uvm_km.c revision 1.112 1 1.112 para /* $NetBSD: uvm_km.c,v 1.112 2012/01/27 19:48:41 para Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.7 chuck * the vm system has several standard kernel submaps, including:
87 1.7 chuck * pager_map => used to map "buf" structures into kernel space
88 1.7 chuck * exec_map => used during exec to handle exec args
89 1.7 chuck * etc...
90 1.7 chuck *
91 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
92 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 1.7 chuck * are "special" and never die). all kernel objects should be thought of
94 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
96 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 1.7 chuck *
98 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
99 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
100 1.47 chs * large chunks of a kernel object's space go unused either because
101 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
102 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
103 1.7 chuck * objects, the only part of the object that can ever be populated is the
104 1.7 chuck * offsets that are managed by the submap.
105 1.7 chuck *
106 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
107 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 1.7 chuck * example:
109 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
113 1.47 chs * mapped at 0xf8235000.
114 1.7 chuck *
115 1.7 chuck * kernel object have one other special property: when the kernel virtual
116 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
117 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
118 1.7 chuck * this has to be done because there is no backing store for kernel pages
119 1.7 chuck * and no need to save them after they are no longer referenced.
120 1.7 chuck */
121 1.55 lukem
122 1.55 lukem #include <sys/cdefs.h>
123 1.112 para __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.112 2012/01/27 19:48:41 para Exp $");
124 1.55 lukem
125 1.55 lukem #include "opt_uvmhist.h"
126 1.7 chuck
127 1.1 mrg #include <sys/param.h>
128 1.1 mrg #include <sys/systm.h>
129 1.1 mrg #include <sys/proc.h>
130 1.72 yamt #include <sys/pool.h>
131 1.112 para #include <sys/vmem.h>
132 1.112 para #include <sys/kmem.h>
133 1.1 mrg
134 1.1 mrg #include <uvm/uvm.h>
135 1.1 mrg
136 1.1 mrg /*
137 1.1 mrg * global data structures
138 1.1 mrg */
139 1.1 mrg
140 1.49 chs struct vm_map *kernel_map = NULL;
141 1.1 mrg
142 1.1 mrg /*
143 1.1 mrg * local data structues
144 1.1 mrg */
145 1.1 mrg
146 1.112 para static struct vm_map kernel_map_store;
147 1.112 para static struct vm_map_entry kernel_image_mapent_store;
148 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
149 1.1 mrg
150 1.112 para vaddr_t kmembase;
151 1.112 para vsize_t kmemsize;
152 1.72 yamt
153 1.112 para vmem_t *kmem_arena;
154 1.112 para vmem_t *kmem_va_arena;
155 1.72 yamt
156 1.72 yamt /*
157 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
158 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
159 1.1 mrg *
160 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 1.82 christos * we assume that [vmin -> start] has already been allocated and that
162 1.62 thorpej * "end" is the end.
163 1.1 mrg */
164 1.1 mrg
165 1.8 mrg void
166 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
167 1.1 mrg {
168 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
169 1.27 thorpej
170 1.112 para kmemsize = MIN(((((vsize_t)(end - start)) / 3) * 2),
171 1.112 para ((((vsize_t)uvmexp.npages) * PAGE_SIZE) / 3));
172 1.112 para kmemsize = round_page(kmemsize);
173 1.112 para
174 1.27 thorpej /*
175 1.27 thorpej * next, init kernel memory objects.
176 1.8 mrg */
177 1.1 mrg
178 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
179 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
180 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
181 1.1 mrg
182 1.24 thorpej /*
183 1.56 thorpej * init the map and reserve any space that might already
184 1.56 thorpej * have been allocated kernel space before installing.
