_chgkprot(addr, len, rw)
184 caddr_t addr;
185 size_t len;
186 int rw;
187 {
188 vm_prot_t prot;
189 paddr_t pa;
190 vaddr_t sva, eva;
191
192 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
193 eva = round_page((vaddr_t)addr + len);
194 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
195 /*
196 * Extract physical address for the page.
197 */
198 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
199 panic("chgkprot: invalid page");
200 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
201 }
202 pmap_update(pmap_kernel());
203 }
204 #endif
205
206 /*
207 * uvm_vslock: wire user memory for I/O
208 *
209 * - called from physio and sys___sysctl
210 * - XXXCDC: consider nuking this (or making it a macro?)
211 */
212
213 int
214 uvm_vslock(p, addr, len, access_type)
215 struct proc *p;
216 caddr_t addr;
217 size_t len;
218 vm_prot_t access_type;
219 {
220 struct vm_map *map;
221 vaddr_t start, end;
222 int error;
223
224 map = &p->p_vmspace->vm_map;
225 start = trunc_page((vaddr_t)addr);
226 end = round_page((vaddr_t)addr + len);
227 error = uvm_fault_wire(map, start, end, access_type);
228 return error;
229 }
230
231 /*
232 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
233 *
234 * - called from physio and sys___sysctl
235 * - XXXCDC: consider nuking this (or making it a macro?)
236 */
237
238 void
239 uvm_vsunlock(p, addr, len)
240 struct proc *p;
241 caddr_t addr;
242 size_t len;
243 {
244 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
245 round_page((vaddr_t)addr + len));
246 }
247
248 /*
249 * uvm_fork: fork a virtual address space
250 *
251 * - the address space is copied as per parent map's inherit values
252 * - a new "user" structure is allocated for the child process
253 * [filled in by MD layer...]
254 * - if specified, the child gets a new user stack described by
255 * stack and stacksize
256 * - NOTE: the kernel stack may be at a different location in the child
257 * process, and thus addresses of automatic variables may be invalid
258 * after cpu_fork returns in the child process. We do nothing here
259 * after cpu_fork returns.
260 * - XXXCDC: we need a way for this to return a failure value rather
261 * than just hang
262 */
263 void
264 uvm_fork(p1, p2, shared, stack, stacksize, func, arg)
265 struct proc *p1, *p2;
266 boolean_t shared;
267 void *stack;
268 size_t stacksize;
269 void (*func) __P((void *));
270 void *arg;
271 {
272 struct user *up = p2->p_addr;
273 int error;
274
275 if (shared == TRUE) {
276 p2->p_vmspace = NULL;
277 uvmspace_share(p1, p2);
278 } else
279 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
280
281 /*
282 * Wire down the U-area for the process, which contains the PCB
283 * and the kernel stack. Wired state is stored in p->p_flag's
284 * P_INMEM bit rather than in the vm_map_entry's wired count
285 * to prevent kernel_map fragmentation.
286 *
287 * Note the kernel stack gets read/write accesses right off
288 * the bat.
289 */
290 error = uvm_fault_wire(kernel_map, (vaddr_t)up,
291 (vaddr_t)up + USPACE, VM_PROT_READ | VM_PROT_WRITE);
292 if (error)
293 panic("uvm_fork: uvm_fault_wire failed: %d", error);
294
295 /*
296 * p_stats currently points at a field in the user struct. Copy
297 * parts of p_stats, and zero out the rest.
298 */
299 p2->p_stats = &up->u_stats;
300 memset(&up->u_stats.pstat_startzero, 0,
301 ((caddr_t)&up->u_stats.pstat_endzero -
302 (caddr_t)&up->u_stats.pstat_startzero));
303 memcpy(&up->u_stats.pstat_startcopy, &p1->p_stats->pstat_startcopy,
304 ((caddr_t)&up->u_stats.pstat_endcopy -
305 (caddr_t)&up->u_stats.pstat_startcopy));
306
307 /*
308 * cpu_fork() copy and update the pcb, and make the child ready
309 * to run. If this is a normal user fork, the child will exit
310 * directly to user mode via child_return() on its first time
311 * slice and will not return here. If this is a kernel thread,
312 * the specified entry point will be executed.
313 */
314 cpu_fork(p1, p2, stack, stacksize, func, arg);
315 }
316
317 /*
318 * uvm_exit: exit a virtual address space
319 *
320 * - the process passed to us is a dead (pre-zombie) process; we
321 * are running on a different context now (the reaper).
