uvm_km.c revision 1.101.4.2.4.11 1 1.101.4.2.4.11 matt /* $NetBSD: uvm_km.c,v 1.101.4.2.4.11 2012/04/12 19:38:27 matt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.97 ad * malloc.
94 1.97 ad * mb_map => memory for large mbufs,
95 1.7 chuck * pager_map => used to map "buf" structures into kernel space
96 1.7 chuck * exec_map => used during exec to handle exec args
97 1.7 chuck * etc...
98 1.7 chuck *
99 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
100 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
101 1.7 chuck * are "special" and never die). all kernel objects should be thought of
102 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
103 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
104 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
105 1.7 chuck *
106 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
107 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
108 1.47 chs * large chunks of a kernel object's space go unused either because
109 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
110 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
111 1.7 chuck * objects, the only part of the object that can ever be populated is the
112 1.7 chuck * offsets that are managed by the submap.
113 1.7 chuck *
114 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
115 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
116 1.7 chuck * example:
117 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
118 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
119 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
120 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
121 1.47 chs * mapped at 0xf8235000.
122 1.7 chuck *
123 1.7 chuck * kernel object have one other special property: when the kernel virtual
124 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
125 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
126 1.7 chuck * this has to be done because there is no backing store for kernel pages
127 1.7 chuck * and no need to save them after they are no longer referenced.
128 1.7 chuck */
129 1.55 lukem
130 1.55 lukem #include <sys/cdefs.h>
131 1.101.4.2.4.11 matt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.101.4.2.4.11 2012/04/12 19:38:27 matt Exp $");
132 1.55 lukem
133 1.55 lukem #include "opt_uvmhist.h"
134 1.7 chuck
135 1.1 mrg #include <sys/param.h>
136 1.101.4.2.4.6 matt #include <sys/atomic.h>
137 1.71 yamt #include <sys/malloc.h>
138 1.1 mrg #include <sys/systm.h>
139 1.1 mrg #include <sys/proc.h>
140 1.72 yamt #include <sys/pool.h>
141 1.1 mrg
142 1.1 mrg #include <uvm/uvm.h>
143 1.1 mrg
144 1.1 mrg /*
145 1.1 mrg * global data structures
146 1.1 mrg */
147 1.1 mrg
148 1.49 chs struct vm_map *kernel_map = NULL;
149 1.1 mrg
150 1.1 mrg /*
151 1.1 mrg * local data structues
152 1.1 mrg */
153 1.1 mrg
154 1.71 yamt static struct vm_map_kernel kernel_map_store;
155 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
156 1.1 mrg
157 1.72 yamt #if !defined(PMAP_MAP_POOLPAGE)
158 1.72 yamt
159 1.72 yamt /*
160 1.72 yamt * kva cache
161 1.72 yamt *
162 1.72 yamt * XXX maybe it's better to do this at the uvm_map layer.
163 1.72 yamt */
164 1.72 yamt
165 1.72 yamt #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
166 1.72 yamt
167 1.72 yamt static void *km_vacache_alloc(struct pool *, int);
168 1.72 yamt static void km_vacache_free(struct pool *, void *);
169 1.72 yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
170 1.72 yamt
171 1.72 yamt /* XXX */
172 1.72 yamt #define KM_VACACHE_POOL_TO_MAP(pp) \
173 1.72 yamt ((struct vm_map *)((char *)(pp) - \
174 1.72 yamt offsetof(struct vm_map_kernel, vmk_vacache)))
175 1.72 yamt
176 1.72 yamt static void *
177 1.72 yamt km_vacache_alloc(struct pool *pp, int flags)
178 1.72 yamt {
179 1.72 yamt vaddr_t va;
180 1.72 yamt size_t size;
181 1.72 yamt struct vm_map *map;
182 1.72 yamt size = pp->pr_alloc->pa_pagesz;
183 1.72 yamt
184 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
185 1.72 yamt
186 1.73 yamt va = vm_map_min(map); /* hint */
187 1.72 yamt if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
188 1.74 yamt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
189 1.72 yamt UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
190 1.88 yamt ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
191 1.88 yamt UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192 1.72 yamt return NULL;
193 1.72 yamt
194 1.72 yamt return (void *)va;
195 1.72 yamt }
196 1.72 yamt
197 1.72 yamt static void
198 1.72 yamt km_vacache_free(struct pool *pp, void *v)
199 1.72 yamt {
200 1.72 yamt vaddr_t va = (vaddr_t)v;
201 1.72 yamt size_t size = pp->pr_alloc->pa_pagesz;
202 1.72 yamt struct vm_map *map;
203 1.72 yamt
204 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
205 1.78 yamt uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206 1.72 yamt }
207 1.72 yamt
208 1.72 yamt /*
209 1.72 yamt * km_vacache_init: initialize kva cache.