185 1.8 mrg */
186 1.1 mrg
187 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
188 1.112 para kernel_map_store.pmap = pmap_kernel();
189 1.70 yamt if (start != base) {
190 1.70 yamt int error;
191 1.70 yamt struct uvm_map_args args;
192 1.70 yamt
193 1.112 para error = uvm_map_prepare(&kernel_map_store,
194 1.71 yamt base, start - base,
195 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
196 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
197 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
198 1.70 yamt if (!error) {
199 1.112 para kernel_image_mapent_store.flags =
200 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
201 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
202 1.112 para &kernel_image_mapent_store);
203 1.70 yamt }
204 1.70 yamt
205 1.70 yamt if (error)
206 1.70 yamt panic(
207 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
208 1.112 para
209 1.112 para kmembase = args.uma_start + args.uma_size;
210 1.112 para error = uvm_map_prepare(&kernel_map_store,
211 1.112 para kmembase, kmemsize,
212 1.112 para NULL, UVM_UNKNOWN_OFFSET, 0,
213 1.112 para UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
214 1.112 para UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
215 1.112 para if (!error) {
216 1.112 para kernel_kmem_mapent_store.flags =
217 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
218 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
219 1.112 para &kernel_kmem_mapent_store);
220 1.112 para }
221 1.112 para
222 1.112 para if (error)
223 1.112 para panic(
224 1.112 para "uvm_km_bootstrap: could not reserve kernel kmem");
225 1.70 yamt }
226 1.47 chs
227 1.8 mrg /*
228 1.8 mrg * install!
229 1.8 mrg */
230 1.8 mrg
231 1.112 para kernel_map = &kernel_map_store;
232 1.112 para
233 1.112 para pool_subsystem_init();
234 1.112 para vmem_bootstrap();
235 1.112 para
236 1.112 para kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
237 1.112 para NULL, NULL, NULL,
238 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
239 1.112 para
240 1.112 para vmem_init(kmem_arena);
241 1.112 para
242 1.112 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
243 1.112 para vmem_alloc, vmem_free, kmem_arena,
244 1.112 para 16 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
245 1.112 para }
246 1.112 para
247 1.112 para /*
248 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
249 1.112 para * and start the pool/kmem allocator.
250 1.112 para */
251 1.112 para void
252 1.112 para uvm_km_init(void)
253 1.112 para {
254 1.112 para
255 1.112 para kmem_init();
256 1.112 para
257 1.112 para kmeminit(); // killme
258 1.1 mrg }
259 1.1 mrg
260 1.1 mrg /*
261 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
262 1.1 mrg * is allocated all references to that area of VM must go through it. this
263 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
264 1.1 mrg *
265 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
266 1.112 para * pager_map => used to map "buf" structures into kernel space
267 1.5 thorpej * by the submap must start
268 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
269 1.1 mrg * alloc a new map
270 1.1 mrg */
271 1.78 yamt
272 1.8 mrg struct vm_map *
273 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
274 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
275 1.112 para struct vm_map *submap)
276 1.8 mrg {
277 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
278 1.1 mrg
279 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
280 1.71 yamt
281 1.8 mrg size = round_page(size); /* round up to pagesize */
282 1.1 mrg
283 1.8 mrg /*
284 1.8 mrg * first allocate a blank spot in the parent map
285 1.8 mrg */
286 1.8 mrg
287 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
288 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
289 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
290 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
291 1.8 mrg }
292 1.8 mrg
293 1.8 mrg /*
294 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
295 1.8 mrg */
296 1.1 mrg
297 1.82 christos *vmax = *vmin + size;
298 1.5 thorpej
299 1.8 mrg /*
300 1.8 mrg * add references to pmap and create or init the submap
301 1.8 mrg */
302 1.1 mrg
303 1.8 mrg pmap_reference(vm_map_pmap(map));
304 1.8 mrg if (submap == NULL) {
305 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
306 1.8 mrg if (submap == NULL)
307 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
308 1.8 mrg }
309 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
310 1.112 para submap->pmap = vm_map_pmap(map);
311 1.1 mrg
312 1.8 mrg /*
313 1.8 mrg * now let uvm_map_submap plug in it...
314 1.8 mrg */
315 1.1 mrg
316 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
317 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
318 1.1 mrg
319 1.112 para return(submap);
320 1.1 mrg }
321 1.1 mrg
322 1.1 mrg /*
323 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
324 1.1 mrg */
325 1.1 mrg
326 1.8 mrg void
327 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
328 1.1 mrg {
329 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
330 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
331 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
332 1.53 chs struct vm_page *pg;
333 1.52 chs voff_t curoff, nextoff;
334 1.53 chs int swpgonlydelta = 0;
335 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
336 1.1 mrg
337 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
338 1.78 yamt KASSERT(startva < endva);
339 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
340 1.78 yamt
341 1.109 rmind mutex_enter(uobj->vmobjlock);
342 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
343 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
344 1.52 chs nextoff = curoff + PAGE_SIZE;
345 1.52 chs pg = uvm_pagelookup(uobj, curoff);
346 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
347 1.52 chs pg->flags |= PG_WANTED;
348 1.109 rmind UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
349 1.52 chs "km_pgrm", 0);
350 1.109 rmind mutex_enter(uobj->vmobjlock);
351 1.52 chs nextoff = curoff;
352 1.8 mrg continue;
353 1.52 chs }
354 1.8 mrg
355 1.52 chs /*
356 1.52 chs * free the swap slot, then the page.
