Home | History | Annotate | Line # | Download | only in uvm
uvm_glue.c revision 1.99
      1 /*	$NetBSD: uvm_glue.c,v 1.99 2007/02/15 20:21:13 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_glue.c	8.6 (Berkeley) 1/5/94
     42  * from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.99 2007/02/15 20:21:13 ad Exp $");
     71 
     72 #include "opt_coredump.h"
     73 #include "opt_kgdb.h"
     74 #include "opt_kstack.h"
     75 #include "opt_uvmhist.h"
     76 
     77 /*
     78  * uvm_glue.c: glue functions
     79  */
     80 
     81 #include <sys/param.h>
     82 #include <sys/systm.h>
     83 #include <sys/proc.h>
     84 #include <sys/resourcevar.h>
     85 #include <sys/buf.h>
     86 #include <sys/user.h>
     87 
     88 #include <uvm/uvm.h>
     89 
     90 #include <machine/cpu.h>
     91 
     92 /*
     93  * local prototypes
     94  */
     95 
     96 static void uvm_swapout(struct lwp *);
     97 
     98 #define UVM_NUAREA_MAX 16
     99 static vaddr_t uvm_uareas;
    100 static int uvm_nuarea;
    101 static struct simplelock uvm_uareas_slock = SIMPLELOCK_INITIALIZER;
    102 #define	UAREA_NEXTFREE(uarea)	(*(vaddr_t *)(UAREA_TO_USER(uarea)))
    103 
    104 static void uvm_uarea_free(vaddr_t);
    105 
    106 /*
    107  * XXXCDC: do these really belong here?
    108  */
    109 
    110 /*
    111  * uvm_kernacc: can the kernel access a region of memory
    112  *
    113  * - used only by /dev/kmem driver (mem.c)
    114  */
    115 
    116 boolean_t
    117 uvm_kernacc(caddr_t addr, size_t len, int rw)
    118 {
    119 	boolean_t rv;
    120 	vaddr_t saddr, eaddr;
    121 	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
    122 
    123 	saddr = trunc_page((vaddr_t)addr);
    124 	eaddr = round_page((vaddr_t)addr + len);
    125 	vm_map_lock_read(kernel_map);
    126 	rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
    127 	vm_map_unlock_read(kernel_map);
    128 
    129 	return(rv);
    130 }
    131 
    132 #ifdef KGDB
    133 /*
    134  * Change protections on kernel pages from addr to addr+len
    135  * (presumably so debugger can plant a breakpoint).
    136  *
    137  * We force the protection change at the pmap level.  If we were
    138  * to use vm_map_protect a change to allow writing would be lazily-
    139  * applied meaning we would still take a protection fault, something
    140  * we really don't want to do.  It would also fragment the kernel
    141  * map unnecessarily.  We cannot use pmap_protect since it also won't
    142  * enforce a write-enable request.  Using pmap_enter is the only way
    143  * we can ensure the change takes place properly.
    144  */
    145 void
    146 uvm_chgkprot(caddr_t addr, size_t len, int rw)
    147 {
    148 	vm_prot_t prot;
    149 	paddr_t pa;
    150 	vaddr_t sva, eva;
    151 
    152 	prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
    153 	eva = round_page((vaddr_t)addr + len);
    154 	for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
    155 		/*
    156 		 * Extract physical address for the page.
    157 		 */
    158 		if (pmap_extract(pmap_kernel(), sva, &pa) == FALSE)
    159 			panic("chgkprot: invalid page");
    160 		pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
    161 	}
    162 	pmap_update(pmap_kernel());
    163 }
    164 #endif
    165 
    166 /*
    167  * uvm_vslock: wire user memory for I/O
    168  *
    169  * - called from physio and sys___sysctl
    170  * - XXXCDC: consider nuking this (or making it a macro?)
