uvm_glue.c revision 1.89 1 /* $NetBSD: uvm_glue.c,v 1.89 2005/06/27 02:19:48 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
42 * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.89 2005/06/27 02:19:48 thorpej Exp $");
71
72 #include "opt_kgdb.h"
73 #include "opt_kstack.h"
74 #include "opt_uvmhist.h"
75
76 /*
77 * uvm_glue.c: glue functions
78 */
79
80 #include <sys/param.h>
81 #include <sys/systm.h>
82 #include <sys/proc.h>
83 #include <sys/resourcevar.h>
84 #include <sys/buf.h>
85 #include <sys/user.h>
86
87 #include <uvm/uvm.h>
88
89 #include <machine/cpu.h>
90
91 /*
92 * local prototypes
93 */
94
95 static void uvm_swapout(struct lwp *);
96
97 #define UVM_NUAREA_MAX 16
98 void *uvm_uareas;
99 int uvm_nuarea;
100 struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER;
101
102 static void uvm_uarea_free(vaddr_t);
103
104 /*
105 * XXXCDC: do these really belong here?
106 */
107
108 /*
109 * uvm_kernacc: can the kernel access a region of memory
110 *
111 * - used only by /dev/kmem driver (mem.c)
112 */
113
114 boolean_t
115 uvm_kernacc(caddr_t addr, size_t len, int rw)
116 {
117 boolean_t rv;
118 vaddr_t saddr, eaddr;
119 vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
120
121 saddr = trunc_page((vaddr_t)addr);
122 eaddr = round_page((vaddr_t)addr + len);
123 vm_map_lock_read(kernel_map);
124 rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
125 vm_map_unlock_read(kernel_map);
126
127 return(rv);
128 }
129
130 #ifdef KGDB
131 /*
132 * Change protections on kernel pages from addr to addr+len
133 * (presumably so debugger can plant a breakpoint).
134 *
135 * We force the protection change at the pmap level. If we were
136 * to use vm_map_protect a change to allow writing would be lazily-
137 * applied meaning we would still take a protection fault, something
138 * we really don't want to do. It would also fragment the kernel
139 * map unnecessarily. We cannot use pmap_protect since it also won't
140 * enforce a write-enable request. Using pmap_enter is the only way
141 * we can ensure the change takes place properly.
142 */
143 void
144 uvm_chgkprot(caddr_t addr, size_t len, int rw)
145 {
146 vm_prot_t prot;
147 paddr_t pa;
148 vaddr_t sva, eva;
149
150 prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
151 eva = round_page((vaddr_t)addr + len);
152 for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
153 /*
154 * Extract physical address for the page.
155 */
156 if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
157 panic("chgkprot: invalid page");
158 pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
159 }
160 pmap_update(pmap_kernel());
161 }
162 #endif
163
164 /*
165 * uvm_vslock: wire user memory for I/O
166 *
167 * - called from physio and sys___sysctl
168 * - XXXCDC: consider nuking this (or making it a macro?)
169 */
170
171 int
172 uvm_vslock(struct proc *p, caddr_t addr, size_t len, vm_prot_t access_type)
173 {
174 struct vm_map *map;
175 vaddr_t start, end;
176 int error;
177
178 map = &p->p_vmspace->vm_map;
179 start = trunc_page((vaddr_t)addr);
180 end = round_page((vaddr_t)addr + len);
181 error = uvm_fault_wire(map, start, end, VM_FAULT_WIRE, access_type);
182 return error;
183 }
184
185 /*
186 * uvm_vsunlock: unwire user memory wired by uvm_vslock()
187 *
188 * - called from physio and sys___sysctl
189 * - XXXCDC: consider nuking this (or making it a macro?)
190 */
191
192 void
193 uvm_vsunlock(struct proc *p, caddr_t addr, size_t len)
194 {
195 uvm_fault_unwire(&p->p_vmspace->vm_map, trunc_page((vaddr_t)addr),
196 round_page((vaddr_t)addr + len));
197 }
198
199 /*
200 * uvm_proc_fork: fork a virtual address space
201 *
202 * - the address space is copied as per parent map's inherit values
203 */
204 void
205 uvm_proc_fork(struct proc *p1, struct proc *p2, boolean_t shared)
206 {
207
208 if (shared == TRUE) {
209 p2->p_vmspace = NULL;
210 uvmspace_share(p1, p2);
211 } else {
212 p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
213 }
214
215 cpu_proc_fork(p1, p2);
216 }
217
218
219 /*
220 * uvm_lwp_fork: fork a thread
221 *
222 * - a new "user" structure is allocated for the child process
223 * [filled in by MD layer...]
