Home | History | Annotate | Line # | Download | only in uvm
      1  1.166       chs /*	$NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $	*/
      2    1.1       mrg 
      3   1.47       chs /*
      4    1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6    1.1       mrg  *
      7    1.1       mrg  * All rights reserved.
      8    1.1       mrg  *
      9    1.1       mrg  * This code is derived from software contributed to Berkeley by
     10    1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11    1.1       mrg  *
     12    1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13    1.1       mrg  * modification, are permitted provided that the following conditions
     14    1.1       mrg  * are met:
     15    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20  1.108     chuck  * 3. Neither the name of the University nor the names of its contributors
     21    1.1       mrg  *    may be used to endorse or promote products derived from this software
     22    1.1       mrg  *    without specific prior written permission.
     23    1.1       mrg  *
     24    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25    1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26    1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27    1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28    1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29    1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30    1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31    1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32    1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34    1.1       mrg  * SUCH DAMAGE.
     35    1.1       mrg  *
     36    1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37    1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38    1.1       mrg  *
     39    1.1       mrg  *
     40    1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41    1.1       mrg  * All rights reserved.
     42   1.47       chs  *
     43    1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44    1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45    1.1       mrg  * notice and this permission notice appear in all copies of the
     46    1.1       mrg  * software, derivative works or modified versions, and any portions
     47    1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48   1.47       chs  *
     49   1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50   1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51    1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52   1.47       chs  *
     53    1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54    1.1       mrg  *
     55    1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56    1.1       mrg  *  School of Computer Science
     57    1.1       mrg  *  Carnegie Mellon University
     58    1.1       mrg  *  Pittsburgh PA 15213-3890
     59    1.1       mrg  *
     60    1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61    1.1       mrg  * rights to redistribute these changes.
     62    1.1       mrg  */
     63    1.6       mrg 
     64    1.1       mrg /*
     65    1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     66    1.1       mrg  */
     67    1.1       mrg 
     68    1.7     chuck /*
     69    1.7     chuck  * overview of kernel memory management:
     70    1.7     chuck  *
     71    1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72   1.62   thorpej  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73   1.62   thorpej  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74    1.7     chuck  *
     75   1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     76    1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     77    1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     78    1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     79   1.47       chs  * virtual address space that is mapped by a submap is locked by the
     80    1.7     chuck  * submap's lock -- not the kernel_map's lock.
     81    1.7     chuck  *
     82    1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     83    1.7     chuck  * up the locking and protection of the kernel address space into smaller
     84    1.7     chuck  * chunks.
     85    1.7     chuck  *
     86  1.126      para  * the vm system has several standard kernel submaps/arenas, including:
     87  1.126      para  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88    1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     89    1.7     chuck  *   exec_map => used during exec to handle exec args
     90    1.7     chuck  *   etc...
     91    1.7     chuck  *
     92  1.127     rmind  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93  1.127     rmind  * within the kernel_map and is controlled by vmem(9).
     94  1.126      para  *
     95    1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
     96    1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97    1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
     98   1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99   1.62   thorpej  * object is equal to the size of kernel virtual address space (i.e. the
    100   1.62   thorpej  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101    1.7     chuck  *
    102  1.101     pooka  * note that just because a kernel object spans the entire kernel virtual
    103    1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    104   1.47       chs  * large chunks of a kernel object's space go unused either because
    105   1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    106    1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107    1.7     chuck  * objects, the only part of the object that can ever be populated is the
    108    1.7     chuck  * offsets that are managed by the submap.
    109    1.7     chuck  *
    110    1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    111   1.62   thorpej  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112    1.7     chuck  * example:
    113   1.62   thorpej  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114    1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115    1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116    1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    117   1.47       chs  *   mapped at 0xf8235000.
    118    1.7     chuck  *
    119    1.7     chuck  * kernel object have one other special property: when the kernel virtual
    120    1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    121    1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    122    1.7     chuck  * this has to be done because there is no backing store for kernel pages
    123    1.7     chuck  * and no need to save them after they are no longer referenced.
    124  1.126      para  *
    125  1.127     rmind  * Generic arenas:
    126  1.126      para  *
    127  1.127     rmind  * kmem_arena:
    128  1.127     rmind  *	Main arena controlling the kernel KVA used by other arenas.
    129  1.127     rmind  *
    130  1.127     rmind  * kmem_va_arena:
    131  1.127     rmind  *	Implements quantum caching in order to speedup allocations and
    132  1.127     rmind  *	reduce fragmentation.  The pool(9), unless created with a custom
    133  1.127     rmind  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134  1.127     rmind  *
    135  1.127     rmind  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136  1.127     rmind  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137  1.127     rmind  * compensates this by importing larger chunks from kmem_arena.
    138  1.127     rmind  *
    139  1.127     rmind  * kmem_va_meta_arena:
    140  1.127     rmind  *	Space for meta-data.
    141  1.127     rmind  *
    142  1.127     rmind  * kmem_meta_arena:
    143  1.127     rmind  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144  1.127     rmind  *	backed with the pages.