    171  */
    172 
    173 int
    174 uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
    175 {
    176 	struct vm_map *map;
    177 	vaddr_t start, end;
    178 	int error;
    179 
    180 	map = &vs->vm_map;
    181 	start = trunc_page((vaddr_t)addr);
    182 	end = round_page((vaddr_t)addr + len);
    183 	error = uvm_fault_wire(map, start, end, access_type, 0);
    184 	return error;
    185 }
    186 
    187 /*
    188  * uvm_vsunlock: unwire user memory wired by uvm_vslock()
    189  *
    190  * - called from physio and sys___sysctl
    191  * - XXXCDC: consider nuking this (or making it a macro?)
    192  */
    193 
    194 void
    195 uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
    196 {
    197 	uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
    198 		round_page((vaddr_t)addr + len));
    199 }
    200 
    201 /*
    202  * uvm_proc_fork: fork a virtual address space
    203  *
    204  * - the address space is copied as per parent map's inherit values
    205  */
    206 void
    207 uvm_proc_fork(struct proc *p1, struct proc *p2, boolean_t shared)
    208 {
    209 
    210 	if (shared == TRUE) {
    211 		p2->p_vmspace = NULL;
    212 		uvmspace_share(p1, p2);
    213 	} else {
    214 		p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
    215 	}
    216 
    217 	cpu_proc_fork(p1, p2);
    218 }
    219 
    220 
    221 /*
    222  * uvm_lwp_fork: fork a thread
    223  *
    224  * - a new "user" structure is allocated for the child process
    225  *	[filled in by MD layer...]
    226  * - if specified, the child gets a new user stack described by
    227  *	stack and stacksize
    228  * - NOTE: the kernel stack may be at a different location in the child
    229  *	process, and thus addresses of automatic variables may be invalid
    230  *	after cpu_lwp_fork returns in the child process.  We do nothing here
    231  *	after cpu_lwp_fork returns.
    232  * - XXXCDC: we need a way for this to return a failure value rather
    233  *   than just hang
    234  */
    235 void
    236 uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
    237     void (*func)(void *), void *arg)
    238 {
    239 	int error;
    240 
    241 	/*
    242 	 * Wire down the U-area for the process, which contains the PCB
    243 	 * and the kernel stack.  Wired state is stored in l->l_flag's
    244 	 * L_INMEM bit rather than in the vm_map_entry's wired count
    245 	 * to prevent kernel_map fragmentation.  If we reused a cached U-area,
    246 	 * L_INMEM will already be set and we don't need to do anything.
    247 	 *
    248 	 * Note the kernel stack gets read/write accesses right off the bat.
    249 	 */
    250 
    251 	if ((l2->l_flag & L_INMEM) == 0) {
    252 		vaddr_t uarea = USER_TO_UAREA(l2->l_addr);
    253 
    254 		error = uvm_fault_wire(kernel_map, uarea,
    255 		    uarea + USPACE, VM_PROT_READ | VM_PROT_WRITE, 0);
    256 		if (error)
    257 			panic("uvm_lwp_fork: uvm_fault_wire failed: %d", error);
    258 #ifdef PMAP_UAREA
    259 		/* Tell the pmap this is a u-area mapping */
    260 		PMAP_UAREA(uarea);
    261 #endif
    262 		l2->l_flag |= L_INMEM;
    263 	}
    264 
    265 #ifdef KSTACK_CHECK_MAGIC
    266 	/*
    267 	 * fill stack with magic number
    268 	 */
    269 	kstack_setup_magic(l2);
    270 #endif
    271 
    272 	/*
    273 	 * cpu_lwp_fork() copy and update the pcb, and make the child ready
    274  	 * to run.  If this is a normal user fork, the child will exit
    275 	 * directly to user mode via child_return() on its first time
    276 	 * slice and will not return here.  If this is a kernel thread,
    277 	 * the specified entry point will be executed.