224 * - if specified, the child gets a new user stack described by
225 * stack and stacksize
226 * - NOTE: the kernel stack may be at a different location in the child
227 * process, and thus addresses of automatic variables may be invalid
228 * after cpu_lwp_fork returns in the child process. We do nothing here
229 * after cpu_lwp_fork returns.
230 * - XXXCDC: we need a way for this to return a failure value rather
231 * than just hang
232 */
233 void
234 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
235 void (*func)(void *), void *arg)
236 {
237 struct user *up = l2->l_addr;
238 int error;
239
240 /*
241 * Wire down the U-area for the process, which contains the PCB
242 * and the kernel stack. Wired state is stored in l->l_flag's
243 * L_INMEM bit rather than in the vm_map_entry's wired count
244 * to prevent kernel_map fragmentation. If we reused a cached U-area,
245 * L_INMEM will already be set and we don't need to do anything.
246 *
247 * Note the kernel stack gets read/write accesses right off the bat.
248 */
249
250 if ((l2->l_flag & L_INMEM) == 0) {
251 error = uvm_fault_wire(kernel_map, (vaddr_t)up,
252 (vaddr_t)up + USPACE, VM_FAULT_WIRE,
253 VM_PROT_READ | VM_PROT_WRITE);
254 if (error)
255 panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
256 #ifdef PMAP_UAREA
257 /* Tell the pmap this is a u-area mapping */
258 PMAP_UAREA((vaddr_t)up);
259 #endif
260 l2->l_flag |= L_INMEM;
261 }
262
263 #ifdef KSTACK_CHECK_MAGIC
264 /*
265 * fill stack with magic number
266 */
267 kstack_setup_magic(l2);
268 #endif
269
270 /*
271 * cpu_lwp_fork() copy and update the pcb, and make the child ready
272 * to run. If this is a normal user fork, the child will exit
273 * directly to user mode via child_return() on its first time
274 * slice and will not return here. If this is a kernel thread,
275 * the specified entry point will be executed.
276 */
277 cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
278 }
279
280 /*
281 * uvm_uarea_alloc: allocate a u-area
282 */
283
284 boolean_t
285 uvm_uarea_alloc(vaddr_t *uaddrp)
286 {
287 vaddr_t uaddr;
288
289 #ifndef USPACE_ALIGN
290 #define USPACE_ALIGN 0
291 #endif
292
293 simple_lock(&uvm_uareas_slock);
294 if (uvm_nuarea > 0) {
295 uaddr = (vaddr_t)uvm_uareas;
296 uvm_uareas = *(void **)uvm_uareas;
297 uvm_nuarea--;
298 simple_unlock(&uvm_uareas_slock);
299 *uaddrp = uaddr;
300 return TRUE;
301 } else {
302 simple_unlock(&uvm_uareas_slock);
303 *uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
304 UVM_KMF_PAGEABLE);
305 return FALSE;
306 }
307 }
308
309 /*
310 * uvm_uarea_free: free a u-area; never blocks
311 */
312
313 static __inline__ void
314 uvm_uarea_free(vaddr_t uaddr)
315 {
316 simple_lock(&uvm_uareas_slock);
317 *(void **)uaddr = uvm_uareas;
318 uvm_uareas = (void *)uaddr;
319 uvm_nuarea++;
320 simple_unlock(&uvm_uareas_slock);
321 }
322
323 /*
324 * uvm_uarea_drain: return memory of u-areas over limit
325 * back to system
326 */
327
328 void
329 uvm_uarea_drain(boolean_t empty)
330 {
331 int leave = empty ? 0 : UVM_NUAREA_MAX;
332 vaddr_t uaddr;
333
334 if (uvm_nuarea <= leave)
335 return;
336
337 simple_lock(&uvm_uareas_slock);
338 while(uvm_nuarea > leave) {
339 uaddr = (vaddr_t)uvm_uareas;
340 uvm_uareas = *(void **)uvm_uareas;
341 uvm_nuarea--;
342 simple_unlock(&uvm_uareas_slock);
343 uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
344 simple_lock(&uvm_uareas_slock);
345 }
346 simple_unlock(&uvm_uareas_slock);
347 }
348
349 /*
350 * uvm_exit: exit a virtual address space
351 *
352 * - the process passed to us is a dead (pre-zombie) process; we
353 * are running on a different context now (the reaper).
