Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.10.2.1
      1  1.10.2.1      eeh /*	$NetBSD: uvm_km.c,v 1.10.2.1 1998/07/30 14:04:11 eeh Exp $	*/
      2       1.1      mrg 
      3       1.1      mrg /*
      4       1.1      mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5       1.1      mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6       1.1      mrg  */
      7       1.1      mrg /*
      8       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9       1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10       1.1      mrg  *
     11       1.1      mrg  * All rights reserved.
     12       1.1      mrg  *
     13       1.1      mrg  * This code is derived from software contributed to Berkeley by
     14       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15       1.1      mrg  *
     16       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     17       1.1      mrg  * modification, are permitted provided that the following conditions
     18       1.1      mrg  * are met:
     19       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     20       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     21       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     23       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     24       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     25       1.1      mrg  *    must display the following acknowledgement:
     26       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     27       1.1      mrg  *      Washington University, the University of California, Berkeley and
     28       1.1      mrg  *      its contributors.
     29       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     30       1.1      mrg  *    may be used to endorse or promote products derived from this software
     31       1.1      mrg  *    without specific prior written permission.
     32       1.1      mrg  *
     33       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43       1.1      mrg  * SUCH DAMAGE.
     44       1.1      mrg  *
     45       1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     46       1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     47       1.1      mrg  *
     48       1.1      mrg  *
     49       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50       1.1      mrg  * All rights reserved.
     51       1.1      mrg  *
     52       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     53       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     54       1.1      mrg  * notice and this permission notice appear in all copies of the
     55       1.1      mrg  * software, derivative works or modified versions, and any portions
     56       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     57       1.1      mrg  *
     58       1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59       1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61       1.1      mrg  *
     62       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     63       1.1      mrg  *
     64       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65       1.1      mrg  *  School of Computer Science
     66       1.1      mrg  *  Carnegie Mellon University
     67       1.1      mrg  *  Pittsburgh PA 15213-3890
     68       1.1      mrg  *
     69       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     70       1.1      mrg  * rights to redistribute these changes.
     71       1.1      mrg  */
     72       1.6      mrg 
     73       1.6      mrg #include "opt_uvmhist.h"
     74       1.6      mrg #include "opt_pmap_new.h"
     75       1.1      mrg 
     76       1.1      mrg /*
     77       1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     78       1.1      mrg  */
     79       1.1      mrg 
     80       1.7    chuck /*
     81       1.7    chuck  * overview of kernel memory management:
     82       1.7    chuck  *
     83       1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     84       1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     85       1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     86       1.7    chuck  *
     87       1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     88       1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     89       1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     90       1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     91       1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     92       1.7    chuck  * submap's lock -- not the kernel_map's lock.
     93       1.7    chuck  *
     94       1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     95       1.7    chuck  * up the locking and protection of the kernel address space into smaller
     96       1.7    chuck  * chunks.
     97       1.7    chuck  *
     98       1.7    chuck  * the vm system has several standard kernel submaps, including:
     99       1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
    100       1.7    chuck  *		malloc.   *** access to kmem_map must be protected
    101       1.7    chuck  *		by splimp() because we are allowed to call malloc()
    102       1.7    chuck  *		at interrupt time ***
    103       1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    104       1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    105       1.7    chuck  *   exec_map => used during exec to handle exec args
    106       1.7    chuck  *   etc...
    107       1.7    chuck  *
    108       1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    109       1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    110       1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    111       1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    112       1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    113       1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    114       1.7    chuck  *
    115       1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    116       1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    117       1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    118       1.7    chuck  * object (e.g. kmem_object, mb_object).
    119       1.7    chuck  *
    120       1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    121       1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    122       1.7    chuck  * large chunks of a kernel object's space go unused either because
    123       1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    124       1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    125       1.7    chuck  * objects, the only part of the object that can ever be populated is the
    126       1.7    chuck  * offsets that are managed by the submap.
    127       1.7    chuck  *
    128       1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    129       1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    130       1.7    chuck  * example:
    131       1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    132       1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    133       1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    134       1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    135       1.7    chuck  *   mapped at 0xf8235000.
    136       1.7    chuck  *
    137       1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    138       1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    139       1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    140       1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    141       1.7    chuck  * in those objects will typically not start at zero.
    142       1.7    chuck  *
    143       1.7    chuck  * kernel object have one other special property: when the kernel virtual
    144       1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    145       1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    146       1.7    chuck  * this has to be done because there is no backing store for kernel pages
    147       1.7    chuck  * and no need to save them after they are no longer referenced.