210 1.72 yamt */
211 1.72 yamt
212 1.72 yamt static void
213 1.72 yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 1.72 yamt {
215 1.72 yamt struct vm_map_kernel *vmk;
216 1.72 yamt struct pool *pp;
217 1.72 yamt struct pool_allocator *pa;
218 1.94 ad int ipl;
219 1.72 yamt
220 1.72 yamt KASSERT(VM_MAP_IS_KERNEL(map));
221 1.72 yamt KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
222 1.72 yamt
223 1.97 ad
224 1.72 yamt vmk = vm_map_to_kernel(map);
225 1.72 yamt pp = &vmk->vmk_vacache;
226 1.72 yamt pa = &vmk->vmk_vacache_allocator;
227 1.72 yamt memset(pa, 0, sizeof(*pa));
228 1.72 yamt pa->pa_alloc = km_vacache_alloc;
229 1.72 yamt pa->pa_free = km_vacache_free;
230 1.72 yamt pa->pa_pagesz = (unsigned int)size;
231 1.88 yamt pa->pa_backingmap = map;
232 1.88 yamt pa->pa_backingmapptr = NULL;
233 1.94 ad
234 1.94 ad if ((map->flags & VM_MAP_INTRSAFE) != 0)
235 1.94 ad ipl = IPL_VM;
236 1.94 ad else
237 1.94 ad ipl = IPL_NONE;
238 1.94 ad
239 1.94 ad pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
240 1.94 ad ipl);
241 1.72 yamt }
242 1.72 yamt
243 1.72 yamt void
244 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
245 1.72 yamt {
246 1.72 yamt
247 1.72 yamt map->flags |= VM_MAP_VACACHE;
248 1.72 yamt if (size == 0)
249 1.72 yamt size = KM_VACACHE_SIZE;
250 1.72 yamt km_vacache_init(map, name, size);
251 1.72 yamt }
252 1.72 yamt
253 1.72 yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
254 1.72 yamt
255 1.72 yamt void
256 1.92 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 1.72 yamt {
258 1.72 yamt
259 1.72 yamt /* nothing */
260 1.72 yamt }
261 1.72 yamt
262 1.72 yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
263 1.72 yamt
264 1.88 yamt void
265 1.92 yamt uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
266 1.88 yamt {
267 1.88 yamt struct vm_map_kernel *vmk = vm_map_to_kernel(map);
268 1.88 yamt
269 1.88 yamt callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
270 1.88 yamt }
271 1.88 yamt
272 1.1 mrg /*
273 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
274 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
275 1.1 mrg *
276 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
277 1.82 christos * we assume that [vmin -> start] has already been allocated and that
278 1.62 thorpej * "end" is the end.
279 1.1 mrg */
280 1.1 mrg
281 1.8 mrg void
282 1.83 thorpej uvm_km_init(vaddr_t start, vaddr_t end)
283 1.1 mrg {
284 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
285 1.27 thorpej
286 1.27 thorpej /*
287 1.27 thorpej * next, init kernel memory objects.
288 1.8 mrg */
289 1.1 mrg
290 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
291 1.34 chs uao_init();
292 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
293 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
294 1.1 mrg
295 1.24 thorpej /*
296 1.56 thorpej * init the map and reserve any space that might already
297 1.56 thorpej * have been allocated kernel space before installing.