354 * - borrow proc0's address space because freeing the vmspace
355 * of the dead process may block.
356 */
357
358 void
359 uvm_proc_exit(struct proc *p)
360 {
361 struct lwp *l = curlwp; /* XXX */
362 struct vmspace *ovm;
363
364 KASSERT(p == l->l_proc);
365 ovm = p->p_vmspace;
366
367 /*
368 * borrow proc0's address space.
369 */
370 pmap_deactivate(l);
371 p->p_vmspace = proc0.p_vmspace;
372 pmap_activate(l);
373
374 uvmspace_free(ovm);
375 }
376
377 void
378 uvm_lwp_exit(struct lwp *l)
379 {
380 vaddr_t va = (vaddr_t)l->l_addr;
381
382 l->l_flag &= ~L_INMEM;
383 uvm_uarea_free(va);
384 l->l_addr = NULL;
385 }
386
387 /*
388 * uvm_init_limit: init per-process VM limits
389 *
390 * - called for process 0 and then inherited by all others.
391 */
392
393 void
394 uvm_init_limits(struct proc *p)
395 {
396
397 /*
398 * Set up the initial limits on process VM. Set the maximum
399 * resident set size to be all of (reasonably) available memory.
400 * This causes any single, large process to start random page
401 * replacement once it fills memory.
402 */
403
404 p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
405 p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
406 p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
407 p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
408 p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
409 }
410
411 #ifdef DEBUG
412 int enableswap = 1;
413 int swapdebug = 0;
414 #define SDB_FOLLOW 1
415 #define SDB_SWAPIN 2
416 #define SDB_SWAPOUT 4
417 #endif
418
419 /*
420 * uvm_swapin: swap in a process's u-area.
421 */
422
423 void
424 uvm_swapin(struct lwp *l)
425 {
426 vaddr_t addr;
427 int s, error;
428
429 addr = (vaddr_t)l->l_addr;
430 /* make L_INMEM true */
431 error = uvm_fault_wire(kernel_map, addr, addr + USPACE, VM_FAULT_WIRE,
432 VM_PROT_READ | VM_PROT_WRITE);
433 if (error) {
434 panic("uvm_swapin: rewiring stack failed: %d", error);
435 }
436
437 /*
438 * Some architectures need to be notified when the user area has
439 * moved to new physical page(s) (e.g. see mips/mips/vm_machdep.c).
440 */
441 cpu_swapin(l);
442 SCHED_LOCK(s);
443 if (l->l_stat == LSRUN)
444 setrunqueue(l);
445 l->l_flag |= L_INMEM;
446 SCHED_UNLOCK(s);
447 l->l_swtime = 0;
448 ++uvmexp.swapins;
449 }
450
451 /*
452 * uvm_scheduler: process zero main loop
453 *
454 * - attempt to swapin every swaped-out, runnable process in order of
455 * priority.
456 * - if not enough memory, wake the pagedaemon and let it clear space.
457 */
458
459 void
460 uvm_scheduler(void)
461 {
462 struct lwp *l, *ll;
463 int pri;
464 int ppri;
465
466 loop:
467 #ifdef DEBUG
468 while (!enableswap)
469 tsleep(&proc0, PVM, "noswap", 0);
470 #endif
471 ll = NULL; /* process to choose */
472 ppri = INT_MIN; /* its priority */
473 proclist_lock_read();
474
475 LIST_FOREACH(l, &alllwp, l_list) {
476 /* is it a runnable swapped out process? */
477 if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
478 pri = l->l_swtime + l->l_slptime -
479 (l->l_proc->p_nice - NZERO) * 8;
480 if (pri > ppri) { /* higher priority? remember it. */
481 ll = l;
482 ppri = pri;
483 }
484 }
485 }
486 /*
487 * XXXSMP: possible unlock/sleep race between here and the
488 * "scheduler" tsleep below..
489 */
490 proclist_unlock_read();
491
492 #ifdef DEBUG
493 if (swapdebug & SDB_FOLLOW)
494 printf("scheduler: running, procp %p pri %d\n", ll, ppri);
495 #endif
496 /*
497 * Nothing to do, back to sleep
498 */
499 if ((l = ll) == NULL) {
500 tsleep(&proc0, PVM, "scheduler", 0);
501 goto loop;
502 }
503
504 /*
505 * we have found swapped out process which we would like to bring
506 * back in.