    148       1.7    chuck  */
    149       1.7    chuck 
    150       1.1      mrg #include <sys/param.h>
    151       1.1      mrg #include <sys/systm.h>
    152       1.1      mrg #include <sys/proc.h>
    153       1.1      mrg 
    154       1.1      mrg #include <vm/vm.h>
    155       1.1      mrg #include <vm/vm_page.h>
    156       1.1      mrg #include <vm/vm_kern.h>
    157       1.1      mrg 
    158       1.1      mrg #include <uvm/uvm.h>
    159       1.1      mrg 
    160       1.1      mrg /*
    161       1.1      mrg  * global data structures
    162       1.1      mrg  */
    163       1.1      mrg 
    164       1.1      mrg vm_map_t kernel_map = NULL;
    165       1.1      mrg 
    166       1.1      mrg /*
    167       1.1      mrg  * local functions
    168       1.1      mrg  */
    169       1.1      mrg 
    170  1.10.2.1      eeh static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    171       1.8      mrg 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    172       1.1      mrg /*
    173       1.1      mrg  * local data structues
    174       1.1      mrg  */
    175       1.1      mrg 
    176       1.1      mrg static struct vm_map		kernel_map_store;
    177       1.1      mrg static struct uvm_object	kmem_object_store;
    178       1.1      mrg static struct uvm_object	mb_object_store;
    179       1.1      mrg 
    180       1.1      mrg static struct uvm_pagerops km_pager = {
    181       1.8      mrg 	NULL,	/* init */
    182       1.8      mrg 	NULL, /* attach */
    183       1.8      mrg 	NULL, /* reference */
    184       1.8      mrg 	NULL, /* detach */
    185       1.8      mrg 	NULL, /* fault */
    186       1.8      mrg 	NULL, /* flush */
    187       1.8      mrg 	uvm_km_get, /* get */
    188       1.8      mrg 	/* ... rest are NULL */
    189       1.1      mrg };
    190       1.1      mrg 
    191       1.1      mrg /*
    192       1.1      mrg  * uvm_km_get: pager get function for kernel objects
    193       1.1      mrg  *
    194       1.1      mrg  * => currently we do not support pageout to the swap area, so this
    195       1.1      mrg  *    pager is very simple.    eventually we may want an anonymous
    196       1.1      mrg  *    object pager which will do paging.
    197       1.7    chuck  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    198       1.1      mrg  */
    199       1.1      mrg 
    200       1.1      mrg 
    201       1.8      mrg static int
    202       1.8      mrg uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    203       1.8      mrg 	struct uvm_object *uobj;
    204  1.10.2.1      eeh 	vaddr_t offset;
    205       1.8      mrg 	struct vm_page **pps;
    206       1.8      mrg 	int *npagesp;
    207       1.8      mrg 	int centeridx, advice, flags;
    208       1.8      mrg 	vm_prot_t access_type;
    209       1.8      mrg {
    210  1.10.2.1      eeh 	vaddr_t current_offset;
    211       1.8      mrg 	vm_page_t ptmp;
    212       1.8      mrg 	int lcv, gotpages, maxpages;
    213       1.8      mrg 	boolean_t done;
    214       1.8      mrg 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    215       1.8      mrg 
    216       1.8      mrg 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    217       1.8      mrg 
    218       1.8      mrg 	/*
    219       1.8      mrg 	 * get number of pages
    220       1.8      mrg 	 */
    221       1.8      mrg 
    222       1.8      mrg 	maxpages = *npagesp;
    223       1.8      mrg 
    224       1.8      mrg 	/*
    225       1.8      mrg 	 * step 1: handled the case where fault data structures are locked.
    226       1.8      mrg 	 */
    227       1.8      mrg 
    228       1.8      mrg 	if (flags & PGO_LOCKED) {
    229       1.8      mrg 
    230       1.8      mrg 		/*
    231       1.8      mrg 		 * step 1a: get pages that are already resident.   only do
    232       1.8      mrg 		 * this if the data structures are locked (i.e. the first time
    233       1.8      mrg 		 * through).
    234       1.8      mrg 		 */
    235       1.8      mrg 
    236       1.8      mrg 		done = TRUE;	/* be optimistic */
    237       1.8      mrg 		gotpages = 0;	/* # of pages we got so far */
    238       1.8      mrg 
    239       1.8      mrg 		for (lcv = 0, current_offset = offset ;
    240       1.8      mrg 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    241       1.8      mrg 
    242       1.8      mrg 			/* do we care about this page?  if not, skip it */
    243       1.8      mrg 			if (pps[lcv] == PGO_DONTCARE)
    244       1.8      mrg 				continue;
    245       1.8      mrg 
    246       1.8      mrg 			/* lookup page */
    247       1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    248       1.8      mrg 
    249       1.8      mrg 			/* null?  attempt to allocate the page */
    250       1.8      mrg 			if (ptmp == NULL) {
    251       1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    252       1.8      mrg 				    NULL);
    253       1.8      mrg 				if (ptmp) {
    254       1.8      mrg 					/* new page */
    255       1.8      mrg 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    256       1.8      mrg 					UVM_PAGE_OWN(ptmp, NULL);
    257       1.8      mrg 					uvm_pagezero(ptmp);
    258       1.8      mrg 				}
    259       1.8      mrg 			}
    260       1.8      mrg 
    261       1.8      mrg 			/*
    262       1.8      mrg 			 * to be useful must get a non-busy, non-released page
    263       1.8      mrg 			 */
    264       1.8      mrg 			if (ptmp == NULL ||
    265       1.8      mrg 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    266       1.8      mrg 				if (lcv == centeridx ||
    267       1.8      mrg 				    (flags & PGO_ALLPAGES) != 0)
    268       1.8      mrg 					/* need to do a wait or I/O! */
    269       1.8      mrg 					done = FALSE;
    270       1.8      mrg 				continue;
    271       1.8      mrg 			}
    272       1.8      mrg 
    273       1.8      mrg 			/*
    274       1.8      mrg 			 * useful page: busy/lock it and plug it in our
    275       1.8      mrg 			 * result array
    276       1.8      mrg 			 */
    277       1.8      mrg 
    278       1.8      mrg 			/* caller must un-busy this page */
    279       1.8      mrg 			ptmp->flags |= PG_BUSY;
    280       1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    281       1.8      mrg 			pps[lcv] = ptmp;
    282       1.8      mrg 			gotpages++;
    283       1.8      mrg 
    284       1.8      mrg 		}	/* "for" lcv loop */
    285       1.8      mrg 
    286       1.8      mrg 		/*
    287       1.8      mrg 		 * step 1b: now we've either done everything needed or we
    288       1.8      mrg 		 * to unlock and do some waiting or I/O.