    278 	 */
    279 	cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
    280 }
    281 
    282 /*
    283  * uvm_uarea_alloc: allocate a u-area
    284  */
    285 
    286 boolean_t
    287 uvm_uarea_alloc(vaddr_t *uaddrp)
    288 {
    289 	vaddr_t uaddr;
    290 
    291 #ifndef USPACE_ALIGN
    292 #define USPACE_ALIGN    0
    293 #endif
    294 
    295 	simple_lock(&uvm_uareas_slock);
    296 	if (uvm_nuarea > 0) {
    297 		uaddr = uvm_uareas;
    298 		uvm_uareas = UAREA_NEXTFREE(uaddr);
    299 		uvm_nuarea--;
    300 		simple_unlock(&uvm_uareas_slock);
    301 		*uaddrp = uaddr;
    302 		return TRUE;
    303 	} else {
    304 		simple_unlock(&uvm_uareas_slock);
    305 		*uaddrp = uvm_km_alloc(kernel_map, USPACE, USPACE_ALIGN,
    306 		    UVM_KMF_PAGEABLE);
    307 		return FALSE;
    308 	}
    309 }
    310 
    311 /*
    312  * uvm_uarea_free: free a u-area; never blocks
    313  */
    314 
    315 static inline void
    316 uvm_uarea_free(vaddr_t uaddr)
    317 {
    318 	simple_lock(&uvm_uareas_slock);
    319 	UAREA_NEXTFREE(uaddr) = uvm_uareas;
    320 	uvm_uareas = uaddr;
    321 	uvm_nuarea++;
    322 	simple_unlock(&uvm_uareas_slock);
    323 }
    324 
    325 /*
    326  * uvm_uarea_drain: return memory of u-areas over limit
    327  * back to system
    328  */
    329 
    330 void
    331 uvm_uarea_drain(boolean_t empty)
    332 {
    333 	int leave = empty ? 0 : UVM_NUAREA_MAX;
    334 	vaddr_t uaddr;
    335 
    336 	if (uvm_nuarea <= leave)
    337 		return;
    338 
    339 	simple_lock(&uvm_uareas_slock);
    340 	while(uvm_nuarea > leave) {
    341 		uaddr = uvm_uareas;
    342 		uvm_uareas = UAREA_NEXTFREE(uaddr);
    343 		uvm_nuarea--;
    344 		simple_unlock(&uvm_uareas_slock);
    345 		uvm_km_free(kernel_map, uaddr, USPACE, UVM_KMF_PAGEABLE);
    346 		simple_lock(&uvm_uareas_slock);
    347 	}
    348 	simple_unlock(&uvm_uareas_slock);
    349 }
    350 
    351 /*
    352  * uvm_exit: exit a virtual address space
    353  *
    354  * - the process passed to us is a dead (pre-zombie) process; we
    355  *   are running on a different context now (the reaper).
    356  * - borrow proc0's address space because freeing the vmspace
    357  *   of the dead process may block.
    358  */
    359 
    360 void
    361 uvm_proc_exit(struct proc *p)
    362 {
    363 	struct lwp *l = curlwp; /* XXX */
    364 	struct vmspace *ovm;
    365 
    366 	KASSERT(p == l->l_proc);
    367 	ovm = p->p_vmspace;
    368 
    369 	/*
    370 	 * borrow proc0's address space.
    371 	 */
    372 	pmap_deactivate(l);
    373 	p->p_vmspace = proc0.p_vmspace;
    374 	pmap_activate(l);
    375 
    376 	uvmspace_free(ovm);
    377 }
    378 
    379 void
    380 uvm_lwp_exit(struct lwp *l)
    381 {
    382 	vaddr_t va = USER_TO_UAREA(l->l_addr);
    383 
    384 	l->l_flag &= ~L_INMEM;
    385 	uvm_uarea_free(va);
    386 	l->l_addr = NULL;
    387 }
    388 
    389 /*
    390  * uvm_init_limit: init per-process VM limits
    391  *
    392  * - called for process 0 and then inherited by all others.
    393  */
    394 
    395 void
    396 uvm_init_limits(struct proc *p)
    397 {
    398 
    399 	/*
    400 	 * Set up the initial limits on process VM.  Set the maximum
    401 	 * resident set size to be all of (reasonably) available memory.
    402 	 * This causes any single, large process to start random page
    403 	 * replacement once it fills memory.