    145  1.127     rmind  *
    146  1.127     rmind  * Arena stacking:
    147  1.127     rmind  *
    148  1.127     rmind  *	kmem_arena
    149  1.127     rmind  *		kmem_va_arena
    150  1.127     rmind  *		kmem_va_meta_arena
    151  1.127     rmind  *			kmem_meta_arena
    152    1.7     chuck  */
    153   1.55     lukem 
    154   1.55     lukem #include <sys/cdefs.h>
    155  1.166       chs __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $");
    156   1.55     lukem 
    157   1.55     lukem #include "opt_uvmhist.h"
    158    1.7     chuck 
    159  1.117      para #include "opt_kmempages.h"
    160  1.117      para 
    161  1.117      para #ifndef NKMEMPAGES
    162  1.117      para #define NKMEMPAGES 0
    163  1.117      para #endif
    164  1.117      para 
    165  1.117      para /*
    166  1.117      para  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167  1.117      para  * Can be overridden by kernel config options.
    168  1.117      para  */
    169  1.117      para #ifndef NKMEMPAGES_MIN
    170  1.117      para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171  1.117      para #endif
    172  1.117      para 
    173  1.117      para #ifndef NKMEMPAGES_MAX
    174  1.117      para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175  1.117      para #endif
    176  1.117      para 
    177  1.117      para 
    178    1.1       mrg #include <sys/param.h>
    179    1.1       mrg #include <sys/systm.h>
    180  1.150       uwe #include <sys/atomic.h>
    181    1.1       mrg #include <sys/proc.h>
    182   1.72      yamt #include <sys/pool.h>
    183  1.112      para #include <sys/vmem.h>
    184  1.138      para #include <sys/vmem_impl.h>
    185  1.112      para #include <sys/kmem.h>
    186  1.147      maxv #include <sys/msan.h>
    187    1.1       mrg 
    188    1.1       mrg #include <uvm/uvm.h>
    189    1.1       mrg 
    190    1.1       mrg /*
    191    1.1       mrg  * global data structures
    192    1.1       mrg  */
    193    1.1       mrg 
    194   1.49       chs struct vm_map *kernel_map = NULL;
    195    1.1       mrg 
    196    1.1       mrg /*
    197  1.163    andvar  * local data structures
    198    1.1       mrg  */
    199    1.1       mrg 
    200  1.112      para static struct vm_map		kernel_map_store;
    201  1.112      para static struct vm_map_entry	kernel_image_mapent_store;
    202  1.112      para static struct vm_map_entry	kernel_kmem_mapent_store;
    203    1.1       mrg 
    204  1.164     skrll size_t nkmempages = 0;
    205  1.112      para vaddr_t kmembase;
    206  1.112      para vsize_t kmemsize;
    207   1.72      yamt 
    208  1.138      para static struct vmem kmem_arena_store;
    209  1.135      para vmem_t *kmem_arena = NULL;
    210  1.138      para static struct vmem kmem_va_arena_store;
    211  1.112      para vmem_t *kmem_va_arena;
    212   1.72      yamt 
    213   1.72      yamt /*
    214  1.117      para  * kmeminit_nkmempages: calculate the size of kmem_arena.
    215  1.117      para  */
    216  1.117      para void
    217  1.117      para kmeminit_nkmempages(void)
    218  1.117      para {
    219  1.164     skrll 	size_t npages;
    220  1.117      para 
    221  1.117      para 	if (nkmempages != 0) {
    222  1.117      para 		/*
    223  1.117      para 		 * It's already been set (by us being here before)
    224  1.117      para 		 * bail out now;
    225  1.117      para 		 */
    226  1.117      para 		return;
    227  1.117      para 	}
    228  1.117      para 
    229  1.162       chs #if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
    230  1.166       chs 	/*
    231  1.166       chs 	 * The extra 1/9 here is to account for uvm_km_va_starved_p()
    232  1.166       chs 	 * wanting to keep 10% of kmem virtual space free.
    233  1.166       chs 	 * The intent is that on "unlimited" platforms we should be able
    234  1.166       chs 	 * to allocate all of physical memory as kmem without behaving
    235  1.166       chs 	 * as though we running short of kmem virtual space.