    289       1.8      mrg 		 */
    290       1.8      mrg 
    291       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    292       1.8      mrg 
    293       1.8      mrg 		*npagesp = gotpages;
    294       1.8      mrg 		if (done)
    295       1.8      mrg 			return(VM_PAGER_OK);		/* bingo! */
    296       1.8      mrg 		else
    297       1.8      mrg 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    298       1.8      mrg 							 * unlock and I/O */
    299       1.8      mrg 	}
    300       1.8      mrg 
    301       1.8      mrg 	/*
    302       1.8      mrg 	 * step 2: get non-resident or busy pages.
    303       1.8      mrg 	 * object is locked.   data structures are unlocked.
    304       1.8      mrg 	 */
    305       1.8      mrg 
    306       1.8      mrg 	for (lcv = 0, current_offset = offset ;
    307       1.8      mrg 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    308       1.8      mrg 
    309       1.8      mrg 		/* skip over pages we've already gotten or don't want */
    310       1.8      mrg 		/* skip over pages we don't _have_ to get */
    311       1.8      mrg 		if (pps[lcv] != NULL ||
    312       1.8      mrg 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    313       1.8      mrg 			continue;
    314       1.8      mrg 
    315       1.8      mrg 		/*
    316       1.8      mrg 		 * we have yet to locate the current page (pps[lcv]).   we
    317       1.8      mrg 		 * first look for a page that is already at the current offset.
    318       1.8      mrg 		 * if we find a page, we check to see if it is busy or
    319       1.8      mrg 		 * released.  if that is the case, then we sleep on the page
    320       1.8      mrg 		 * until it is no longer busy or released and repeat the
    321       1.8      mrg 		 * lookup.    if the page we found is neither busy nor
    322       1.8      mrg 		 * released, then we busy it (so we own it) and plug it into
    323       1.8      mrg 		 * pps[lcv].   this 'break's the following while loop and
    324       1.8      mrg 		 * indicates we are ready to move on to the next page in the
    325       1.8      mrg 		 * "lcv" loop above.
    326       1.8      mrg 		 *
    327       1.8      mrg 		 * if we exit the while loop with pps[lcv] still set to NULL,
    328       1.8      mrg 		 * then it means that we allocated a new busy/fake/clean page
    329       1.8      mrg 		 * ptmp in the object and we need to do I/O to fill in the
    330       1.8      mrg 		 * data.
    331       1.8      mrg 		 */
    332       1.8      mrg 
    333       1.8      mrg 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    334       1.8      mrg 
    335       1.8      mrg 			/* look for a current page */
    336       1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    337       1.8      mrg 
    338       1.8      mrg 			/* nope?   allocate one now (if we can) */
    339       1.8      mrg 			if (ptmp == NULL) {
    340       1.8      mrg 
    341       1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    342       1.8      mrg 				    NULL);	/* alloc */
    343       1.8      mrg 
    344       1.8      mrg 				/* out of RAM? */
    345       1.8      mrg 				if (ptmp == NULL) {
    346       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    347       1.8      mrg 					uvm_wait("kmgetwait1");
    348       1.8      mrg 					simple_lock(&uobj->vmobjlock);
    349       1.8      mrg 					/* goto top of pps while loop */
    350       1.8      mrg 					continue;
    351       1.8      mrg 				}
    352       1.8      mrg 
    353       1.8      mrg 				/*
    354       1.8      mrg 				 * got new page ready for I/O.  break pps
    355       1.8      mrg 				 * while loop.  pps[lcv] is still NULL.
    356       1.8      mrg 				 */
    357       1.8      mrg 				break;
    358       1.8      mrg 			}
    359       1.8      mrg 
    360       1.8      mrg 			/* page is there, see if we need to wait on it */
    361       1.8      mrg 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    362       1.8      mrg 				ptmp->flags |= PG_WANTED;
    363       1.8      mrg 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    364       1.8      mrg 				    "uvn_get",0);
    365       1.8      mrg 				simple_lock(&uobj->vmobjlock);
    366       1.8      mrg 				continue;	/* goto top of pps while loop */
    367       1.8      mrg 			}
    368       1.8      mrg 
    369       1.8      mrg 			/*
    370       1.8      mrg 			 * if we get here then the page has become resident
    371       1.8      mrg 			 * and unbusy between steps 1 and 2.  we busy it now
    372       1.8      mrg 			 * (so we own it) and set pps[lcv] (so that we exit
    373       1.8      mrg 			 * the while loop).  caller must un-busy.