298 1.8 mrg */
299 1.1 mrg
300 1.71 yamt uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
301 1.71 yamt kernel_map_store.vmk_map.pmap = pmap_kernel();
302 1.70 yamt if (start != base) {
303 1.70 yamt int error;
304 1.70 yamt struct uvm_map_args args;
305 1.70 yamt
306 1.71 yamt error = uvm_map_prepare(&kernel_map_store.vmk_map,
307 1.71 yamt base, start - base,
308 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
309 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
310 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
311 1.70 yamt if (!error) {
312 1.70 yamt kernel_first_mapent_store.flags =
313 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
314 1.71 yamt error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
315 1.70 yamt &kernel_first_mapent_store);
316 1.70 yamt }
317 1.70 yamt
318 1.70 yamt if (error)
319 1.70 yamt panic(
320 1.70 yamt "uvm_km_init: could not reserve space for kernel");
321 1.70 yamt }
322 1.47 chs
323 1.8 mrg /*
324 1.8 mrg * install!
325 1.8 mrg */
326 1.8 mrg
327 1.71 yamt kernel_map = &kernel_map_store.vmk_map;
328 1.72 yamt uvm_km_vacache_init(kernel_map, "kvakernel", 0);
329 1.1 mrg }
330 1.1 mrg
331 1.1 mrg /*
332 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
333 1.1 mrg * is allocated all references to that area of VM must go through it. this
334 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
335 1.1 mrg *
336 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
337 1.5 thorpej * by the submap must start
338 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
339 1.1 mrg * alloc a new map
340 1.1 mrg */
341 1.78 yamt
342 1.8 mrg struct vm_map *
343 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
344 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
345 1.83 thorpej struct vm_map_kernel *submap)
346 1.8 mrg {
347 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
348 1.1 mrg
349 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
350 1.71 yamt
351 1.8 mrg size = round_page(size); /* round up to pagesize */
352 1.87 yamt size += uvm_mapent_overhead(size, flags);
353 1.1 mrg
354 1.8 mrg /*
355 1.8 mrg * first allocate a blank spot in the parent map
356 1.8 mrg */
357 1.8 mrg
358 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
359 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
360 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
361 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
362 1.8 mrg }
363 1.8 mrg
364 1.8 mrg /*
365 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
366 1.8 mrg */
367 1.1 mrg
368 1.82 christos *vmax = *vmin + size;
369 1.5 thorpej
370 1.8 mrg /*
371 1.8 mrg * add references to pmap and create or init the submap
372 1.8 mrg */
373 1.1 mrg
374 1.8 mrg pmap_reference(vm_map_pmap(map));
375 1.8 mrg if (submap == NULL) {
376 1.71 yamt submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
377 1.8 mrg if (submap == NULL)
378 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
379 1.8 mrg }
380 1.82 christos uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
381 1.71 yamt submap->vmk_map.pmap = vm_map_pmap(map);
382 1.1 mrg
383 1.8 mrg /*
384 1.8 mrg * now let uvm_map_submap plug in it...
385 1.8 mrg */
386 1.1 mrg
387 1.82 christos if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
388 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
389 1.1 mrg
390 1.71 yamt return(&submap->vmk_map);
391 1.1 mrg }
392 1.1 mrg
393 1.1 mrg /*
394 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
395 1.1 mrg *
396 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
397 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
398 1.1 mrg */
399 1.1 mrg
400 1.8 mrg void
401 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
402 1.1 mrg {
403 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
404 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
405 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
406 1.53 chs struct vm_page *pg;
407 1.52 chs voff_t curoff, nextoff;
408 1.53 chs int swpgonlydelta = 0;
409 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
410 1.1 mrg
411 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
412 1.78 yamt KASSERT(startva < endva);
413 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
414 1.78 yamt
415 1.97 ad mutex_enter(&uobj->vmobjlock);
416 1.3 chs
417 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
418 1.52 chs nextoff = curoff + PAGE_SIZE;
419 1.52 chs pg = uvm_pagelookup(uobj, curoff);
420 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
421 1.52 chs pg->flags |= PG_WANTED;
422 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
423 1.52 chs "km_pgrm", 0);
424 1.97 ad mutex_enter(&uobj->vmobjlock);
425 1.52 chs nextoff = curoff;
426 1.8 mrg continue;
427 1.52 chs }
428 1.8 mrg
429 1.52 chs /*
430 1.52 chs * free the swap slot, then the page.