507 *
508 * XXX: this part is really bogus cuz we could deadlock on memory
509 * despite our feeble check
510 */
511 if (uvmexp.free > atop(USPACE)) {
512 #ifdef DEBUG
513 if (swapdebug & SDB_SWAPIN)
514 printf("swapin: pid %d(%s)@%p, pri %d free %d\n",
515 l->l_proc->p_pid, l->l_proc->p_comm, l->l_addr, ppri, uvmexp.free);
516 #endif
517 uvm_swapin(l);
518 goto loop;
519 }
520 /*
521 * not enough memory, jab the pageout daemon and wait til the coast
522 * is clear
523 */
524 #ifdef DEBUG
525 if (swapdebug & SDB_FOLLOW)
526 printf("scheduler: no room for pid %d(%s), free %d\n",
527 l->l_proc->p_pid, l->l_proc->p_comm, uvmexp.free);
528 #endif
529 uvm_wait("schedpwait");
530 #ifdef DEBUG
531 if (swapdebug & SDB_FOLLOW)
532 printf("scheduler: room again, free %d\n", uvmexp.free);
533 #endif
534 goto loop;
535 }
536
537 /*
538 * swappable: is LWP "l" swappable?
539 */
540
541 #define swappable(l) \
542 (((l)->l_flag & (L_INMEM)) && \
543 ((((l)->l_proc->p_flag) & (P_SYSTEM | P_WEXIT)) == 0) && \
544 (l)->l_holdcnt == 0)
545
546 /*
547 * swapout_threads: find threads that can be swapped and unwire their
548 * u-areas.
549 *
550 * - called by the pagedaemon
551 * - try and swap at least one processs
552 * - processes that are sleeping or stopped for maxslp or more seconds
553 * are swapped... otherwise the longest-sleeping or stopped process
554 * is swapped, otherwise the longest resident process...
555 */
556
557 void
558 uvm_swapout_threads(void)
559 {
560 struct lwp *l;
561 struct lwp *outl, *outl2;
562 int outpri, outpri2;
563 int didswap = 0;
564 extern int maxslp;
565 /* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
566
567 #ifdef DEBUG
568 if (!enableswap)
569 return;
570 #endif
571
572 /*
573 * outl/outpri : stop/sleep thread with largest sleeptime < maxslp
574 * outl2/outpri2: the longest resident thread (its swap time)
575 */
576 outl = outl2 = NULL;
577 outpri = outpri2 = 0;
578 proclist_lock_read();
579 LIST_FOREACH(l, &alllwp, l_list) {
580 KASSERT(l->l_proc != NULL);
581 if (!swappable(l))
582 continue;
583 switch (l->l_stat) {
584 case LSONPROC:
585 KDASSERT(l->l_cpu != curcpu());
586 continue;
587
588 case LSRUN:
589 if (l->l_swtime > outpri2) {
590 outl2 = l;
591 outpri2 = l->l_swtime;
592 }
593 continue;
594
595 case LSSLEEP:
596 case LSSTOP:
597 if (l->l_slptime >= maxslp) {
598 uvm_swapout(l);
599 didswap++;
600 } else if (l->l_slptime > outpri) {
601 outl = l;
602 outpri = l->l_slptime;
603 }
604 continue;
605 }
606 }
607 proclist_unlock_read();
608
609 /*
610 * If we didn't get rid of any real duds, toss out the next most
611 * likely sleeping/stopped or running candidate. We only do this
612 * if we are real low on memory since we don't gain much by doing
613 * it (USPACE bytes).
614 */
615 if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
616 if ((l = outl) == NULL)
617 l = outl2;
618 #ifdef DEBUG
619 if (swapdebug & SDB_SWAPOUT)
620 printf("swapout_threads: no duds, try procp %p\n", l);
621 #endif
622 if (l)
623 uvm_swapout(l);
624 }
625 }
626
627 /*
628 * uvm_swapout: swap out lwp "l"
629 *
630 * - currently "swapout" means "unwire U-area" and "pmap_collect()"
631 * the pmap.
632 * - XXXCDC: should deactivate all process' private anonymous memory
633 */
634
635 static void
636 uvm_swapout(struct lwp *l)
637 {
638 vaddr_t addr;
639 int s;
640 struct proc *p = l->l_proc;
641
642 #ifdef DEBUG
643 if (swapdebug & SDB_SWAPOUT)
644 printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
645 p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
646 l->l_slptime, uvmexp.free);
647 #endif
648
649 /*
650 * Mark it as (potentially) swapped out.