    374       1.8      mrg 			 */
    375       1.8      mrg 			ptmp->flags |= PG_BUSY;
    376       1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    377       1.8      mrg 			pps[lcv] = ptmp;
    378       1.8      mrg 		}
    379       1.8      mrg 
    380       1.8      mrg 		/*
    381       1.8      mrg 		 * if we own the a valid page at the correct offset, pps[lcv]
    382       1.8      mrg 		 * will point to it.   nothing more to do except go to the
    383       1.8      mrg 		 * next page.
    384       1.8      mrg 		 */
    385       1.8      mrg 
    386       1.8      mrg 		if (pps[lcv])
    387       1.8      mrg 			continue;			/* next lcv */
    388       1.8      mrg 
    389       1.8      mrg 		/*
    390       1.8      mrg 		 * we have a "fake/busy/clean" page that we just allocated.
    391       1.8      mrg 		 * do the needed "i/o" (in this case that means zero it).
    392       1.8      mrg 		 */
    393       1.8      mrg 
    394       1.8      mrg 		uvm_pagezero(ptmp);
    395       1.8      mrg 		ptmp->flags &= ~(PG_FAKE);
    396       1.8      mrg 		pps[lcv] = ptmp;
    397       1.1      mrg 
    398       1.8      mrg 	}	/* lcv loop */
    399       1.1      mrg 
    400       1.8      mrg 	/*
    401       1.8      mrg 	 * finally, unlock object and return.
    402       1.8      mrg 	 */
    403       1.8      mrg 
    404       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    405       1.8      mrg 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    406       1.8      mrg 	return(VM_PAGER_OK);
    407       1.1      mrg }
    408       1.1      mrg 
    409       1.1      mrg /*
    410       1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    411       1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    412       1.1      mrg  *
    413       1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    414       1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    415       1.1      mrg  *    "end" is the end.
    416       1.1      mrg  */
    417       1.1      mrg 
    418       1.8      mrg void
    419       1.8      mrg uvm_km_init(start, end)
    420  1.10.2.1      eeh 	vaddr_t start, end;
    421       1.1      mrg {
    422  1.10.2.1      eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    423       1.1      mrg 
    424       1.8      mrg 	/*
    425       1.8      mrg 	 * first, init kernel memory objects.
    426       1.8      mrg 	 */
    427       1.1      mrg 
    428       1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    429       1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    430       1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    431       1.1      mrg 
    432       1.8      mrg 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    433       1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    434       1.8      mrg 	kmem_object_store.pgops = &km_pager;
    435       1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    436       1.8      mrg 	kmem_object_store.uo_npages = 0;
    437       1.8      mrg 	/* we are special.  we never die */
    438       1.8      mrg 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    439       1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    440       1.8      mrg 
    441       1.8      mrg 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    442       1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    443       1.8      mrg 	mb_object_store.pgops = &km_pager;
    444       1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    445       1.8      mrg 	mb_object_store.uo_npages = 0;
    446       1.8      mrg 	/* we are special.  we never die */
    447       1.8      mrg 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    448       1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    449       1.8      mrg 
    450       1.8      mrg 	/*
    451       1.8      mrg 	 * init the map and reserve allready allocated kernel space
    452       1.8      mrg 	 * before installing.
    453       1.8      mrg 	 */
    454       1.1      mrg 
    455       1.8      mrg 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    456       1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    457       1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    458       1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    459       1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    460       1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    461       1.8      mrg 
    462       1.8      mrg 	/*
    463       1.8      mrg 	 * install!
    464       1.8      mrg 	 */
    465       1.8      mrg 
    466       1.8      mrg 	kernel_map = &kernel_map_store;
    467       1.1      mrg }
    468       1.1      mrg 
    469       1.1      mrg /*
    470       1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    471       1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    472       1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    473       1.1      mrg  *
    474       1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    475       1.5  thorpej  *      by the submap must start
    476       1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    477       1.1      mrg  *	alloc a new map
    478       1.1      mrg  */
    479       1.8      mrg struct vm_map *
    480       1.8      mrg uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    481       1.8      mrg 	struct vm_map *map;
    482  1.10.2.1      eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    483  1.10.2.1      eeh 	vsize_t size;
    484       1.8      mrg 	boolean_t pageable;
    485       1.8      mrg 	boolean_t fixed;
    486       1.8      mrg 	struct vm_map *submap;
    487       1.8      mrg {
    488       1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    489       1.1      mrg 
    490       1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    491       1.1      mrg 
    492       1.8      mrg 	/*
    493       1.8      mrg 	 * first allocate a blank spot in the parent map
    494       1.8      mrg 	 */
    495       1.8      mrg 
    496       1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    497       1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    498       1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    499       1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    500       1.8      mrg 	}
    501       1.8      mrg 
    502       1.8      mrg 	/*
    503       1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    504       1.8      mrg 	 */
    505       1.1      mrg 
    506       1.8      mrg 	*max = *min + size;
    507       1.5  thorpej 
    508       1.8      mrg 	/*
    509       1.8      mrg 	 * add references to pmap and create or init the submap
    510       1.8      mrg 	 */
    511       1.1      mrg 
    512       1.8      mrg 	pmap_reference(vm_map_pmap(map));
    513       1.8      mrg 	if (submap == NULL) {
    514       1.8      mrg 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    515       1.8      mrg 		if (submap == NULL)
    516       1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    517       1.8      mrg 	} else {
    518       1.8      mrg 		uvm_map_setup(submap, *min, *max, pageable);
    519       1.8      mrg 		submap->pmap = vm_map_pmap(map);
    520       1.8      mrg 	}
    521       1.1      mrg 
    522       1.8      mrg 	/*
    523       1.8      mrg 	 * now let uvm_map_submap plug in it...