357 1.52 chs */
358 1.8 mrg
359 1.53 chs if (pg == NULL &&
360 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
361 1.53 chs swpgonlydelta++;
362 1.53 chs }
363 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
364 1.53 chs if (pg != NULL) {
365 1.97 ad mutex_enter(&uvm_pageqlock);
366 1.53 chs uvm_pagefree(pg);
367 1.97 ad mutex_exit(&uvm_pageqlock);
368 1.53 chs }
369 1.8 mrg }
370 1.109 rmind mutex_exit(uobj->vmobjlock);
371 1.8 mrg
372 1.54 chs if (swpgonlydelta > 0) {
373 1.95 ad mutex_enter(&uvm_swap_data_lock);
374 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
375 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
376 1.95 ad mutex_exit(&uvm_swap_data_lock);
377 1.54 chs }
378 1.24 thorpej }
379 1.24 thorpej
380 1.24 thorpej
381 1.24 thorpej /*
382 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
383 1.78 yamt * regions.
384 1.24 thorpej *
385 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
386 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
387 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
388 1.52 chs * be on the active or inactive queues (because they have no object).
389 1.24 thorpej */
390 1.24 thorpej
391 1.24 thorpej void
392 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
393 1.24 thorpej {
394 1.52 chs struct vm_page *pg;
395 1.52 chs paddr_t pa;
396 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
397 1.24 thorpej
398 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
399 1.102 ad KASSERT(vm_map_min(map) <= start);
400 1.78 yamt KASSERT(start < end);
401 1.102 ad KASSERT(end <= vm_map_max(map));
402 1.78 yamt
403 1.52 chs for (; start < end; start += PAGE_SIZE) {
404 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
405 1.24 thorpej continue;
406 1.40 chs }
407 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
408 1.52 chs KASSERT(pg);
409 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
410 1.110 yamt KASSERT((pg->flags & PG_BUSY) == 0);
411 1.52 chs uvm_pagefree(pg);
412 1.24 thorpej }
413 1.1 mrg }
414 1.1 mrg
415 1.78 yamt #if defined(DEBUG)
416 1.78 yamt void
417 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
418 1.78 yamt {
419 1.102 ad struct vm_page *pg;
420 1.78 yamt vaddr_t va;
421 1.78 yamt paddr_t pa;
422 1.78 yamt
423 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
424 1.102 ad KDASSERT(vm_map_min(map) <= start);
425 1.78 yamt KDASSERT(start < end);
426 1.102 ad KDASSERT(end <= vm_map_max(map));
427 1.78 yamt
428 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
429 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
430 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
431 1.81 simonb (void *)va, (long long)pa);
432 1.78 yamt }
433 1.102 ad if ((map->flags & VM_MAP_INTRSAFE) == 0) {
434 1.109 rmind mutex_enter(uvm_kernel_object->vmobjlock);
435 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
436 1.78 yamt va - vm_map_min(kernel_map));
437 1.109 rmind mutex_exit(uvm_kernel_object->vmobjlock);
438 1.78 yamt if (pg) {
439 1.78 yamt panic("uvm_km_check_empty: "
440 1.78 yamt "has page hashed at %p", (const void *)va);
441 1.78 yamt }
442 1.78 yamt }
443 1.78 yamt }
444 1.78 yamt }
445 1.78 yamt #endif /* defined(DEBUG) */
446 1.1 mrg
447 1.1 mrg /*
448 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
449 1.1 mrg *
450 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
451 1.1 mrg * free VM space in the map... caller should be prepared to handle
452 1.1 mrg * this case.