    404 	 */
    405 
    406 	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
    407 	p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
    408 	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
    409 	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
    410 	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(uvmexp.free);
    411 }
    412 
    413 #ifdef DEBUG
    414 int	enableswap = 1;
    415 int	swapdebug = 0;
    416 #define	SDB_FOLLOW	1
    417 #define SDB_SWAPIN	2
    418 #define SDB_SWAPOUT	4
    419 #endif
    420 
    421 /*
    422  * uvm_swapin: swap in an lwp's u-area.
    423  */
    424 
    425 void
    426 uvm_swapin(struct lwp *l)
    427 {
    428 	vaddr_t addr;
    429 	int error;
    430 
    431 	addr = USER_TO_UAREA(l->l_addr);
    432 	/* make L_INMEM true */
    433 	error = uvm_fault_wire(kernel_map, addr, addr + USPACE,
    434 	    VM_PROT_READ | VM_PROT_WRITE, 0);
    435 	if (error) {
    436 		panic("uvm_swapin: rewiring stack failed: %d", error);
    437 	}
    438 
    439 	/*
    440 	 * Some architectures need to be notified when the user area has
    441 	 * moved to new physical page(s) (e.g.  see mips/mips/vm_machdep.c).
    442 	 */
    443 	cpu_swapin(l);
    444 	lwp_lock(l);
    445 	if (l->l_stat == LSRUN)
    446 		setrunqueue(l);
    447 	l->l_flag |= L_INMEM;
    448 	l->l_swtime = 0;
    449 	lwp_unlock(l);
    450 	++uvmexp.swapins;
    451 }
    452 
    453 /*
    454  * uvm_kick_scheduler: kick the scheduler into action if not running.
    455  *
    456  * - called when swapped out processes have been awoken.
    457  */
    458 
    459 void
    460 uvm_kick_scheduler(void)
    461 {
    462 
    463 	mutex_enter(&uvm.scheduler_mutex);
    464 	uvm.scheduler_kicked = TRUE;
    465 	cv_signal(&uvm.scheduler_cv);
    466 	mutex_exit(&uvm.scheduler_mutex);
    467 }
    468 
    469 /*
    470  * uvm_scheduler: process zero main loop
    471  *
    472  * - attempt to swapin every swaped-out, runnable process in order of
    473  *	priority.
    474  * - if not enough memory, wake the pagedaemon and let it clear space.
    475  */
    476 
    477 void
    478 uvm_scheduler(void)
    479 {
    480 	struct lwp *l, *ll;
    481 	int pri;
    482 	int ppri;
    483 
    484 	l = curlwp;
    485 	lwp_lock(l);
    486 	lwp_changepri(l, PVM);
    487 	lwp_unlock(l);
    488 
    489 	for (;;) {
    490 #ifdef DEBUG
    491 		mutex_enter(&uvm.scheduler_mutex);
    492 		while (!enableswap)
    493 			cv_wait(&uvm.scheduler_cv, &uvm.scheduler_mutex);
    494 		mutex_exit(&uvm.scheduler_mutex);
    495 #endif
    496 		ll = NULL;		/* process to choose */
    497 		ppri = INT_MIN;		/* its priority */
    498 
    499 		mutex_enter(&proclist_mutex);
    500 		LIST_FOREACH(l, &alllwp, l_list) {
    501 			/* is it a runnable swapped out process? */
    502 			if (l->l_stat == LSRUN && (l->l_flag & L_INMEM) == 0) {
    503 				pri = l->l_swtime + l->l_slptime -
    504 				    (l->l_proc->p_nice - NZERO) * 8;
    505 				if (pri > ppri) {   /* higher priority? */
    506 					ll = l;
    507 					ppri = pri;
    508 				}
    509 			}
    510 		}
    511 		mutex_exit(&proclist_mutex);
    512 #ifdef DEBUG
    513 		if (swapdebug & SDB_FOLLOW)
    514 			printf("scheduler: running, procp %p pri %d\n", ll,
    515 			    ppri);
    516 #endif
    517 		/*
    518 		 * Nothing to do, back to sleep
    519 		 */
    520 		if ((l = ll) == NULL) {
    521 			mutex_enter(&uvm.scheduler_mutex);
    522 			if (uvm.scheduler_kicked == FALSE)
    523 				cv_wait(&uvm.scheduler_cv,
    524 				    &uvm.scheduler_mutex);
    525 			uvm.scheduler_kicked = FALSE;
    526 			mutex_exit(&uvm.scheduler_mutex);
    527 			continue;
    528 		}
    529 
    530 		/*
    531 		 * we have found swapped out process which we would like
    532 		 * to bring back in.