    236  1.166       chs 	 */
    237  1.166       chs 	npages = (physmem * 10) / 9;
    238  1.161       chs #else
    239  1.161       chs 
    240  1.147      maxv #if defined(KMSAN)
    241  1.162       chs 	npages = (physmem / 4);
    242  1.147      maxv #elif defined(PMAP_MAP_POOLPAGE)
    243  1.119      para 	npages = (physmem / 4);
    244  1.119      para #else
    245  1.119      para 	npages = (physmem / 3) * 2;
    246  1.119      para #endif /* defined(PMAP_MAP_POOLPAGE) */
    247  1.117      para 
    248  1.162       chs #if !defined(NKMEMPAGES_MAX_UNLIMITED)
    249  1.117      para 	if (npages > NKMEMPAGES_MAX)
    250  1.117      para 		npages = NKMEMPAGES_MAX;
    251  1.119      para #endif
    252  1.117      para 
    253  1.162       chs #endif
    254  1.162       chs 
    255  1.117      para 	if (npages < NKMEMPAGES_MIN)
    256  1.117      para 		npages = NKMEMPAGES_MIN;
    257  1.117      para 
    258  1.117      para 	nkmempages = npages;
    259  1.117      para }
    260  1.117      para 
    261  1.117      para /*
    262  1.112      para  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    263    1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    264    1.1       mrg  *
    265   1.62   thorpej  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    266   1.82  christos  *    we assume that [vmin -> start] has already been allocated and that
    267   1.62   thorpej  *    "end" is the end.
    268    1.1       mrg  */
    269    1.1       mrg 
    270    1.8       mrg void
    271  1.112      para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    272    1.1       mrg {
    273  1.119      para 	bool kmem_arena_small;
    274   1.62   thorpej 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    275  1.118      matt 	struct uvm_map_args args;
    276  1.118      matt 	int error;
    277  1.118      matt 
    278  1.159     skrll 	UVMHIST_FUNC(__func__);
    279  1.159     skrll 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
    280   1.27   thorpej 
    281  1.117      para 	kmeminit_nkmempages();
    282  1.119      para 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    283  1.119      para 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    284  1.112      para 
    285  1.144  pgoyette 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
    286  1.118      matt 
    287   1.27   thorpej 	/*
    288   1.27   thorpej 	 * next, init kernel memory objects.
    289    1.8       mrg 	 */
    290    1.1       mrg 
    291    1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    292   1.95        ad 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    293  1.112      para 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    294    1.1       mrg 
    295   1.24   thorpej 	/*
    296   1.56   thorpej 	 * init the map and reserve any space that might already
    297   1.56   thorpej 	 * have been allocated kernel space before installing.
    298    1.8       mrg 	 */
    299    1.1       mrg 
    300  1.112      para 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    301  1.112      para 	kernel_map_store.pmap = pmap_kernel();
    302   1.70      yamt 	if (start != base) {
    303  1.112      para 		error = uvm_map_prepare(&kernel_map_store,
    304   1.71      yamt 		    base, start - base,
    305   1.70      yamt 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    306   1.62   thorpej 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    307   1.70      yamt 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    308   1.70      yamt 		if (!error) {
    309  1.112      para 			kernel_image_mapent_store.flags =
    310  1.112      para 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    311  1.112      para 			error = uvm_map_enter(&kernel_map_store, &args,
    312  1.112      para 			    &kernel_image_mapent_store);
    313   1.70      yamt 		}
    314   1.70      yamt 
    315   1.70      yamt 		if (error)
    316   1.70      yamt 			panic(
    317  1.112      para 			    "uvm_km_bootstrap: could not reserve space for kernel");
    318  1.112      para 
    319  1.112      para 		kmembase = args.uma_start + args.uma_size;
    320  1.114      matt 	} else {
    321  1.114      matt 		kmembase = base;
    322   1.70      yamt 	}
    323   1.47       chs 
    324  1.118      matt 	error = uvm_map_prepare(&kernel_map_store,
    325  1.118      matt 	    kmembase, kmemsize,
    326  1.118      matt 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    327  1.118      matt 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    328  1.118      matt 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    329  1.118      matt 	if (!error) {
    330  1.118      matt 		kernel_kmem_mapent_store.flags =
    331  1.118      matt 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    332  1.118      matt 		error = uvm_map_enter(&kernel_map_store, &args,
    333  1.118      matt 		    &kernel_kmem_mapent_store);
    334  1.118      matt 	}
    335  1.118      matt 
    336  1.118      matt 	if (error)
    337  1.118      matt 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    338  1.118      matt 
    339    1.8       mrg 	/*
    340    1.8       mrg 	 * install!
    341    1.8       mrg 	 */
    342    1.8       mrg 
    343  1.112      para 	kernel_map = &kernel_map_store;
    344  1.112      para 
    345  1.112      para 	pool_subsystem_init();
    346  1.112      para 
    347  1.138      para 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    348  1.138      para 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    349  1.112      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    350  1.135      para #ifdef PMAP_GROWKERNEL
    351  1.135      para 	/*
    352  1.135      para 	 * kmem_arena VA allocations happen independently of uvm_map.
    353  1.135      para 	 * grow kernel to accommodate the kmem_arena.