431 1.52 chs */
432 1.8 mrg
433 1.53 chs if (pg == NULL &&
434 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
435 1.53 chs swpgonlydelta++;
436 1.53 chs }
437 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
438 1.53 chs if (pg != NULL) {
439 1.97 ad mutex_enter(&uvm_pageqlock);
440 1.101.4.2.4.8 matt uvm_pagedequeue(pg);
441 1.53 chs uvm_pagefree(pg);
442 1.97 ad mutex_exit(&uvm_pageqlock);
443 1.53 chs }
444 1.8 mrg }
445 1.97 ad mutex_exit(&uobj->vmobjlock);
446 1.8 mrg
447 1.54 chs if (swpgonlydelta > 0) {
448 1.95 ad mutex_enter(&uvm_swap_data_lock);
449 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
450 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
451 1.95 ad mutex_exit(&uvm_swap_data_lock);
452 1.54 chs }
453 1.24 thorpej }
454 1.24 thorpej
455 1.24 thorpej
456 1.24 thorpej /*
457 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
458 1.78 yamt * regions.
459 1.24 thorpej *
460 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
461 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
462 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
463 1.52 chs * be on the active or inactive queues (because they have no object).
464 1.24 thorpej */
465 1.24 thorpej
466 1.24 thorpej void
467 1.101.4.2 snj uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
468 1.24 thorpej {
469 1.52 chs struct vm_page *pg;
470 1.52 chs paddr_t pa;
471 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
472 1.24 thorpej
473 1.101.4.2 snj KASSERT(VM_MAP_IS_KERNEL(map));
474 1.101.4.2 snj KASSERT(vm_map_min(map) <= start);
475 1.78 yamt KASSERT(start < end);
476 1.101.4.2 snj KASSERT(end <= vm_map_max(map));
477 1.78 yamt
478 1.52 chs for (; start < end; start += PAGE_SIZE) {
479 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
480 1.24 thorpej continue;
481 1.40 chs }
482 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
483 1.52 chs KASSERT(pg);
484 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
485 1.101.4.2.4.6 matt uvm_km_pagefree(pg);
486 1.24 thorpej }
487 1.1 mrg }
488 1.1 mrg
489 1.78 yamt #if defined(DEBUG)
490 1.78 yamt void
491 1.101.4.2 snj uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
492 1.78 yamt {
493 1.101.4.2 snj struct vm_page *pg;
494 1.78 yamt vaddr_t va;
495 1.78 yamt paddr_t pa;
496 1.78 yamt
497 1.101.4.2 snj KDASSERT(VM_MAP_IS_KERNEL(map));
498 1.101.4.2 snj KDASSERT(vm_map_min(map) <= start);
499 1.78 yamt KDASSERT(start < end);
500 1.101.4.2 snj KDASSERT(end <= vm_map_max(map));
501 1.78 yamt
502 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
503 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
504 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
505 1.81 simonb (void *)va, (long long)pa);
506 1.78 yamt }
507 1.101.4.2 snj if ((map->flags & VM_MAP_INTRSAFE) == 0) {
508 1.97 ad mutex_enter(&uvm_kernel_object->vmobjlock);
509 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
510 1.78 yamt va - vm_map_min(kernel_map));
511 1.97 ad mutex_exit(&uvm_kernel_object->vmobjlock);
512 1.78 yamt if (pg) {
513 1.78 yamt panic("uvm_km_check_empty: "
514 1.78 yamt "has page hashed at %p", (const void *)va);
515 1.78 yamt }
516 1.78 yamt }
517 1.78 yamt }
518 1.78 yamt }
519 1.78 yamt #endif /* defined(DEBUG) */
520 1.1 mrg
521 1.1 mrg /*
522 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
523 1.1 mrg *
524 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
525 1.1 mrg * free VM space in the map... caller should be prepared to handle
526 1.1 mrg * this case.