322 * - we must run in a separate thread because freeing the vmspace
323 * of the dead process may block.
324 */
325 void
326 uvm_exit(p)
327 struct proc *p;
328 {
329 vaddr_t va = (vaddr_t)p->p_addr;
330
331 uvmspace_free(p->p_vmspace);
332 p->p_flag &= ~P_INMEM;
333 uvm_fault_unwire(kernel_map, va, va + USPACE);
334 uvm_km_free(kernel_map, va, USPACE);
335 p->p_addr = NULL;
336 }
337
338 /*
339 * uvm_init_limit: init per-process VM limits
340 *
341 * - called for process 0 and then inherited by all others.
342 */
343 void
344 uvm_init_limits(p)
345 struct proc *p;
346 {
347
348 /*
349 * Set up the initial limits on process VM. Set the maximum
350 * resident set size to be all of (reasonably) available memory.
351 * This causes any single, large process to start random page
352 * replacement once it fills memory.
353 */
354
355 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
356 p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
357 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
358 p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
359 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
360 }
361
362 #ifdef DEBUG
363 int enableswap = 1;
364 int swapdebug = 0;
365 #define SDB_FOLLOW 1
366 #define SDB_SWAPIN 2
367 #define SDB_SWAPOUT 4
368 #endif
369
370 /*
371 * uvm_swapin: swap in a process's u-area.
372 */
373
374 void
375 uvm_swapin(p)
376 struct proc *p;
377 {
378 vaddr_t addr;
379 int s, error;
380
381 addr = (vaddr_t)p->p_addr;
382 /* make P_INMEM true */
383 error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
384 VM_PROT_READ | VM_PROT_WRITE);
385 if (error) {
386 panic("uvm_swapin: rewiring stack failed: %d", error);
387 }
388
389 /*
390 * Some architectures need to be notified when the user area has
391 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
392 */
393 cpu_swapin(p);
394 SCHED_LOCK(s);
395 if (p->p_stat == SRUN)
396 setrunqueue(p);
397 p->p_flag |= P_INMEM;
398 SCHED_UNLOCK(s);
399 p->p_swtime = 0;
400 ++uvmexp.swapins;
401 }
402
403 /*
404 * uvm_scheduler: process zero main loop
405 *
406 * - attempt to swapin every swaped-out, runnable process in order of
407 * priority.
408 * - if not enough memory, wake the pagedaemon and let it clear space.
409 */
410
411 void
412 uvm_scheduler()
413 {
414 struct proc *p;
415 int pri;
416 struct proc *pp;
417 int ppri;
418
419 loop:
420 #ifdef DEBUG
421 while (!enableswap)
422 tsleep(&proc0, PVM, "noswap", 0);
423 #endif
424 pp = NULL; /* process to choose */
425 ppri = INT_MIN; /* its priority */
426 proclist_lock_read();
427 LIST_FOREACH(p, &allproc, p_list) {
428
429 /* is it a runnable swapped out process? */
430 if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
431 pri = p->p_swtime + p->p_slptime -
432 (p->p_nice - NZERO) * 8;
433 if (pri > ppri) { /* higher priority? remember it. */
434 pp = p;
435 ppri = pri;
436 }
437 }
438 }
439 /*
440 * XXXSMP: possible unlock/sleep race between here and the
441 * "scheduler" tsleep below..
442 */
443 proclist_unlock_read();
444
445 #ifdef DEBUG
446 if (swapdebug & SDB_FOLLOW)
447 printf("scheduler: running, procp %p pri %d\n", pp, ppri);
448 #endif
449 /*
450 * Nothing to do, back to sleep
451 */
452 if ((p = pp) == NULL) {
453 tsleep(&proc0, PVM, "scheduler", 0);
454 goto loop;
455 }
456
457 /*
458 * we have found swapped out process which we would like to bring
459 * back in.