    524       1.8      mrg 	 */
    525       1.1      mrg 
    526       1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    527       1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    528       1.1      mrg 
    529       1.8      mrg 	return(submap);
    530       1.1      mrg }
    531       1.1      mrg 
    532       1.1      mrg /*
    533       1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    534       1.1      mrg  *
    535       1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    536       1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    537       1.1      mrg  */
    538       1.1      mrg 
    539       1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    540       1.1      mrg 
    541       1.8      mrg void
    542       1.8      mrg uvm_km_pgremove(uobj, start, end)
    543       1.8      mrg 	struct uvm_object *uobj;
    544  1.10.2.1      eeh 	vaddr_t start, end;
    545       1.1      mrg {
    546       1.8      mrg 	boolean_t by_list, is_aobj;
    547       1.8      mrg 	struct vm_page *pp, *ppnext;
    548  1.10.2.1      eeh 	vaddr_t curoff;
    549       1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    550       1.1      mrg 
    551       1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    552       1.1      mrg 
    553       1.8      mrg 	/* is uobj an aobj? */
    554       1.8      mrg 	is_aobj = uobj->pgops == &aobj_pager;
    555       1.3      chs 
    556       1.8      mrg 	/* choose cheapest traversal */
    557       1.8      mrg 	by_list = (uobj->uo_npages <=
    558       1.1      mrg 	     ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
    559       1.1      mrg 
    560       1.8      mrg 	if (by_list)
    561       1.8      mrg 		goto loop_by_list;
    562       1.1      mrg 
    563       1.8      mrg 	/* by hash */
    564       1.1      mrg 
    565       1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    566       1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    567       1.8      mrg 		if (pp == NULL)
    568       1.8      mrg 			continue;
    569       1.8      mrg 
    570       1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    571       1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    572       1.8      mrg 		/* now do the actual work */
    573       1.8      mrg 		if (pp->flags & PG_BUSY)
    574       1.8      mrg 			/* owner must check for this when done */
    575       1.8      mrg 			pp->flags |= PG_RELEASED;
    576       1.8      mrg 		else {
    577       1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    578       1.8      mrg 
    579       1.8      mrg 			/*
    580       1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    581       1.8      mrg 			 */
    582       1.8      mrg 			if (is_aobj) {
    583       1.8      mrg 				int slot = uao_set_swslot(uobj,
    584       1.8      mrg 				    curoff / PAGE_SIZE, 0);
    585       1.8      mrg 
    586       1.8      mrg 				if (slot)
    587       1.8      mrg 					uvm_swap_free(slot, 1);
    588       1.8      mrg 			}
    589       1.8      mrg 
    590       1.8      mrg 			uvm_lock_pageq();
    591       1.8      mrg 			uvm_pagefree(pp);
    592       1.8      mrg 			uvm_unlock_pageq();
    593       1.8      mrg 		}
    594       1.8      mrg 		/* done */
    595       1.8      mrg 
    596       1.8      mrg 	}
    597       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    598       1.8      mrg 	return;
    599       1.1      mrg 
    600       1.1      mrg loop_by_list:
    601       1.1      mrg 
    602       1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    603       1.8      mrg 
    604       1.8      mrg 		ppnext = pp->listq.tqe_next;
    605       1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    606       1.8      mrg 			continue;
    607       1.8      mrg 		}
    608       1.8      mrg 
    609       1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    610       1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    611       1.8      mrg 		/* now do the actual work */
    612       1.8      mrg 		if (pp->flags & PG_BUSY)
    613       1.8      mrg 			/* owner must check for this when done */
    614       1.8      mrg 			pp->flags |= PG_RELEASED;
    615       1.8      mrg 		else {
    616       1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    617       1.8      mrg 
    618       1.8      mrg 			/*
    619       1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    620       1.8      mrg 			 */
    621       1.8      mrg 			if (is_aobj) {
    622       1.8      mrg 				int slot = uao_set_swslot(uobj,
    623       1.8      mrg 				    pp->offset / PAGE_SIZE, 0);
    624       1.8      mrg 
    625       1.8      mrg 				if (slot)
    626       1.8      mrg 					uvm_swap_free(slot, 1);
    627       1.8      mrg 			}
    628       1.8      mrg 
    629       1.8      mrg 			uvm_lock_pageq();
    630       1.8      mrg 			uvm_pagefree(pp);
    631       1.8      mrg 			uvm_unlock_pageq();
    632       1.8      mrg 		}
    633       1.8      mrg 		/* done */
    634       1.1      mrg 
    635       1.8      mrg 	}
    636       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    637       1.8      mrg 	return;
    638       1.1      mrg }
    639       1.1      mrg 
    640       1.1      mrg 
    641       1.1      mrg /*
    642       1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    643       1.1      mrg  *
    644       1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    645       1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    646       1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    647       1.1      mrg  *	this case.