527 1.1 mrg * => we return KVA of memory allocated
528 1.1 mrg */
529 1.1 mrg
530 1.14 eeh vaddr_t
531 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
532 1.1 mrg {
533 1.14 eeh vaddr_t kva, loopva;
534 1.14 eeh vaddr_t offset;
535 1.44 thorpej vsize_t loopsize;
536 1.8 mrg struct vm_page *pg;
537 1.78 yamt struct uvm_object *obj;
538 1.78 yamt int pgaflags;
539 1.89 drochner vm_prot_t prot;
540 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
541 1.1 mrg
542 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
543 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
544 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
545 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
546 1.101.4.2.4.4 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
547 1.101.4.2.4.4 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
548 1.1 mrg
549 1.8 mrg /*
550 1.8 mrg * setup for call
551 1.8 mrg */
552 1.8 mrg
553 1.78 yamt kva = vm_map_min(map); /* hint */
554 1.8 mrg size = round_page(size);
555 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
556 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
557 1.78 yamt map, obj, size, flags);
558 1.1 mrg
559 1.8 mrg /*
560 1.8 mrg * allocate some virtual space
561 1.8 mrg */
562 1.8 mrg
563 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
564 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
565 1.78 yamt UVM_ADV_RANDOM,
566 1.101.4.2.4.4 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH))
567 1.78 yamt | UVM_FLAG_QUANTUM)) != 0)) {
568 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
569 1.8 mrg return(0);
570 1.8 mrg }
571 1.8 mrg
572 1.8 mrg /*
573 1.8 mrg * if all we wanted was VA, return now
574 1.8 mrg */
575 1.8 mrg
576 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
577 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
578 1.8 mrg return(kva);
579 1.8 mrg }
580 1.40 chs
581 1.8 mrg /*
582 1.8 mrg * recover object offset from virtual address
583 1.8 mrg */
584 1.8 mrg
585 1.8 mrg offset = kva - vm_map_min(kernel_map);
586 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
587 1.8 mrg
588 1.8 mrg /*
589 1.8 mrg * now allocate and map in the memory... note that we are the only ones
590 1.8 mrg * whom should ever get a handle on this area of VM.
591 1.8 mrg */
592 1.8 mrg
593 1.8 mrg loopva = kva;
594 1.44 thorpej loopsize = size;
595 1.78 yamt
596 1.101.4.2.4.2 matt pgaflags = UVM_FLAG_COLORMATCH;
597 1.101.4.1 snj if (flags & UVM_KMF_NOWAIT)
598 1.101.4.1 snj pgaflags |= UVM_PGA_USERESERVE;
599 1.78 yamt if (flags & UVM_KMF_ZERO)
600 1.78 yamt pgaflags |= UVM_PGA_ZERO;
601 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
602 1.89 drochner if (flags & UVM_KMF_EXEC)
603 1.89 drochner prot |= VM_PROT_EXECUTE;
604 1.44 thorpej while (loopsize) {
605 1.78 yamt KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
606 1.78 yamt
607 1.101.4.2.4.3 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
608 1.101.4.2.4.3 matt #ifdef UVM_KM_VMFREELIST
609 1.101.4.2.4.3 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
610 1.101.4.2.4.3 matt #else
611 1.101.4.2.4.3 matt UVM_PGA_STRAT_NORMAL, 0
612 1.101.4.2.4.3 matt #endif
613 1.101.4.2.4.3 matt );
614 1.47 chs
615 1.8 mrg /*
616 1.8 mrg * out of memory?