    533 		 *
    534 		 * XXX: this part is really bogus cuz we could deadlock
    535 		 * on memory despite our feeble check
    536 		 */
    537 		if (uvmexp.free > atop(USPACE)) {
    538 #ifdef DEBUG
    539 			if (swapdebug & SDB_SWAPIN)
    540 				printf("swapin: pid %d(%s)@%p, pri %d "
    541 				    "free %d\n", l->l_proc->p_pid,
    542 				    l->l_proc->p_comm, l->l_addr, ppri,
    543 				    uvmexp.free);
    544 #endif
    545 			uvm_swapin(l);
    546 		} else {
    547 			/*
    548 			 * not enough memory, jab the pageout daemon and
    549 			 * wait til the coast is clear
    550 			 */
    551 #ifdef DEBUG
    552 			if (swapdebug & SDB_FOLLOW)
    553 				printf("scheduler: no room for pid %d(%s),"
    554 				    " free %d\n", l->l_proc->p_pid,
    555 				    l->l_proc->p_comm, uvmexp.free);
    556 #endif
    557 			uvm_wait("schedpwait");
    558 #ifdef DEBUG
    559 			if (swapdebug & SDB_FOLLOW)
    560 				printf("scheduler: room again, free %d\n",
    561 				    uvmexp.free);
    562 #endif
    563 		}
    564 	}
    565 }
    566 
    567 /*
    568  * swappable: is LWP "l" swappable?
    569  */
    570 
    571 #define	swappable(l)							\
    572 	(((l)->l_flag & (L_INMEM)) &&					\
    573 	 ((((l)->l_flag) & (L_SYSTEM | L_WEXIT)) == 0) &&		\
    574 	 (l)->l_holdcnt == 0)
    575 
    576 /*
    577  * swapout_threads: find threads that can be swapped and unwire their
    578  *	u-areas.
    579  *
    580  * - called by the pagedaemon
    581  * - try and swap at least one processs
    582  * - processes that are sleeping or stopped for maxslp or more seconds
    583  *   are swapped... otherwise the longest-sleeping or stopped process
    584  *   is swapped, otherwise the longest resident process...
    585  */
    586 
    587 void
    588 uvm_swapout_threads(void)
    589 {
    590 	struct lwp *l;
    591 	struct lwp *outl, *outl2;
    592 	int outpri, outpri2;
    593 	int didswap = 0;
    594 	extern int maxslp;
    595 	/* XXXCDC: should move off to uvmexp. or uvm., also in uvm_meter */
    596 
    597 #ifdef DEBUG
    598 	if (!enableswap)
    599 		return;
    600 #endif
    601 
    602 	/*
    603 	 * outl/outpri  : stop/sleep thread with largest sleeptime < maxslp
    604 	 * outl2/outpri2: the longest resident thread (its swap time)
    605 	 */
    606 	outl = outl2 = NULL;
    607 	outpri = outpri2 = 0;
    608 	mutex_enter(&proclist_mutex);	/* XXXSMP */
    609 	LIST_FOREACH(l, &alllwp, l_list) {
    610 		KASSERT(l->l_proc != NULL);
    611 		lwp_lock(l);
    612 		if (!swappable(l)) {
    613 			lwp_unlock(l);
    614 			continue;
    615 		}
    616 		switch (l->l_stat) {
    617 		case LSONPROC:
    618 			break;
    619 
    620 		case LSRUN:
    621 			if (l->l_swtime > outpri2) {
    622 				outl2 = l;
    623 				outpri2 = l->l_swtime;
    624 			}
    625 			break;
    626 
    627 		case LSSLEEP:
    628 		case LSSTOP:
    629 			if (l->l_slptime >= maxslp) {
    630 				/* uvm_swapout() will release the lock. */
    631 				uvm_swapout(l);
    632 				didswap++;
    633 				continue;
    634 			} else if (l->l_slptime > outpri) {
    635 				outl = l;
    636 				outpri = l->l_slptime;
    637 			}
    638 			break;
    639 		}
    640 		lwp_unlock(l);
    641 	}
    642 	/*
    643 	 * If we didn't get rid of any real duds, toss out the next most
    644 	 * likely sleeping/stopped or running candidate.  We only do this
    645 	 * if we are real low on memory since we don't gain much by doing
    646 	 * it (USPACE bytes).