    354  1.135      para 	 */
    355  1.135      para 	if (uvm_maxkaddr < kmembase + kmemsize) {
    356  1.135      para 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    357  1.135      para 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    358  1.135      para 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    359  1.135      para 		    uvm_maxkaddr, kmembase, kmemsize);
    360  1.135      para 	}
    361  1.135      para #endif
    362  1.112      para 
    363  1.138      para 	vmem_subsystem_init(kmem_arena);
    364  1.112      para 
    365  1.144  pgoyette 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
    366  1.144  pgoyette 	    kmembase, kmemsize, 0,0);
    367  1.118      matt 
    368  1.138      para 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    369  1.138      para 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    370  1.138      para 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    371  1.138      para 	    VM_NOSLEEP, IPL_VM);
    372  1.118      matt 
    373  1.118      matt 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    374  1.112      para }
    375  1.112      para 
    376  1.112      para /*
    377  1.112      para  * uvm_km_init: init the kernel maps virtual memory caches
    378  1.112      para  * and start the pool/kmem allocator.
    379  1.112      para  */
    380  1.112      para void
    381  1.112      para uvm_km_init(void)
    382  1.112      para {
    383  1.112      para 	kmem_init();
    384    1.1       mrg }
    385    1.1       mrg 
    386    1.1       mrg /*
    387    1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    388    1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    389    1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    390    1.1       mrg  *
    391   1.82  christos  * => if `fixed' is true, *vmin specifies where the region described
    392  1.112      para  *   pager_map => used to map "buf" structures into kernel space
    393    1.5   thorpej  *      by the submap must start
    394    1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    395    1.1       mrg  *	alloc a new map
    396    1.1       mrg  */
    397   1.78      yamt 
    398    1.8       mrg struct vm_map *
    399   1.83   thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    400   1.93   thorpej     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    401  1.112      para     struct vm_map *submap)
    402    1.8       mrg {
    403    1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    404  1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    405    1.1       mrg 
    406   1.71      yamt 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    407   1.71      yamt 
    408    1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    409    1.1       mrg 
    410    1.8       mrg 	/*
    411    1.8       mrg 	 * first allocate a blank spot in the parent map
    412    1.8       mrg 	 */
    413    1.8       mrg 
    414   1.82  christos 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    415    1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    416   1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    417  1.118      matt 		panic("%s: unable to allocate space in parent map", __func__);
    418    1.8       mrg 	}
    419    1.8       mrg 
    420    1.8       mrg 	/*
    421   1.82  christos 	 * set VM bounds (vmin is filled in by uvm_map)
    422    1.8       mrg 	 */
    423    1.1       mrg 
    424   1.82  christos 	*vmax = *vmin + size;
    425    1.5   thorpej 
    426    1.8       mrg 	/*
    427    1.8       mrg 	 * add references to pmap and create or init the submap
    428    1.8       mrg 	 */
    429    1.1       mrg 
    430    1.8       mrg 	pmap_reference(vm_map_pmap(map));
    431    1.8       mrg 	if (submap == NULL) {
    432  1.112      para 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    433    1.8       mrg 	}
    434  1.112      para 	uvm_map_setup(submap, *vmin, *vmax, flags);
    435  1.112      para 	submap->pmap = vm_map_pmap(map);
    436    1.1       mrg 
    437    1.8       mrg 	/*
    438    1.8       mrg 	 * now let uvm_map_submap plug in it...
    439    1.8       mrg 	 */
    440    1.1       mrg 
    441  1.112      para 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    442    1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    443    1.1       mrg 
    444  1.112      para 	return(submap);
    445    1.1       mrg }
    446    1.1       mrg 
    447    1.1       mrg /*
    448  1.110      yamt  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    449    1.1       mrg  */
    450    1.1       mrg 
    451    1.8       mrg void
    452   1.83   thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    453    1.1       mrg {
    454   1.95        ad 	struct uvm_object * const uobj = uvm_kernel_object;
    455   1.78      yamt 	const voff_t start = startva - vm_map_min(kernel_map);
    456   1.78      yamt 	const voff_t end = endva - vm_map_min(kernel_map);
    457   1.53       chs 	struct vm_page *pg;
    458   1.52       chs 	voff_t curoff, nextoff;
    459   1.53       chs 	int swpgonlydelta = 0;
    460  1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    461    1.1       mrg 
    462   1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    463   1.78      yamt 	KASSERT(startva < endva);
    464   1.86      yamt 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    465   1.78      yamt 
    466  1.155        ad 	rw_enter(uobj->vmobjlock, RW_WRITER);
    467  1.110      yamt 	pmap_remove(pmap_kernel(), startva, endva);
    468   1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    469   1.52       chs 		nextoff = curoff + PAGE_SIZE;
    470   1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    471   1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    472  1.157        ad 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
    473  1.155        ad 			rw_enter(uobj->vmobjlock, RW_WRITER);
    474   1.52       chs 			nextoff = curoff;
    475    1.8       mrg 			continue;
    476   1.52       chs 		}
    477    1.8       mrg 
    478   1.52       chs 		/*
    479   1.52       chs 		 * free the swap slot, then the page.