617 1.8 mrg */
618 1.8 mrg
619 1.35 thorpej if (__predict_false(pg == NULL)) {
620 1.101.4.2.4.11 matt if ((flags & UVM_KMF_NOWAIT)
621 1.101.4.2.4.11 matt || ((flags & UVM_KMF_CANFAIL)
622 1.101.4.2.4.11 matt && !uvm_reclaimable(
623 1.101.4.2.4.11 matt atop(offset) & uvmexp.colormask, true))) {
624 1.8 mrg /* free everything! */
625 1.78 yamt uvm_km_free(map, kva, size,
626 1.78 yamt flags & UVM_KMF_TYPEMASK);
627 1.58 chs return (0);
628 1.8 mrg } else {
629 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
630 1.8 mrg continue;
631 1.8 mrg }
632 1.8 mrg }
633 1.47 chs
634 1.101.4.2.4.6 matt uvm_km_pageclaim(pg);
635 1.101.4.2.4.6 matt
636 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
637 1.101.4.2.4.9 matt UVM_PAGE_OWN(pg, NULL, NULL);
638 1.78 yamt
639 1.8 mrg /*
640 1.52 chs * map it in
641 1.8 mrg */
642 1.40 chs
643 1.100 matt pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot|PMAP_KMPAGE);
644 1.8 mrg loopva += PAGE_SIZE;
645 1.8 mrg offset += PAGE_SIZE;
646 1.44 thorpej loopsize -= PAGE_SIZE;
647 1.8 mrg }
648 1.69 junyoung
649 1.51 chris pmap_update(pmap_kernel());
650 1.69 junyoung
651 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
652 1.8 mrg return(kva);
653 1.1 mrg }
654 1.1 mrg
655 1.1 mrg /*
656 1.1 mrg * uvm_km_free: free an area of kernel memory
657 1.1 mrg */
658 1.1 mrg
659 1.8 mrg void
660 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
661 1.8 mrg {
662 1.1 mrg
663 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
664 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
665 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
666 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
667 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
668 1.1 mrg
669 1.8 mrg size = round_page(size);
670 1.1 mrg
671 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
672 1.78 yamt uvm_km_pgremove(addr, addr + size);
673 1.78 yamt pmap_remove(pmap_kernel(), addr, addr + size);
674 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
675 1.101.4.2 snj uvm_km_pgremove_intrsafe(map, addr, addr + size);
676 1.78 yamt pmap_kremove(addr, size);
677 1.8 mrg }
678 1.99 yamt
679 1.99 yamt /*
680 1.99 yamt * uvm_unmap_remove calls pmap_update for us.
681 1.99 yamt */
682 1.8 mrg
683 1.78 yamt uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
684 1.66 pk }
685 1.66 pk
686 1.10 thorpej /* Sanity; must specify both or none. */
687 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
688 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
689 1.10 thorpej #error Must specify MAP and UNMAP together.
690 1.10 thorpej #endif
691 1.10 thorpej
692 1.10 thorpej /*
693 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
694 1.10 thorpej *
695 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
696 1.10 thorpej */
697 1.10 thorpej
698 1.11 thorpej /* ARGSUSED */
699 1.14 eeh vaddr_t
700 1.93 thorpej uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
701 1.72 yamt {
702 1.72 yamt #if defined(PMAP_MAP_POOLPAGE)
703 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
704 1.72 yamt #else
705 1.72 yamt struct vm_page *pg;
706 1.72 yamt struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
707 1.72 yamt vaddr_t va;
708 1.72 yamt
709 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0)
710 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
711 1.72 yamt
712 1.72 yamt va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
713 1.72 yamt if (va == 0)
714 1.72 yamt return 0;
715 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
716 1.72 yamt again:
717 1.101.4.1 snj pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
718 1.72 yamt if (__predict_false(pg == NULL)) {
719 1.72 yamt if (waitok) {
720 1.72 yamt uvm_wait("plpg");
721 1.72 yamt goto again;
722 1.72 yamt } else {
723 1.72 yamt pool_put(pp, (void *)va);
724 1.72 yamt return 0;
725 1.72 yamt }
726 1.72 yamt }
727 1.101.4.2.4.6 matt uvm_km_pageclaim(pg);
728 1.100 matt pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
729 1.100 matt VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