453 1.1 mrg * => we return KVA of memory allocated
454 1.1 mrg */
455 1.1 mrg
456 1.14 eeh vaddr_t
457 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
458 1.1 mrg {
459 1.14 eeh vaddr_t kva, loopva;
460 1.14 eeh vaddr_t offset;
461 1.44 thorpej vsize_t loopsize;
462 1.8 mrg struct vm_page *pg;
463 1.78 yamt struct uvm_object *obj;
464 1.78 yamt int pgaflags;
465 1.89 drochner vm_prot_t prot;
466 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
467 1.1 mrg
468 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
469 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
470 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
471 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
472 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
473 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
474 1.1 mrg
475 1.8 mrg /*
476 1.8 mrg * setup for call
477 1.8 mrg */
478 1.8 mrg
479 1.78 yamt kva = vm_map_min(map); /* hint */
480 1.8 mrg size = round_page(size);
481 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
482 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
483 1.78 yamt map, obj, size, flags);
484 1.1 mrg
485 1.8 mrg /*
486 1.8 mrg * allocate some virtual space
487 1.8 mrg */
488 1.8 mrg
489 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
490 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
491 1.78 yamt UVM_ADV_RANDOM,
492 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
493 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
494 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
495 1.8 mrg return(0);
496 1.8 mrg }
497 1.8 mrg
498 1.8 mrg /*
499 1.8 mrg * if all we wanted was VA, return now
500 1.8 mrg */
501 1.8 mrg
502 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
503 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
504 1.8 mrg return(kva);
505 1.8 mrg }
506 1.40 chs
507 1.8 mrg /*
508 1.8 mrg * recover object offset from virtual address
509 1.8 mrg */
510 1.8 mrg
511 1.8 mrg offset = kva - vm_map_min(kernel_map);
512 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
513 1.8 mrg
514 1.8 mrg /*
515 1.8 mrg * now allocate and map in the memory... note that we are the only ones
516 1.8 mrg * whom should ever get a handle on this area of VM.
517 1.8 mrg */
518 1.8 mrg
519 1.8 mrg loopva = kva;
520 1.44 thorpej loopsize = size;
521 1.78 yamt
522 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
523 1.103 ad if (flags & UVM_KMF_NOWAIT)
524 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
525 1.78 yamt if (flags & UVM_KMF_ZERO)
526 1.78 yamt pgaflags |= UVM_PGA_ZERO;
527 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
528 1.89 drochner if (flags & UVM_KMF_EXEC)
529 1.89 drochner prot |= VM_PROT_EXECUTE;
530 1.44 thorpej while (loopsize) {
531 1.78 yamt KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
532 1.78 yamt
533 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
534 1.107 matt #ifdef UVM_KM_VMFREELIST
535 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
536 1.107 matt #else
537 1.107 matt UVM_PGA_STRAT_NORMAL, 0
538 1.107 matt #endif
539 1.107 matt );
540 1.47 chs
541 1.8 mrg /*
542 1.8 mrg * out of memory?
543 1.8 mrg */
544 1.8 mrg
545 1.35 thorpej if (__predict_false(pg == NULL)) {
546 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
547 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
548 1.8 mrg /* free everything! */
549 1.78 yamt uvm_km_free(map, kva, size,
550 1.78 yamt flags & UVM_KMF_TYPEMASK);
551 1.58 chs return (0);
552 1.8 mrg } else {
553 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
554 1.8 mrg continue;
555 1.8 mrg }
556 1.8 mrg }
557 1.47 chs
558 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
559 1.78 yamt UVM_PAGE_OWN(pg, NULL);
560 1.78 yamt
561 1.8 mrg /*
562 1.52 chs * map it in
563 1.8 mrg */
564 1.40 chs
565 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
566 1.106 cegger prot, PMAP_KMPAGE);
567 1.8 mrg loopva += PAGE_SIZE;
568 1.8 mrg offset += PAGE_SIZE;
569 1.44 thorpej loopsize -= PAGE_SIZE;
570 1.8 mrg }
571 1.69 junyoung
572 1.112 para pmap_update(pmap_kernel());
573 1.69 junyoung
574 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
575 1.8 mrg return(kva);
576 1.1 mrg }
577 1.1 mrg
578 1.1 mrg /*
579 1.1 mrg * uvm_km_free: free an area of kernel memory
580 1.1 mrg */
581 1.1 mrg
582 1.8 mrg void
583 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
584 1.8 mrg {
585 1.1 mrg
586 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
587 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
588 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
589 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
590 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
591 1.1 mrg
592 1.8 mrg size = round_page(size);
593 1.1 mrg
594 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
595 1.78 yamt uvm_km_pgremove(addr, addr + size);
596 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
597 1.109 rmind /*
598 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
599 1.109 rmind * remove it after. See comment below about KVA visibility.