    480   1.52       chs 		 */
    481    1.8       mrg 
    482   1.53       chs 		if (pg == NULL &&
    483   1.64        pk 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    484   1.53       chs 			swpgonlydelta++;
    485   1.53       chs 		}
    486   1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    487   1.53       chs 		if (pg != NULL) {
    488   1.53       chs 			uvm_pagefree(pg);
    489   1.53       chs 		}
    490    1.8       mrg 	}
    491  1.155        ad 	rw_exit(uobj->vmobjlock);
    492    1.8       mrg 
    493   1.54       chs 	if (swpgonlydelta > 0) {
    494  1.149        ad 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    495  1.148        ad 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
    496   1.54       chs 	}
    497   1.24   thorpej }
    498   1.24   thorpej 
    499   1.24   thorpej 
    500   1.24   thorpej /*
    501   1.78      yamt  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    502   1.78      yamt  *    regions.
    503   1.24   thorpej  *
    504   1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    505   1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    506   1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    507   1.52       chs  *    be on the active or inactive queues (because they have no object).
    508   1.24   thorpej  */
    509   1.24   thorpej 
    510   1.24   thorpej void
    511  1.102        ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    512   1.24   thorpej {
    513  1.122    bouyer #define __PGRM_BATCH 16
    514   1.52       chs 	struct vm_page *pg;
    515  1.122    bouyer 	paddr_t pa[__PGRM_BATCH];
    516  1.122    bouyer 	int npgrm, i;
    517  1.122    bouyer 	vaddr_t va, batch_vastart;
    518  1.122    bouyer 
    519  1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    520   1.24   thorpej 
    521  1.102        ad 	KASSERT(VM_MAP_IS_KERNEL(map));
    522  1.128      matt 	KASSERTMSG(vm_map_min(map) <= start,
    523  1.128      matt 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    524  1.128      matt 	    " (size=%#"PRIxVSIZE")",
    525  1.128      matt 	    vm_map_min(map), start, end - start);
    526   1.78      yamt 	KASSERT(start < end);
    527  1.102        ad 	KASSERT(end <= vm_map_max(map));
    528   1.78      yamt 
    529  1.122    bouyer 	for (va = start; va < end;) {
    530  1.122    bouyer 		batch_vastart = va;
    531  1.122    bouyer 		/* create a batch of at most __PGRM_BATCH pages to free */
    532  1.122    bouyer 		for (i = 0;
    533  1.122    bouyer 		     i < __PGRM_BATCH && va < end;
    534  1.122    bouyer 		     va += PAGE_SIZE) {
    535  1.122    bouyer 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    536  1.122    bouyer 				continue;
    537  1.122    bouyer 			}
    538  1.122    bouyer 			i++;
    539  1.122    bouyer 		}
    540  1.122    bouyer 		npgrm = i;
    541  1.122    bouyer 		/* now remove the mappings */
    542  1.124    bouyer 		pmap_kremove(batch_vastart, va - batch_vastart);
    543  1.122    bouyer 		/* and free the pages */
    544  1.122    bouyer 		for (i = 0; i < npgrm; i++) {
    545  1.122    bouyer 			pg = PHYS_TO_VM_PAGE(pa[i]);
    546  1.122    bouyer 			KASSERT(pg);
    547  1.165  riastrad 			KASSERT(pg->uobject == NULL);
    548  1.165  riastrad 			KASSERT(pg->uanon == NULL);
    549  1.122    bouyer 			KASSERT((pg->flags & PG_BUSY) == 0);
    550  1.122    bouyer 			uvm_pagefree(pg);
    551   1.40       chs 		}
    552   1.24   thorpej 	}
    553  1.122    bouyer #undef __PGRM_BATCH
    554    1.1       mrg }
    555    1.1       mrg 
    556   1.78      yamt #if defined(DEBUG)
    557   1.78      yamt void
    558  1.102        ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    559   1.78      yamt {
    560   1.78      yamt 	vaddr_t va;
    561  1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    562   1.78      yamt 
    563  1.102        ad 	KDASSERT(VM_MAP_IS_KERNEL(map));
    564  1.102        ad 	KDASSERT(vm_map_min(map) <= start);
    565   1.78      yamt 	KDASSERT(start < end);
    566  1.102        ad 	KDASSERT(end <= vm_map_max(map));
    567   1.78      yamt 
    568   1.78      yamt 	for (va = start; va < end; va += PAGE_SIZE) {
    569  1.152        ad 		paddr_t pa;
    570  1.152        ad 
    571   1.78      yamt 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    572  1.156       rin 			panic("uvm_km_check_empty: va %p has pa %#llx",
    573   1.81    simonb 			    (void *)va, (long long)pa);
    574   1.78      yamt 		}
    575  1.152        ad 		/*
    576  1.152        ad 		 * kernel_object should not have pages for the corresponding
    577  1.152        ad 		 * region.  check it.
    578  1.152        ad 		 *
    579  1.152        ad 		 * why trylock?  because:
    580  1.152        ad 		 * - caller might not want to block.
    581  1.152        ad 		 * - we can recurse when allocating radix_node for
    582  1.152        ad 		 *   kernel_object.