730 1.72 yamt pmap_update(pmap_kernel());
731 1.72 yamt
732 1.72 yamt return va;
733 1.72 yamt #endif /* PMAP_MAP_POOLPAGE */
734 1.72 yamt }
735 1.72 yamt
736 1.72 yamt vaddr_t
737 1.93 thorpej uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
738 1.10 thorpej {
739 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
740 1.10 thorpej struct vm_page *pg;
741 1.14 eeh vaddr_t va;
742 1.10 thorpej
743 1.101.4.2.4.1 matt
744 1.15 thorpej again:
745 1.101.4.2.4.1 matt #ifdef PMAP_ALLOC_POOLPAGE
746 1.101.4.2.4.1 matt pg = PMAP_ALLOC_POOLPAGE(waitok ? 0 : UVM_PGA_USERESERVE);
747 1.101.4.2.4.1 matt #else
748 1.101.4.1 snj pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
749 1.101.4.2.4.1 matt #endif
750 1.35 thorpej if (__predict_false(pg == NULL)) {
751 1.15 thorpej if (waitok) {
752 1.15 thorpej uvm_wait("plpg");
753 1.15 thorpej goto again;
754 1.15 thorpej } else
755 1.15 thorpej return (0);
756 1.15 thorpej }
757 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
758 1.101.4.2.4.6 matt if (__predict_false(va == 0)) {
759 1.10 thorpej uvm_pagefree(pg);
760 1.101.4.2.4.6 matt } else {
761 1.101.4.2.4.6 matt uvm_km_pageclaim(pg);
762 1.101.4.2.4.6 matt }
763 1.10 thorpej return (va);
764 1.10 thorpej #else
765 1.14 eeh vaddr_t va;
766 1.16 thorpej
767 1.78 yamt va = uvm_km_alloc(map, PAGE_SIZE, 0,
768 1.78 yamt (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
769 1.10 thorpej return (va);
770 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
771 1.10 thorpej }
772 1.10 thorpej
773 1.10 thorpej /*
774 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
775 1.10 thorpej *
776 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
777 1.10 thorpej */
778 1.10 thorpej
779 1.11 thorpej /* ARGSUSED */
780 1.10 thorpej void
781 1.83 thorpej uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
782 1.72 yamt {
783 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
784 1.78 yamt uvm_km_free_poolpage(map, addr);
785 1.72 yamt #else
786 1.72 yamt struct pool *pp;
787 1.72 yamt
788 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0) {
789 1.78 yamt uvm_km_free_poolpage(map, addr);
790 1.72 yamt return;
791 1.72 yamt }
792 1.72 yamt
793 1.72 yamt KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
794 1.101.4.2 snj uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
795 1.72 yamt pmap_kremove(addr, PAGE_SIZE);
796 1.72 yamt #if defined(DEBUG)
797 1.72 yamt pmap_update(pmap_kernel());
798 1.72 yamt #endif
799 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
800 1.72 yamt pp = &vm_map_to_kernel(map)->vmk_vacache;
801 1.72 yamt pool_put(pp, (void *)addr);
802 1.72 yamt #endif
803 1.72 yamt }
804 1.72 yamt
805 1.72 yamt /* ARGSUSED */
806 1.72 yamt void
807 1.83 thorpej uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
808 1.10 thorpej {
809 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
810 1.101.4.2.4.6 matt paddr_t pa = PMAP_UNMAP_POOLPAGE(addr);
811 1.101.4.2.4.6 matt struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
812 1.101.4.2.4.6 matt uvm_km_pagefree(pg);
813 1.10 thorpej #else
814 1.78 yamt uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
815 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
816 1.1 mrg }
817 1.101.4.2.4.6 matt
818 1.101.4.2.4.6 matt void
819 1.101.4.2.4.6 matt uvm_km_pageclaim(struct vm_page *pg)
820 1.101.4.2.4.6 matt {
821 1.101.4.2.4.7 matt KASSERT(!(pg->pqflags & (PQ_PRIVATE1|PQ_PRIVATE2)));
822 1.101.4.2.4.6 matt atomic_inc_uint(&uvm_page_to_pggroup(pg)->pgrp_kmempages);
823 1.101.4.2.4.7 matt TAILQ_INSERT_TAIL(&uvm.kmem_pageq, pg, pageq.queue);
824 1.101.4.2.4.6 matt }
825 1.101.4.2.4.6 matt
826 1.101.4.2.4.6 matt void
827 1.101.4.2.4.6 matt uvm_km_pagefree(struct vm_page *pg)
828 1.101.4.2.4.6 matt {
829 1.101.4.2.4.7 matt KASSERT(!(pg->pqflags & (PQ_PRIVATE1|PQ_PRIVATE2)));
830 1.101.4.2.4.6 matt atomic_dec_uint(&uvm_page_to_pggroup(pg)->pgrp_kmempages);
831 1.101.4.2.4.7 matt TAILQ_REMOVE(&uvm.kmem_pageq, pg, pageq.queue);
832 1.101.4.2.4.6 matt uvm_pagefree(pg);
833 1.101.4.2.4.6 matt }
834