600 1.109 rmind */
601 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
602 1.78 yamt pmap_kremove(addr, size);
603 1.8 mrg }
604 1.99 yamt
605 1.99 yamt /*
606 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
607 1.109 rmind * KVA becomes globally available.
608 1.99 yamt */
609 1.8 mrg
610 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
611 1.66 pk }
612 1.66 pk
613 1.10 thorpej /* Sanity; must specify both or none. */
614 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
615 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
616 1.10 thorpej #error Must specify MAP and UNMAP together.
617 1.10 thorpej #endif
618 1.10 thorpej
619 1.112 para int
620 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
621 1.112 para vmem_addr_t *addr)
622 1.72 yamt {
623 1.72 yamt struct vm_page *pg;
624 1.112 para vmem_addr_t va;
625 1.112 para int rc;
626 1.112 para vaddr_t loopva;
627 1.112 para vsize_t loopsize;
628 1.72 yamt
629 1.112 para size = round_page(size);
630 1.72 yamt
631 1.112 para #if defined(PMAP_MAP_POOLPAGE)
632 1.112 para if (size == PAGE_SIZE) {
633 1.72 yamt again:
634 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
635 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
636 1.112 para 0 : UVM_PGA_USERESERVE);
637 1.112 para #else
638 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
639 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
640 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
641 1.112 para if (__predict_false(pg == NULL)) {
642 1.112 para if (flags & VM_SLEEP) {
643 1.112 para uvm_wait("plpg");
644 1.112 para goto again;
645 1.112 para }
646 1.112 para }
647 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
648 1.112 para if (__predict_false(va == 0)) {
649 1.112 para uvm_pagefree(pg);
650 1.112 para return ENOMEM;
651 1.72 yamt }
652 1.112 para *addr = va;
653 1.112 para return 0;
654 1.72 yamt }
655 1.112 para #endif /* PMAP_MAP_POOLPAGE */
656 1.112 para
657 1.112 para rc = vmem_alloc(vm, size, flags, &va);
658 1.112 para if (rc != 0)
659 1.112 para return rc;
660 1.72 yamt
661 1.112 para loopva = va;
662 1.112 para loopsize = size;
663 1.72 yamt
664 1.112 para while (loopsize) {
665 1.112 para KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
666 1.10 thorpej
667 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
668 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
669 1.112 para if (__predict_false(pg == NULL)) {
670 1.112 para if (flags & VM_SLEEP) {
671 1.112 para uvm_wait("plpg");
672 1.112 para continue;
673 1.112 para } else {
674 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
675 1.112 para va + size);
676 1.112 para pmap_kremove(va, size);
677 1.112 para vmem_free(kmem_va_arena, va, size);
678 1.112 para return ENOMEM;
679 1.112 para }
680 1.112 para }
681 1.112 para
682 1.112 para pg->flags &= ~PG_BUSY; /* new page */
683 1.112 para UVM_PAGE_OWN(pg, NULL);
684 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
685 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
686 1.107 matt
687 1.112 para loopva += PAGE_SIZE;
688 1.112 para loopsize -= PAGE_SIZE;
689 1.15 thorpej }
690 1.112 para pmap_update(pmap_kernel());
691 1.112 para
692 1.112 para *addr = va;
693 1.16 thorpej
694 1.112 para return 0;
695 1.10 thorpej }
696 1.10 thorpej
697 1.10 thorpej void
698 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
699 1.72 yamt {
700 1.112 para
701 1.112 para size = round_page(size);
702 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
703 1.112 para if (size == PAGE_SIZE) {
704 1.112 para paddr_t pa;
705 1.72 yamt
706 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
707 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
708 1.72 yamt return;
709 1.72 yamt }
710 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
711 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
712 1.112 para pmap_kremove(addr, size);
713 1.112 para pmap_update(pmap_kernel());
714 1.72 yamt
715 1.112 para vmem_free(vm, addr, size);
716 1.72 yamt }
717 1.72 yamt
718 1.112 para bool
719 1.112 para uvm_km_va_starved_p(void)
720 1.10 thorpej {
721 1.112 para vmem_size_t total;
722 1.112 para vmem_size_t free;
723 1.112 para
724 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
725 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
726 1.10 thorpej
727 1.112 para return (free < (total / 10));
728 1.1 mrg }
729 1.112 para
730