    647 	 */
    648 	if (didswap == 0 && uvmexp.free <= atop(round_page(USPACE))) {
    649 		if ((l = outl) == NULL)
    650 			l = outl2;
    651 #ifdef DEBUG
    652 		if (swapdebug & SDB_SWAPOUT)
    653 			printf("swapout_threads: no duds, try procp %p\n", l);
    654 #endif
    655 		if (l) {
    656 			/* uvm_swapout() will release the lock. */
    657 			lwp_lock(l);
    658 			uvm_swapout(l);
    659 		}
    660 	}
    661 
    662 	mutex_exit(&proclist_mutex);
    663 
    664 }
    665 
    666 /*
    667  * uvm_swapout: swap out lwp "l"
    668  *
    669  * - currently "swapout" means "unwire U-area" and "pmap_collect()"
    670  *   the pmap.
    671  * - must be called with the LWP locked, and will release the lock.
    672  * - XXXCDC: should deactivate all process' private anonymous memory
    673  */
    674 
    675 static void
    676 uvm_swapout(struct lwp *l)
    677 {
    678 	vaddr_t addr;
    679 	struct proc *p = l->l_proc;
    680 
    681 	LOCK_ASSERT(lwp_locked(l, NULL));
    682 
    683 #ifdef DEBUG
    684 	if (swapdebug & SDB_SWAPOUT)
    685 		printf("swapout: lid %d.%d(%s)@%p, stat %x pri %d free %d\n",
    686 	   p->p_pid, l->l_lid, p->p_comm, l->l_addr, l->l_stat,
    687 	   l->l_slptime, uvmexp.free);
    688 #endif
    689 
    690 	/*
    691 	 * Mark it as (potentially) swapped out.
    692 	 */
    693 	if (l->l_stat == LSONPROC) {
    694 		KDASSERT(l->l_cpu != curcpu());
    695 		lwp_unlock(l);
    696 		return;
    697 	}
    698 	l->l_flag &= ~L_INMEM;
    699 	l->l_swtime = 0;
    700 	if (l->l_stat == LSRUN)
    701 		remrunqueue(l);
    702 	lwp_unlock(l);
    703 	p->p_stats->p_ru.ru_nswap++;	/* XXXSMP */
    704 	++uvmexp.swapouts;
    705 
    706 	mutex_exit(&proclist_mutex);	/* XXXSMP */
    707 
    708 	/*
    709 	 * Do any machine-specific actions necessary before swapout.
    710 	 * This can include saving floating point state, etc.
    711 	 */
    712 	cpu_swapout(l);
    713 
    714 	/*
    715 	 * Unwire the to-be-swapped process's user struct and kernel stack.
    716 	 */
    717 	addr = USER_TO_UAREA(l->l_addr);
    718 	uvm_fault_unwire(kernel_map, addr, addr + USPACE); /* !L_INMEM */
    719 	pmap_collect(vm_map_pmap(&p->p_vmspace->vm_map));
    720 
    721 	mutex_enter(&proclist_mutex);	/* XXXSMP */
    722 }
    723 
    724 #ifdef COREDUMP
    725 /*
    726  * uvm_coredump_walkmap: walk a process's map for the purpose of dumping
    727  * a core file.