    648       1.1      mrg  * => we return KVA of memory allocated
    649       1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    650       1.1      mrg  *	lock the map
    651       1.1      mrg  */
    652       1.1      mrg 
    653  1.10.2.1      eeh vaddr_t
    654       1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    655       1.8      mrg 	vm_map_t map;
    656       1.8      mrg 	struct uvm_object *obj;
    657  1.10.2.1      eeh 	vsize_t size;
    658       1.8      mrg 	int flags;
    659       1.1      mrg {
    660  1.10.2.1      eeh 	vaddr_t kva, loopva;
    661  1.10.2.1      eeh 	vaddr_t offset;
    662       1.8      mrg 	struct vm_page *pg;
    663       1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    664       1.1      mrg 
    665       1.1      mrg 
    666       1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    667       1.1      mrg 	map, obj, size, flags);
    668       1.1      mrg #ifdef DIAGNOSTIC
    669       1.8      mrg 	/* sanity check */
    670       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    671       1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    672       1.1      mrg #endif
    673       1.1      mrg 
    674       1.8      mrg 	/*
    675       1.8      mrg 	 * setup for call
    676       1.8      mrg 	 */
    677       1.8      mrg 
    678       1.8      mrg 	size = round_page(size);
    679       1.8      mrg 	kva = vm_map_min(map);	/* hint */
    680       1.1      mrg 
    681       1.8      mrg 	/*
    682       1.8      mrg 	 * allocate some virtual space
    683       1.8      mrg 	 */
    684       1.8      mrg 
    685       1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    686       1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    687       1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    688       1.8      mrg 			!= KERN_SUCCESS) {
    689       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    690       1.8      mrg 		return(0);
    691       1.8      mrg 	}
    692       1.8      mrg 
    693       1.8      mrg 	/*
    694       1.8      mrg 	 * if all we wanted was VA, return now
    695       1.8      mrg 	 */
    696       1.8      mrg 
    697       1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    698       1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    699       1.8      mrg 		return(kva);
    700       1.8      mrg 	}
    701       1.8      mrg 	/*
    702       1.8      mrg 	 * recover object offset from virtual address
    703       1.8      mrg 	 */
    704       1.8      mrg 
    705       1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    706       1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    707       1.8      mrg 
    708       1.8      mrg 	/*
    709       1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    710       1.8      mrg 	 * whom should ever get a handle on this area of VM.
    711       1.8      mrg 	 */
    712       1.8      mrg 
    713       1.8      mrg 	loopva = kva;
    714       1.8      mrg 	while (size) {
    715       1.8      mrg 		simple_lock(&obj->vmobjlock);
    716       1.8      mrg 		pg = uvm_pagealloc(obj, offset, NULL);
    717       1.8      mrg 		if (pg) {
    718       1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    719       1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    720       1.8      mrg 		}
    721       1.8      mrg 		simple_unlock(&obj->vmobjlock);
    722       1.8      mrg 
    723       1.8      mrg 		/*
    724       1.8      mrg 		 * out of memory?
    725       1.8      mrg 		 */
    726       1.8      mrg 
    727       1.8      mrg 		if (pg == NULL) {
    728       1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    729       1.8      mrg 				/* free everything! */
    730       1.8      mrg 				uvm_unmap(map, kva, kva + size, 0);
    731       1.8      mrg 				return(0);
    732       1.8      mrg 			} else {
    733       1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    734       1.8      mrg 				continue;
    735       1.8      mrg 			}
    736       1.8      mrg 		}
    737       1.8      mrg 
    738       1.8      mrg 		/*
    739       1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    740       1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    741       1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    742       1.8      mrg 		 * it will need to lock it itself!)
    743       1.8      mrg 		 */
    744       1.1      mrg #if defined(PMAP_NEW)
    745       1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    746       1.1      mrg #else
    747       1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    748       1.8      mrg 		    UVM_PROT_ALL, TRUE);
    749       1.1      mrg #endif
    750       1.8      mrg 		loopva += PAGE_SIZE;
    751       1.8      mrg 		offset += PAGE_SIZE;
    752       1.8      mrg 		size -= PAGE_SIZE;
    753       1.8      mrg 	}
    754       1.1      mrg 
    755       1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    756       1.8      mrg 	return(kva);
    757       1.1      mrg }
    758       1.1      mrg 
    759       1.1      mrg /*
    760       1.1      mrg  * uvm_km_free: free an area of kernel memory
    761       1.1      mrg  */
    762       1.1      mrg 
    763       1.8      mrg void
    764       1.8      mrg uvm_km_free(map, addr, size)
    765       1.8      mrg 	vm_map_t map;
    766  1.10.2.1      eeh 	vaddr_t addr;
    767  1.10.2.1      eeh 	vsize_t size;
    768       1.8      mrg {
    769       1.1      mrg 
    770       1.8      mrg 	uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
    771       1.1      mrg }
    772       1.1      mrg 
    773       1.1      mrg /*
    774       1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    775       1.1      mrg  * anyone waiting for vm space.
