uvm_km.c revision 1.116 1 1.116 para /* $NetBSD: uvm_km.c,v 1.116 2012/02/01 23:43:49 para Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.7 chuck * the vm system has several standard kernel submaps, including:
87 1.7 chuck * pager_map => used to map "buf" structures into kernel space
88 1.7 chuck * exec_map => used during exec to handle exec args
89 1.7 chuck * etc...
90 1.7 chuck *
91 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
92 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 1.7 chuck * are "special" and never die). all kernel objects should be thought of
94 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
96 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 1.7 chuck *
98 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
99 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
100 1.47 chs * large chunks of a kernel object's space go unused either because
101 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
102 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
103 1.7 chuck * objects, the only part of the object that can ever be populated is the
104 1.7 chuck * offsets that are managed by the submap.
105 1.7 chuck *
106 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
107 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 1.7 chuck * example:
109 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
113 1.47 chs * mapped at 0xf8235000.
114 1.7 chuck *
115 1.7 chuck * kernel object have one other special property: when the kernel virtual
116 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
117 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
118 1.7 chuck * this has to be done because there is no backing store for kernel pages
119 1.7 chuck * and no need to save them after they are no longer referenced.
120 1.7 chuck */
121 1.55 lukem
122 1.55 lukem #include <sys/cdefs.h>
123 1.116 para __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.116 2012/02/01 23:43:49 para Exp $");
124 1.55 lukem
125 1.55 lukem #include "opt_uvmhist.h"
126 1.7 chuck
127 1.1 mrg #include <sys/param.h>
128 1.1 mrg #include <sys/systm.h>
129 1.1 mrg #include <sys/proc.h>
130 1.72 yamt #include <sys/pool.h>
131 1.112 para #include <sys/vmem.h>
132 1.112 para #include <sys/kmem.h>
133 1.1 mrg
134 1.1 mrg #include <uvm/uvm.h>
135 1.1 mrg
136 1.1 mrg /*
137 1.1 mrg * global data structures
138 1.1 mrg */
139 1.1 mrg
140 1.49 chs struct vm_map *kernel_map = NULL;
141 1.1 mrg
142 1.1 mrg /*
143 1.1 mrg * local data structues
144 1.1 mrg */
145 1.1 mrg
146 1.112 para static struct vm_map kernel_map_store;
147 1.112 para static struct vm_map_entry kernel_image_mapent_store;
148 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
149 1.1 mrg
150 1.112 para vaddr_t kmembase;
151 1.112 para vsize_t kmemsize;
152 1.72 yamt
153 1.112 para vmem_t *kmem_arena;
154 1.112 para vmem_t *kmem_va_arena;
155 1.72 yamt
156 1.72 yamt /*
157 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
158 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
159 1.1 mrg *
160 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 1.82 christos * we assume that [vmin -> start] has already been allocated and that
162 1.62 thorpej * "end" is the end.
163 1.1 mrg */
164 1.1 mrg
165 1.8 mrg void
166 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
167 1.1 mrg {
168 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
169 1.27 thorpej
170 1.116 para kmemsize = MIN((((vsize_t)(end - start)) / 3),
171 1.116 para ((((vsize_t)uvmexp.npages) * PAGE_SIZE) / 2));
172 1.112 para kmemsize = round_page(kmemsize);
173 1.112 para
174 1.27 thorpej /*
175 1.27 thorpej * next, init kernel memory objects.
176 1.8 mrg */
177 1.1 mrg
178 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
179 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
180 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
181 1.1 mrg
182 1.24 thorpej /*
183 1.56 thorpej * init the map and reserve any space that might already
184 1.56 thorpej * have been allocated kernel space before installing.