    583  1.152        ad 		 */
    584  1.157        ad 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
    585  1.152        ad 			struct vm_page *pg;
    586  1.152        ad 
    587  1.152        ad 			pg = uvm_pagelookup(uvm_kernel_object,
    588  1.152        ad 			    va - vm_map_min(kernel_map));
    589  1.155        ad 			rw_exit(uvm_kernel_object->vmobjlock);
    590  1.152        ad 			if (pg) {
    591  1.152        ad 				panic("uvm_km_check_empty: "
    592  1.152        ad 				    "has page hashed at %p",
    593  1.152        ad 				    (const void *)va);
    594  1.152        ad 			}
    595   1.78      yamt 		}
    596   1.78      yamt 	}
    597   1.78      yamt }
    598   1.78      yamt #endif /* defined(DEBUG) */
    599    1.1       mrg 
    600    1.1       mrg /*
    601   1.78      yamt  * uvm_km_alloc: allocate an area of kernel memory.
    602    1.1       mrg  *
    603   1.78      yamt  * => NOTE: we can return 0 even if we can wait if there is not enough
    604    1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    605    1.1       mrg  *	this case.
    606    1.1       mrg  * => we return KVA of memory allocated
    607    1.1       mrg  */
    608    1.1       mrg 
    609   1.14       eeh vaddr_t
    610   1.83   thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    611    1.1       mrg {
    612   1.14       eeh 	vaddr_t kva, loopva;
    613   1.14       eeh 	vaddr_t offset;
    614   1.44   thorpej 	vsize_t loopsize;
    615    1.8       mrg 	struct vm_page *pg;
    616   1.78      yamt 	struct uvm_object *obj;
    617   1.78      yamt 	int pgaflags;
    618  1.141      maxv 	vm_prot_t prot, vaprot;
    619   1.78      yamt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    620    1.1       mrg 
    621   1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    622   1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    623   1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    624   1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    625  1.111      matt 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    626  1.111      matt 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    627    1.1       mrg 
    628    1.8       mrg 	/*
    629    1.8       mrg 	 * setup for call
    630    1.8       mrg 	 */
    631    1.8       mrg 
    632   1.78      yamt 	kva = vm_map_min(map);	/* hint */
    633    1.8       mrg 	size = round_page(size);
    634   1.95        ad 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    635  1.160     skrll 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
    636  1.144  pgoyette 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
    637    1.1       mrg 
    638    1.8       mrg 	/*
    639    1.8       mrg 	 * allocate some virtual space
    640    1.8       mrg 	 */
    641    1.8       mrg 
    642  1.141      maxv 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    643   1.78      yamt 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    644  1.141      maxv 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    645   1.78      yamt 	    UVM_ADV_RANDOM,
    646  1.111      matt 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    647  1.112      para 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    648    1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    649    1.8       mrg 		return(0);
    650    1.8       mrg 	}
    651    1.8       mrg 
    652    1.8       mrg 	/*
    653    1.8       mrg 	 * if all we wanted was VA, return now
    654    1.8       mrg 	 */
    655    1.8       mrg 
    656   1.78      yamt 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    657  1.156       rin 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
    658    1.8       mrg 		return(kva);
    659    1.8       mrg 	}
    660   1.40       chs 
    661    1.8       mrg 	/*
    662    1.8       mrg 	 * recover object offset from virtual address
    663    1.8       mrg 	 */
    664    1.8       mrg 
    665    1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    666  1.156       rin 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
    667    1.8       mrg 
    668    1.8       mrg 	/*
    669    1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    670    1.8       mrg 	 * whom should ever get a handle on this area of VM.
    671    1.8       mrg 	 */
    672    1.8       mrg 
    673    1.8       mrg 	loopva = kva;
    674   1.44   thorpej 	loopsize = size;
    675   1.78      yamt 
    676  1.107      matt 	pgaflags = UVM_FLAG_COLORMATCH;
    677  1.103        ad 	if (flags & UVM_KMF_NOWAIT)
    678  1.103        ad 		pgaflags |= UVM_PGA_USERESERVE;
    679   1.78      yamt 	if (flags & UVM_KMF_ZERO)
    680   1.78      yamt 		pgaflags |= UVM_PGA_ZERO;
    681   1.89  drochner 	prot = VM_PROT_READ | VM_PROT_WRITE;
    682   1.89  drochner 	if (flags & UVM_KMF_EXEC)
    683   1.89  drochner 		prot |= VM_PROT_EXECUTE;
    684   1.44   thorpej 	while (loopsize) {
    685  1.114      matt 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    686  1.114      matt 		    "loopva=%#"PRIxVADDR, loopva);
    687   1.78      yamt 
    688  1.107      matt 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    689  1.107      matt #ifdef UVM_KM_VMFREELIST
    690  1.107      matt 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    691  1.107      matt #else
    692  1.107      matt 		   UVM_PGA_STRAT_NORMAL, 0
    693  1.107      matt #endif
    694  1.107      matt 		   );
    695   1.47       chs 
    696    1.8       mrg 		/*
    697    1.8       mrg 		 * out of memory?