460 *
461 * XXX: this part is really bogus cuz we could deadlock on memory
462 * despite our feeble check
463 */
464 if (uvmexp.free > atop(USPACE)) {
465 #ifdef DEBUG
466 if (swapdebug & SDB_SWAPIN)
467 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
468 p->p_pid, p->p_comm, p->p_addr, ppri, uvmexp.free);
469 #endif
470 uvm_swapin(p);
471 goto loop;
472 }
473 /*
474 * not enough memory, jab the pageout daemon and wait til the coast
475 * is clear
476 */
477 #ifdef DEBUG
478 if (swapdebug & SDB_FOLLOW)
479 printf("scheduler: no room for pid %d(%s), free %d\n",
480 p->p_pid, p->p_comm, uvmexp.free);
481 #endif
482 uvm_wait("schedpwait");
483 #ifdef DEBUG
484 if (swapdebug & SDB_FOLLOW)
485 printf("scheduler: room again, free %d\n", uvmexp.free);
486 #endif
487 goto loop;
488 }
489
490 /*
491 * swappable: is process "p" swappable?
492 */
493
494 #define swappable(p) \
495 (((p)->p_flag & (P_SYSTEM | P_INMEM | P_WEXIT)) == P_INMEM && \
496 (p)->p_holdcnt == 0)
497
498 /*
499 * swapout_threads: find threads that can be swapped and unwire their
500 * u-areas.
501 *
502 * - called by the pagedaemon
503 * - try and swap at least one processs
504 * - processes that are sleeping or stopped for maxslp or more seconds
505 * are swapped... otherwise the longest-sleeping or stopped process
506 * is swapped, otherwise the longest resident process...
507 */
508 void
509 uvm_swapout_threads()
510 {
511 struct proc *p;
512 struct proc *outp, *outp2;
513 int outpri, outpri2;
514 int didswap = 0;
515 extern int maxslp;
516 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
517
518 #ifdef DEBUG
519 if (!enableswap)
520 return;
521 #endif
522
523 /*
524 * outp/outpri : stop/sleep process with largest sleeptime < maxslp
525 * outp2/outpri2: the longest resident process (its swap time)
526 */
527 outp = outp2 = NULL;
528 outpri = outpri2 = 0;
529 proclist_lock_read();
530 LIST_FOREACH(p, &allproc, p_list) {
531 if (!swappable(p))
532 continue;
533 switch (p->p_stat) {
534 case SRUN:
535 case SONPROC:
536 if (p->p_swtime > outpri2) {
537 outp2 = p;
538 outpri2 = p->p_swtime;
539 }
540 continue;
541
542 case SSLEEP:
543 case SSTOP:
544 if (p->p_slptime >= maxslp) {
545 uvm_swapout(p);
546 didswap++;
547 } else if (p->p_slptime > outpri) {
548 outp = p;
549 outpri = p->p_slptime;
550 }
551 continue;
552 }
553 }
554 proclist_unlock_read();
555
556 /*
557 * If we didn't get rid of any real duds, toss out the next most
558 * likely sleeping/stopped or running candidate. We only do this
559 * if we are real low on memory since we don't gain much by doing
560 * it (USPACE bytes).
561 */
562 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
563 if ((p = outp) == NULL)
564 p = outp2;
565 #ifdef DEBUG
566 if (swapdebug & SDB_SWAPOUT)
567 printf("swapout_threads: no duds, try procp %p\n", p);
568 #endif
569 if (p)
570 uvm_swapout(p);
571 }
572 }
573
574 /*
575 * uvm_swapout: swap out process "p"
576 *
577 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
578 * the pmap.
579 * - XXXCDC: should deactivate all process' private anonymous memory
580 */
581
582 static void
583 uvm_swapout(p)
584 struct proc *p;
585 {
586 vaddr_t addr;
587 int s;
588
589 #ifdef DEBUG
590 if (swapdebug & SDB_SWAPOUT)
591 printf("swapout: pid %d(%s)@%p, stat %x pri %d free %d\n",
592 p->p_pid, p->p_comm, p->p_addr, p->p_stat,
593 p->p_slptime, uvmexp.free);
594 #endif
595
596 /*
597 * Do any machine-specific actions necessary before swapout.
598 * This can include saving floating point state, etc.
599 */
600 cpu_swapout(p);
601
602 /*
603 * Mark it as (potentially) swapped out.
604 */
605 SCHED_LOCK(s);
606 p->p_flag &= ~P_INMEM;
607 if (p->p_stat == SRUN)
608 remrunqueue(p);
609 SCHED_UNLOCK(s);
610 p->p_swtime = 0;
611 ++uvmexp.swapouts;
612
613 /*
614 * Unwire the to-be-swapped process's user struct and kernel stack.
615 */
616 addr = (vaddr_t)p->p_addr;
617 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !P_INMEM */
618 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
619 }
620
621