185 1.8 mrg */
186 1.1 mrg
187 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
188 1.112 para kernel_map_store.pmap = pmap_kernel();
189 1.70 yamt if (start != base) {
190 1.70 yamt int error;
191 1.70 yamt struct uvm_map_args args;
192 1.70 yamt
193 1.112 para error = uvm_map_prepare(&kernel_map_store,
194 1.71 yamt base, start - base,
195 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
196 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
197 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
198 1.70 yamt if (!error) {
199 1.112 para kernel_image_mapent_store.flags =
200 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
201 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
202 1.112 para &kernel_image_mapent_store);
203 1.70 yamt }
204 1.70 yamt
205 1.70 yamt if (error)
206 1.70 yamt panic(
207 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
208 1.112 para
209 1.112 para kmembase = args.uma_start + args.uma_size;
210 1.112 para error = uvm_map_prepare(&kernel_map_store,
211 1.112 para kmembase, kmemsize,
212 1.112 para NULL, UVM_UNKNOWN_OFFSET, 0,
213 1.112 para UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
214 1.112 para UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
215 1.112 para if (!error) {
216 1.112 para kernel_kmem_mapent_store.flags =
217 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
218 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
219 1.112 para &kernel_kmem_mapent_store);
220 1.112 para }
221 1.112 para
222 1.112 para if (error)
223 1.112 para panic(
224 1.112 para "uvm_km_bootstrap: could not reserve kernel kmem");
225 1.114 matt } else {
226 1.114 matt kmembase = base;
227 1.70 yamt }
228 1.47 chs
229 1.8 mrg /*
230 1.8 mrg * install!
231 1.8 mrg */
232 1.8 mrg
233 1.112 para kernel_map = &kernel_map_store;
234 1.112 para
235 1.112 para pool_subsystem_init();
236 1.112 para vmem_bootstrap();
237 1.112 para
238 1.112 para kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
239 1.112 para NULL, NULL, NULL,
240 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
241 1.112 para
242 1.112 para vmem_init(kmem_arena);
243 1.112 para
244 1.112 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
245 1.112 para vmem_alloc, vmem_free, kmem_arena,
246 1.112 para 16 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
247 1.112 para }
248 1.112 para
249 1.112 para /*
250 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
251 1.112 para * and start the pool/kmem allocator.
252 1.112 para */
253 1.112 para void
254 1.112 para uvm_km_init(void)
255 1.112 para {
256 1.112 para
257 1.112 para kmem_init();
258 1.112 para
259 1.112 para kmeminit(); // killme
260 1.1 mrg }
261 1.1 mrg
262 1.1 mrg /*
263 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
264 1.1 mrg * is allocated all references to that area of VM must go through it. this
265 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
266 1.1 mrg *
267 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
268 1.112 para * pager_map => used to map "buf" structures into kernel space
269 1.5 thorpej * by the submap must start
270 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
271 1.1 mrg * alloc a new map
272 1.1 mrg */
273 1.78 yamt
274 1.8 mrg struct vm_map *
275 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
276 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
277 1.112 para struct vm_map *submap)
278 1.8 mrg {
279 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
280 1.1 mrg
281 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
282 1.71 yamt
283 1.8 mrg size = round_page(size); /* round up to pagesize */
284 1.1 mrg
285 1.8 mrg /*
286 1.8 mrg * first allocate a blank spot in the parent map
287 1.8 mrg */
288 1.8 mrg
289 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
290 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
291 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
292 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
293 1.8 mrg }
294 1.8 mrg
295 1.8 mrg /*
296 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
297 1.8 mrg */
298 1.1 mrg
299 1.82 christos *vmax = *vmin + size;
300 1.5 thorpej
301 1.8 mrg /*
302 1.8 mrg * add references to pmap and create or init the submap
303 1.8 mrg */
304 1.1 mrg
305 1.8 mrg pmap_reference(vm_map_pmap(map));
306 1.8 mrg if (submap == NULL) {
307 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
308 1.8 mrg if (submap == NULL)
309 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
310 1.8 mrg }
311 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
312 1.112 para submap->pmap = vm_map_pmap(map);
313 1.1 mrg
314 1.8 mrg /*
315 1.8 mrg * now let uvm_map_submap plug in it...
316 1.8 mrg */
317 1.1 mrg
318 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
319 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
320 1.1 mrg
321 1.112 para return(submap);
322 1.1 mrg }
323 1.1 mrg
324 1.1 mrg /*
325 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
326 1.1 mrg */
327 1.1 mrg
328 1.8 mrg void
329 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
330 1.1 mrg {
331 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
332 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
333 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
334 1.53 chs struct vm_page *pg;
335 1.52 chs voff_t curoff, nextoff;
336 1.53 chs int swpgonlydelta = 0;
337 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
338 1.1 mrg
339 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
340 1.78 yamt KASSERT(startva < endva);
341 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
342 1.78 yamt
343 1.109 rmind mutex_enter(uobj->vmobjlock);
344 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
345 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
346 1.52 chs nextoff = curoff + PAGE_SIZE;
347 1.52 chs pg = uvm_pagelookup(uobj, curoff);
348 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
349 1.52 chs pg->flags |= PG_WANTED;
350 1.109 rmind UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
351 1.52 chs "km_pgrm", 0);
352 1.109 rmind mutex_enter(uobj->vmobjlock);
353 1.52 chs nextoff = curoff;
354 1.8 mrg continue;
355 1.52 chs }
356 1.8 mrg
357 1.52 chs /*
358 1.52 chs * free the swap slot, then the page.