    698    1.8       mrg 		 */
    699    1.8       mrg 
    700   1.35   thorpej 		if (__predict_false(pg == NULL)) {
    701   1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    702   1.80      yamt 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    703    1.8       mrg 				/* free everything! */
    704   1.78      yamt 				uvm_km_free(map, kva, size,
    705   1.78      yamt 				    flags & UVM_KMF_TYPEMASK);
    706   1.58       chs 				return (0);
    707    1.8       mrg 			} else {
    708    1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    709    1.8       mrg 				continue;
    710    1.8       mrg 			}
    711    1.8       mrg 		}
    712   1.47       chs 
    713   1.78      yamt 		pg->flags &= ~PG_BUSY;	/* new page */
    714   1.78      yamt 		UVM_PAGE_OWN(pg, NULL);
    715   1.78      yamt 
    716    1.8       mrg 		/*
    717   1.52       chs 		 * map it in
    718    1.8       mrg 		 */
    719   1.40       chs 
    720  1.104    cegger 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    721  1.106    cegger 		    prot, PMAP_KMPAGE);
    722    1.8       mrg 		loopva += PAGE_SIZE;
    723    1.8       mrg 		offset += PAGE_SIZE;
    724   1.44   thorpej 		loopsize -= PAGE_SIZE;
    725    1.8       mrg 	}
    726   1.69  junyoung 
    727  1.112      para 	pmap_update(pmap_kernel());
    728   1.69  junyoung 
    729  1.146      maxv 	if ((flags & UVM_KMF_ZERO) == 0) {
    730  1.147      maxv 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
    731  1.147      maxv 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
    732  1.146      maxv 	}
    733  1.146      maxv 
    734  1.156       rin 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
    735    1.8       mrg 	return(kva);
    736    1.1       mrg }
    737    1.1       mrg 
    738    1.1       mrg /*
    739  1.140      maxv  * uvm_km_protect: change the protection of an allocated area
    740  1.140      maxv  */
    741  1.140      maxv 
    742  1.140      maxv int
    743  1.140      maxv uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    744  1.140      maxv {
    745  1.140      maxv 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    746  1.140      maxv }
    747  1.140      maxv 
    748  1.140      maxv /*
    749    1.1       mrg  * uvm_km_free: free an area of kernel memory
    750    1.1       mrg  */
    751    1.1       mrg 
    752    1.8       mrg void
    753   1.83   thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    754    1.8       mrg {
    755  1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    756    1.1       mrg 
    757   1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    758   1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    759   1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    760   1.78      yamt 	KASSERT((addr & PAGE_MASK) == 0);
    761   1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    762    1.1       mrg 
    763    1.8       mrg 	size = round_page(size);
    764    1.1       mrg 
    765   1.78      yamt 	if (flags & UVM_KMF_PAGEABLE) {
    766   1.78      yamt 		uvm_km_pgremove(addr, addr + size);
    767   1.78      yamt 	} else if (flags & UVM_KMF_WIRED) {
    768  1.109     rmind 		/*
    769  1.109     rmind 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    770  1.109     rmind 		 * remove it after.  See comment below about KVA visibility.
    771  1.109     rmind 		 */
    772  1.102        ad 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    773    1.8       mrg 	}
    774   1.99      yamt 
    775   1.99      yamt 	/*
    776  1.109     rmind 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    777  1.109     rmind 	 * KVA becomes globally available.
    778   1.99      yamt 	 */
    779    1.8       mrg 
    780  1.112      para 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    781   1.66        pk }
    782   1.66        pk 
    783   1.10   thorpej /* Sanity; must specify both or none. */
    784   1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    785   1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    786   1.10   thorpej #error Must specify MAP and UNMAP together.
    787   1.10   thorpej #endif
    788   1.10   thorpej 
    789  1.153     skrll #if defined(PMAP_ALLOC_POOLPAGE) && \
    790  1.153     skrll     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
    791  1.153     skrll #error Must specify ALLOC with MAP and UNMAP
    792  1.153     skrll #endif
    793  1.153     skrll 
    794  1.112      para int
    795  1.112      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    796  1.112      para     vmem_addr_t *addr)
    797   1.72      yamt {
    798   1.72      yamt 	struct vm_page *pg;
    799  1.112      para 	vmem_addr_t va;
    800  1.112      para 	int rc;
    801  1.112      para 	vaddr_t loopva;
    802  1.112      para 	vsize_t loopsize;
    803   1.72      yamt 
    804  1.112      para 	size = round_page(size);
    805   1.72      yamt 
    806  1.112      para #if defined(PMAP_MAP_POOLPAGE)
    807  1.112      para 	if (size == PAGE_SIZE) {
    808   1.72      yamt again:
    809  1.112      para #ifdef PMAP_ALLOC_POOLPAGE
    810  1.112      para 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    811  1.112      para 		   0 : UVM_PGA_USERESERVE);
    812  1.112      para #else
    813  1.112      para 		pg = uvm_pagealloc(NULL, 0, NULL,
    814  1.112      para 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    815  1.112      para #endif /* PMAP_ALLOC_POOLPAGE */
    816  1.112      para 		if (__predict_false(pg == NULL)) {
    817  1.112      para 			if (flags & VM_SLEEP) {
    818  1.112      para 				uvm_wait("plpg");
    819  1.112      para 				goto again;
    820  1.112      para 			}
    821  1.123     rmind 			return ENOMEM;
    822  1.112      para 		}
    823  1.112      para 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    824  1.145   mlelstv 		KASSERT(va != 0);
    825  1.112      para 		*addr = va;
    826  1.112      para 		return 0;
    827   1.72      yamt 	}
    828  1.112      para #endif /* PMAP_MAP_POOLPAGE */
    829  1.112      para 
    830  1.112      para 	rc = vmem_alloc(vm, size, flags, &va);
    831  1.112      para 	if (rc != 0)
    832  1.112      para 		return rc;
    833   1.72      yamt 
    834  1.130      matt #ifdef PMAP_GROWKERNEL
    835  1.130      matt 	/*
    836  1.158     skrll 	 * These VA allocations happen independently of uvm_map
    837  1.135      para 	 * so this allocation must not extend beyond the current limit.