    776       1.1      mrg  *
    777       1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    778       1.1      mrg  */
    779       1.1      mrg 
    780       1.8      mrg void
    781       1.8      mrg uvm_km_free_wakeup(map, addr, size)
    782       1.8      mrg 	vm_map_t map;
    783  1.10.2.1      eeh 	vaddr_t addr;
    784  1.10.2.1      eeh 	vsize_t size;
    785       1.1      mrg {
    786       1.8      mrg 	vm_map_entry_t dead_entries;
    787       1.1      mrg 
    788       1.8      mrg 	vm_map_lock(map);
    789       1.8      mrg 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
    790       1.1      mrg 			 &dead_entries);
    791       1.8      mrg 	thread_wakeup(map);
    792       1.8      mrg 	vm_map_unlock(map);
    793       1.1      mrg 
    794       1.8      mrg 	if (dead_entries != NULL)
    795       1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    796       1.1      mrg }
    797       1.1      mrg 
    798       1.1      mrg /*
    799       1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    800       1.1      mrg  *
    801       1.1      mrg  * => we can sleep if needed
    802       1.1      mrg  */
    803       1.1      mrg 
    804  1.10.2.1      eeh vaddr_t
    805       1.8      mrg uvm_km_alloc1(map, size, zeroit)
    806       1.8      mrg 	vm_map_t map;
    807  1.10.2.1      eeh 	vsize_t size;
    808       1.8      mrg 	boolean_t zeroit;
    809       1.1      mrg {
    810  1.10.2.1      eeh 	vaddr_t kva, loopva, offset;
    811       1.8      mrg 	struct vm_page *pg;
    812       1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    813       1.1      mrg 
    814       1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    815       1.1      mrg 
    816       1.1      mrg #ifdef DIAGNOSTIC
    817       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    818       1.8      mrg 		panic("uvm_km_alloc1");
    819       1.1      mrg #endif
    820       1.1      mrg 
    821       1.8      mrg 	size = round_page(size);
    822       1.8      mrg 	kva = vm_map_min(map);		/* hint */
    823       1.1      mrg 
    824       1.8      mrg 	/*
    825       1.8      mrg 	 * allocate some virtual space
    826       1.8      mrg 	 */
    827       1.1      mrg 
    828       1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    829       1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    830       1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    831       1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    832       1.8      mrg 		return(0);
    833       1.8      mrg 	}
    834       1.8      mrg 
    835       1.8      mrg 	/*
    836       1.8      mrg 	 * recover object offset from virtual address
    837       1.8      mrg 	 */
    838       1.8      mrg 
    839       1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    840       1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    841       1.8      mrg 
    842       1.8      mrg 	/*
    843       1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    844       1.8      mrg 	 */
    845       1.8      mrg 
    846       1.8      mrg 	loopva = kva;
    847       1.8      mrg 	while (size) {
    848       1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    849       1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    850       1.8      mrg 
    851       1.8      mrg 		/*
    852       1.8      mrg 		 * if we found a page in an unallocated region, it must be
    853       1.8      mrg 		 * released
    854       1.8      mrg 		 */
    855       1.8      mrg 		if (pg) {
    856       1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    857       1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    858       1.8      mrg 			pg->flags |= PG_WANTED;
    859       1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    860       1.8      mrg 			    0, "km_alloc", 0);
    861       1.8      mrg 			continue;   /* retry */
    862       1.8      mrg 		}
    863       1.8      mrg 
    864       1.8      mrg 		/* allocate ram */
    865       1.8      mrg 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    866       1.8      mrg 		if (pg) {
    867       1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    868       1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    869       1.8      mrg 		}
    870       1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    871       1.8      mrg 		if (pg == NULL) {
    872       1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    873       1.8      mrg 			continue;
    874       1.8      mrg 		}
    875       1.8      mrg 
    876       1.8      mrg 		/* map it in */
    877       1.1      mrg #if defined(PMAP_NEW)
    878       1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    879       1.1      mrg #else
    880       1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    881       1.8      mrg 		    UVM_PROT_ALL, TRUE);
    882       1.1      mrg #endif
    883       1.8      mrg 		loopva += PAGE_SIZE;
    884       1.8      mrg 		offset += PAGE_SIZE;
    885       1.8      mrg 		size -= PAGE_SIZE;
    886       1.8      mrg 	}
    887       1.8      mrg 
    888       1.8      mrg 	/*
    889       1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    890       1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    891       1.8      mrg 	 */
    892       1.1      mrg 
    893       1.8      mrg 	if (zeroit)
    894       1.8      mrg 		bzero((caddr_t)kva, loopva - kva);
    895       1.1      mrg 
    896       1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    897       1.8      mrg 	return(kva);
    898       1.1      mrg }
    899       1.1      mrg 
    900       1.1      mrg /*
    901       1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    902       1.1      mrg  *
    903       1.1      mrg  * => memory is not allocated until fault time
    904       1.1      mrg  */
    905       1.1      mrg 
    906  1.10.2.1      eeh vaddr_t
    907       1.8      mrg uvm_km_valloc(map, size)
    908       1.8      mrg 	vm_map_t map;
    909  1.10.2.1      eeh 	vsize_t size;
    910       1.1      mrg {
    911  1.10.2.1      eeh 	vaddr_t kva;
    912       1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    913       1.1      mrg 
    914       1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    915       1.1      mrg 
    916       1.1      mrg #ifdef DIAGNOSTIC
    917       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    918       1.8      mrg 		panic("uvm_km_valloc");
    919       1.1      mrg #endif
    920       1.1      mrg 
    921       1.8      mrg 	size = round_page(size);
    922       1.8      mrg 	kva = vm_map_min(map);		/* hint */
    923       1.1      mrg 
    924       1.8      mrg 	/*
    925       1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    926       1.8      mrg 	 */
    927       1.1      mrg 
    928       1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    929       1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    930       1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    931       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    932       1.8      mrg 		return(0);
    933       1.8      mrg 	}
    934       1.1      mrg 
    935       1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    936       1.8      mrg 	return(kva);
    937       1.1      mrg }
    938       1.1      mrg 
    939       1.1      mrg /*
    940       1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    941       1.1      mrg  *
    942       1.1      mrg  * => memory is not allocated until fault time
    943       1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    944       1.1      mrg  *    is larger than map (in which case we return 0)
    945       1.1      mrg  */
    946       1.1      mrg 
    947  1.10.2.1      eeh vaddr_t
    948       1.8      mrg uvm_km_valloc_wait(map, size)
    949       1.8      mrg 	vm_map_t map;
    950  1.10.2.1      eeh 	vsize_t size;
    951       1.1      mrg {
    952  1.10.2.1      eeh 	vaddr_t kva;
    953       1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    954       1.1      mrg 
    955       1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    956       1.1      mrg 
    957       1.1      mrg #ifdef DIAGNOSTIC
    958       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    959       1.8      mrg 		panic("uvm_km_valloc_wait");
    960       1.1      mrg #endif
    961       1.1      mrg 
    962       1.8      mrg 	size = round_page(size);
    963       1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    964       1.8      mrg 		return(0);
    965       1.8      mrg 
    966       1.8      mrg 	while (1) {
    967       1.8      mrg 		kva = vm_map_min(map);		/* hint */
    968       1.8      mrg 
    969       1.8      mrg 		/*
    970       1.8      mrg 		 * allocate some virtual space.   will be demand filled
    971       1.8      mrg 		 * by kernel_object.