    728  */
    729 
    730 int
    731 uvm_coredump_walkmap(struct proc *p, void *iocookie,
    732     int (*func)(struct proc *, void *, struct uvm_coredump_state *),
    733     void *cookie)
    734 {
    735 	struct uvm_coredump_state state;
    736 	struct vmspace *vm = p->p_vmspace;
    737 	struct vm_map *map = &vm->vm_map;
    738 	struct vm_map_entry *entry;
    739 	int error;
    740 
    741 	entry = NULL;
    742 	vm_map_lock_read(map);
    743 	state.end = 0;
    744 	for (;;) {
    745 		if (entry == NULL)
    746 			entry = map->header.next;
    747 		else if (!uvm_map_lookup_entry(map, state.end, &entry))
    748 			entry = entry->next;
    749 		if (entry == &map->header)
    750 			break;
    751 
    752 		state.cookie = cookie;
    753 		if (state.end > entry->start) {
    754 			state.start = state.end;
    755 		} else {
    756 			state.start = entry->start;
    757 		}
    758 		state.realend = entry->end;
    759 		state.end = entry->end;
    760 		state.prot = entry->protection;
    761 		state.flags = 0;
    762 
    763 		/*
    764 		 * Dump the region unless one of the following is true:
    765 		 *
    766 		 * (1) the region has neither object nor amap behind it
    767 		 *     (ie. it has never been accessed).
    768 		 *
    769 		 * (2) the region has no amap and is read-only
    770 		 *     (eg. an executable text section).
    771 		 *
    772 		 * (3) the region's object is a device.
    773 		 *
    774 		 * (4) the region is unreadable by the process.
    775 		 */
    776 
    777 		KASSERT(!UVM_ET_ISSUBMAP(entry));
    778 		KASSERT(state.start < VM_MAXUSER_ADDRESS);
    779 		KASSERT(state.end <= VM_MAXUSER_ADDRESS);
    780 		if (entry->object.uvm_obj == NULL &&
    781 		    entry->aref.ar_amap == NULL) {
    782 			state.realend = state.start;
    783 		} else if ((entry->protection & VM_PROT_WRITE) == 0 &&
    784 		    entry->aref.ar_amap == NULL) {
    785 			state.realend = state.start;
    786 		} else if (entry->object.uvm_obj != NULL &&
    787 		    UVM_OBJ_IS_DEVICE(entry->object.uvm_obj)) {
    788 			state.realend = state.start;
    789 		} else if ((entry->protection & VM_PROT_READ) == 0) {
    790 			state.realend = state.start;
    791 		} else {
    792 			if (state.start >= (vaddr_t)vm->vm_maxsaddr)
    793 				state.flags |= UVM_COREDUMP_STACK;
    794 
    795 			/*
    796 			 * If this an anonymous entry, only dump instantiated
    797 			 * pages.
    798 			 */
    799 			if (entry->object.uvm_obj == NULL) {
    800 				vaddr_t end;
    801 
    802 				amap_lock(entry->aref.ar_amap);
    803 				for (end = state.start;
    804 				     end < state.end; end += PAGE_SIZE) {
    805 					struct vm_anon *anon;
    806 					anon = amap_lookup(&entry->aref,
    807 					    end - entry->start);
    808 					/*
    809 					 * If we have already encountered an
    810 					 * uninstantiated page, stop at the
    811 					 * first instantied page.
    812 					 */
    813 					if (anon != NULL &&
    814 					    state.realend != state.end) {
    815 						state.end = end;
    816 						break;
    817 					}
    818 
    819 					/*
    820 					 * If this page is the first
    821 					 * uninstantiated page, mark this as
    822 					 * the real ending point.  Continue to
    823 					 * counting uninstantiated pages.
    824 					 */
    825 					if (anon == NULL &&
    826 					    state.realend == state.end) {
    827 						state.realend = end;
    828 					}
    829 				}
    830 				amap_unlock(entry->aref.ar_amap);
    831 			}
    832 		}
    833 
    834 
    835 		vm_map_unlock_read(map);
    836 		error = (*func)(p, iocookie, &state);
    837 		if (error)
    838 			return (error);
    839 		vm_map_lock_read(map);
    840 	}
    841 	vm_map_unlock_read(map);
    842 
    843 	return (0);
    844 }
    845 #endif /* COREDUMP */
    846