651 */
652 SCHED_LOCK(s);
653 if (l->l_stat == LSONPROC) {
654 KDASSERT(l->l_cpu != curcpu());
655 SCHED_UNLOCK(s);
656 return;
657 }
658 l->l_flag &= ~L_INMEM;
659 if (l->l_stat == LSRUN)
660 remrunqueue(l);
661 SCHED_UNLOCK(s);
662 l->l_swtime = 0;
663 p->p_stats->p_ru.ru_nswap++;
664 ++uvmexp.swapouts;
665
666 /*
667 * Do any machine-specific actions necessary before swapout.
668 * This can include saving floating point state, etc.
669 */
670 cpu_swapout(l);
671
672 /*
673 * Unwire the to-be-swapped process's user struct and kernel stack.
674 */
675 addr = (vaddr_t)l->l_addr;
676 uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
677 pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
678 }
679
680 /*
681 * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
682 * a core file.
683 */
684
685 int
686 uvm_coredump_walkmap(struct proc *p, void *iocookie,
687 int (*func)(struct proc *, void *, struct uvm_coredump_state *),
688 void *cookie)
689 {
690 struct uvm_coredump_state state;
691 struct vmspace *vm = p->p_vmspace;
692 struct vm_map *map = &vm->vm_map;
693 struct vm_map_entry *entry;
694 int error;
695
696 entry = NULL;
697 vm_map_lock_read(map);
698 state.end = 0;
699 for (;;) {
700 if (entry == NULL)
701 entry = map->header.next;
702 else if (!uvm_map_lookup_entry(map, state.end, &entry))
703 entry = entry->next;
704 if (entry == &map->header)
705 break;
706
707 state.cookie = cookie;
708 if (state.end > entry->start) {
709 state.start = state.end;
710 } else {
711 state.start = entry->start;
712 }
713 state.realend = entry->end;
714 state.end = entry->end;
715 state.prot = entry->protection;
716 state.flags = 0;
717
718 /*
719 * Dump the region unless one of the following is true:
720 *
721 * (1) the region has neither object nor amap behind it
722 * (ie. it has never been accessed).
723 *
724 * (2) the region has no amap and is read-only
725 * (eg. an executable text section).
726 *
727 * (3) the region's object is a device.
728 *
729 * (4) the region is unreadable by the process.
730 */
731
732 KASSERT(!UVM_ET_ISSUBMAP(entry));
733 KASSERT(state.start < VM_MAXUSER_ADDRESS);
734 KASSERT(state.end <= VM_MAXUSER_ADDRESS);
735 if (entry->object.uvm_obj == NULL &&
736 entry->aref.ar_amap == NULL) {
737 state.realend = state.start;
738 } else if ((entry->protection & VM_PROT_WRITE) == 0 &&
739 entry->aref.ar_amap == NULL) {
740 state.realend = state.start;
741 } else if (entry->object.uvm_obj != NULL &&
742 UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
743 state.realend = state.start;
744 } else if ((entry->protection & VM_PROT_READ) == 0) {
745 state.realend = state.start;
746 } else {
747 if (state.start >= (vaddr_t)vm->vm_maxsaddr)
748 state.flags |= UVM_COREDUMP_STACK;
749
750 /*
751 * If this an anonymous entry, only dump instantiated
752 * pages.
753 */
754 if (entry->object.uvm_obj == NULL) {
755 vaddr_t end;
756
757 amap_lock(entry->aref.ar_amap);
758 for (end = state.start;
759 end < state.end; end += PAGE_SIZE) {
760 struct vm_anon *anon;
761 anon = amap_lookup(&entry->aref,
762 end - entry->start);
763 /*
764 * If we have already encountered an
765 * uninstantiated page, stop at the
766 * first instantied page.
767 */
768 if (anon != NULL &&
769 state.realend != state.end) {
770 state.end = end;
771 break;
772 }
773
774 /*
775 * If this page is the first
776 * uninstantiated page, mark this as
777 * the real ending point. Continue to
778 * counting uninstantiated pages.
779 */
780 if (anon == NULL &&
781 state.realend == state.end) {
782 state.realend = end;
783 }
784 }
785 amap_unlock(entry->aref.ar_amap);
786 }
787 }
788
789
790 vm_map_unlock_read(map);
791 error = (*func)(p, iocookie, &state);
792 if (error)
793 return (error);
794 vm_map_lock_read(map);
795 }
796 vm_map_unlock_read(map);
797
798 return (0);
799 }
800