    972       1.8      mrg 		 */
    973       1.8      mrg 
    974       1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    975       1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    976       1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    977       1.8      mrg 		    == KERN_SUCCESS) {
    978       1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    979       1.8      mrg 			return(kva);
    980       1.8      mrg 		}
    981       1.8      mrg 
    982       1.8      mrg 		/*
    983       1.8      mrg 		 * failed.  sleep for a while (on map)
    984       1.8      mrg 		 */
    985       1.8      mrg 
    986       1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    987       1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    988       1.8      mrg 	}
    989       1.8      mrg 	/*NOTREACHED*/
    990      1.10  thorpej }
    991      1.10  thorpej 
    992      1.10  thorpej /* Sanity; must specify both or none. */
    993      1.10  thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    994      1.10  thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    995      1.10  thorpej #error Must specify MAP and UNMAP together.
    996      1.10  thorpej #endif
    997      1.10  thorpej 
    998      1.10  thorpej /*
    999      1.10  thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
   1000      1.10  thorpej  *
   1001      1.10  thorpej  * => if the pmap specifies an alternate mapping method, we use it.
   1002      1.10  thorpej  */
   1003      1.10  thorpej 
   1004  1.10.2.1      eeh vaddr_t
   1005      1.10  thorpej uvm_km_alloc_poolpage()
   1006      1.10  thorpej {
   1007      1.10  thorpej #if defined(PMAP_MAP_POOLPAGE)
   1008      1.10  thorpej 	struct vm_page *pg;
   1009  1.10.2.1      eeh 	vaddr_t va;
   1010      1.10  thorpej 
   1011      1.10  thorpej 	pg = uvm_pagealloc(NULL, 0, NULL);
   1012      1.10  thorpej 	if (pg == NULL)
   1013      1.10  thorpej 		return (0);
   1014      1.10  thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1015      1.10  thorpej 	if (va == 0)
   1016      1.10  thorpej 		uvm_pagefree(pg);
   1017      1.10  thorpej 	return (va);
   1018      1.10  thorpej #else
   1019  1.10.2.1      eeh 	vaddr_t va;
   1020      1.10  thorpej 	int s;
   1021      1.10  thorpej 
   1022      1.10  thorpej 	s = splimp();
   1023      1.10  thorpej 	va = uvm_km_kmemalloc(kmem_map, uvmexp.kmem_object, PAGE_SIZE,
   1024      1.10  thorpej 	    UVM_KMF_NOWAIT);
   1025      1.10  thorpej 	splx(s);
   1026      1.10  thorpej 	return (va);
   1027      1.10  thorpej #endif /* PMAP_MAP_POOLPAGE */
   1028      1.10  thorpej }
   1029      1.10  thorpej 
   1030      1.10  thorpej /*
   1031      1.10  thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
   1032      1.10  thorpej  *
   1033      1.10  thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
   1034      1.10  thorpej  */
   1035      1.10  thorpej 
   1036      1.10  thorpej void
   1037      1.10  thorpej uvm_km_free_poolpage(addr)
   1038  1.10.2.1      eeh 	vaddr_t addr;
   1039      1.10  thorpej {
   1040      1.10  thorpej #if defined(PMAP_UNMAP_POOLPAGE)
   1041  1.10.2.1      eeh 	paddr_t pa;
   1042      1.10  thorpej 
   1043      1.10  thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1044      1.10  thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1045      1.10  thorpej #else
   1046      1.10  thorpej 	int s;
   1047      1.10  thorpej 
   1048      1.10  thorpej 	s = splimp();
   1049      1.10  thorpej 	uvm_km_free(kmem_map, addr, PAGE_SIZE);
   1050      1.10  thorpej 	splx(s);
   1051      1.10  thorpej #endif /* PMAP_UNMAP_POOLPAGE */
   1052       1.1      mrg }
   1053