    838  1.135      para 	 */
    839  1.135      para 	KASSERTMSG(uvm_maxkaddr >= va + size,
    840  1.135      para 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    841  1.135      para 	    uvm_maxkaddr, va, size);
    842  1.130      matt #endif
    843  1.130      matt 
    844  1.112      para 	loopva = va;
    845  1.112      para 	loopsize = size;
    846   1.72      yamt 
    847  1.112      para 	while (loopsize) {
    848  1.142  riastrad 		paddr_t pa __diagused;
    849  1.128      matt 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    850  1.128      matt 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    851  1.128      matt 		    " pa=%#"PRIxPADDR" vmem=%p",
    852  1.128      matt 		    loopva, loopsize, pa, vm);
    853  1.114      matt 
    854  1.114      matt 		pg = uvm_pagealloc(NULL, loopva, NULL,
    855  1.115      matt 		    UVM_FLAG_COLORMATCH
    856  1.114      matt 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    857  1.112      para 		if (__predict_false(pg == NULL)) {
    858  1.112      para 			if (flags & VM_SLEEP) {
    859  1.112      para 				uvm_wait("plpg");
    860  1.112      para 				continue;
    861  1.112      para 			} else {
    862  1.112      para 				uvm_km_pgremove_intrsafe(kernel_map, va,
    863  1.112      para 				    va + size);
    864  1.125      yamt 				vmem_free(vm, va, size);
    865  1.112      para 				return ENOMEM;
    866  1.112      para 			}
    867  1.112      para 		}
    868  1.123     rmind 
    869  1.112      para 		pg->flags &= ~PG_BUSY;	/* new page */
    870  1.112      para 		UVM_PAGE_OWN(pg, NULL);
    871  1.112      para 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    872  1.112      para 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    873  1.107      matt 
    874  1.112      para 		loopva += PAGE_SIZE;
    875  1.112      para 		loopsize -= PAGE_SIZE;
    876   1.15   thorpej 	}
    877  1.112      para 	pmap_update(pmap_kernel());
    878  1.112      para 
    879  1.112      para 	*addr = va;
    880   1.16   thorpej 
    881  1.112      para 	return 0;
    882   1.10   thorpej }
    883   1.10   thorpej 
    884   1.10   thorpej void
    885  1.112      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    886   1.72      yamt {
    887  1.112      para 
    888  1.112      para 	size = round_page(size);
    889   1.72      yamt #if defined(PMAP_UNMAP_POOLPAGE)
    890  1.112      para 	if (size == PAGE_SIZE) {
    891  1.112      para 		paddr_t pa;
    892   1.72      yamt 
    893  1.112      para 		pa = PMAP_UNMAP_POOLPAGE(addr);
    894  1.112      para 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    895   1.72      yamt 		return;
    896   1.72      yamt 	}
    897  1.112      para #endif /* PMAP_UNMAP_POOLPAGE */
    898  1.112      para 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    899  1.112      para 	pmap_update(pmap_kernel());
    900   1.72      yamt 
    901  1.112      para 	vmem_free(vm, addr, size);
    902   1.72      yamt }
    903   1.72      yamt 
    904  1.112      para bool
    905  1.112      para uvm_km_va_starved_p(void)
    906   1.10   thorpej {
    907  1.112      para 	vmem_size_t total;
    908  1.112      para 	vmem_size_t free;
    909  1.112      para 
    910  1.135      para 	if (kmem_arena == NULL)
    911  1.135      para 		return false;
    912  1.135      para 
    913  1.112      para 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    914  1.112      para 	free = vmem_size(kmem_arena, VMEM_FREE);
    915   1.10   thorpej 
    916  1.112      para 	return (free < (total / 10));
    917    1.1       mrg }
    918