359 1.52 chs */
360 1.8 mrg
361 1.53 chs if (pg == NULL &&
362 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
363 1.53 chs swpgonlydelta++;
364 1.53 chs }
365 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
366 1.53 chs if (pg != NULL) {
367 1.97 ad mutex_enter(&uvm_pageqlock);
368 1.53 chs uvm_pagefree(pg);
369 1.97 ad mutex_exit(&uvm_pageqlock);
370 1.53 chs }
371 1.8 mrg }
372 1.109 rmind mutex_exit(uobj->vmobjlock);
373 1.8 mrg
374 1.54 chs if (swpgonlydelta > 0) {
375 1.95 ad mutex_enter(&uvm_swap_data_lock);
376 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
377 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
378 1.95 ad mutex_exit(&uvm_swap_data_lock);
379 1.54 chs }
380 1.24 thorpej }
381 1.24 thorpej
382 1.24 thorpej
383 1.24 thorpej /*
384 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
385 1.78 yamt * regions.
386 1.24 thorpej *
387 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
388 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
389 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
390 1.52 chs * be on the active or inactive queues (because they have no object).
391 1.24 thorpej */
392 1.24 thorpej
393 1.24 thorpej void
394 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
395 1.24 thorpej {
396 1.52 chs struct vm_page *pg;
397 1.52 chs paddr_t pa;
398 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
399 1.24 thorpej
400 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
401 1.102 ad KASSERT(vm_map_min(map) <= start);
402 1.78 yamt KASSERT(start < end);
403 1.102 ad KASSERT(end <= vm_map_max(map));
404 1.78 yamt
405 1.52 chs for (; start < end; start += PAGE_SIZE) {
406 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
407 1.24 thorpej continue;
408 1.40 chs }
409 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
410 1.52 chs KASSERT(pg);
411 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
412 1.110 yamt KASSERT((pg->flags & PG_BUSY) == 0);
413 1.52 chs uvm_pagefree(pg);
414 1.24 thorpej }
415 1.1 mrg }
416 1.1 mrg
417 1.78 yamt #if defined(DEBUG)
418 1.78 yamt void
419 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
420 1.78 yamt {
421 1.102 ad struct vm_page *pg;
422 1.78 yamt vaddr_t va;
423 1.78 yamt paddr_t pa;
424 1.78 yamt
425 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
426 1.102 ad KDASSERT(vm_map_min(map) <= start);
427 1.78 yamt KDASSERT(start < end);
428 1.102 ad KDASSERT(end <= vm_map_max(map));
429 1.78 yamt
430 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
431 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
432 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
433 1.81 simonb (void *)va, (long long)pa);
434 1.78 yamt }
435 1.102 ad if ((map->flags & VM_MAP_INTRSAFE) == 0) {
436 1.109 rmind mutex_enter(uvm_kernel_object->vmobjlock);
437 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
438 1.78 yamt va - vm_map_min(kernel_map));
439 1.109 rmind mutex_exit(uvm_kernel_object->vmobjlock);
440 1.78 yamt if (pg) {
441 1.78 yamt panic("uvm_km_check_empty: "
442 1.78 yamt "has page hashed at %p", (const void *)va);
443 1.78 yamt }
444 1.78 yamt }
445 1.78 yamt }
446 1.78 yamt }
447 1.78 yamt #endif /* defined(DEBUG) */
448 1.1 mrg
449 1.1 mrg /*
450 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
451 1.1 mrg *
452 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
453 1.1 mrg * free VM space in the map... caller should be prepared to handle
454 1.1 mrg * this case.
455 1.1 mrg * => we return KVA of memory allocated
456 1.1 mrg */
457 1.1 mrg
458 1.14 eeh vaddr_t
459 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
460 1.1 mrg {
461 1.14 eeh vaddr_t kva, loopva;
462 1.14 eeh vaddr_t offset;
463 1.44 thorpej vsize_t loopsize;
464 1.8 mrg struct vm_page *pg;
465 1.78 yamt struct uvm_object *obj;
466 1.78 yamt int pgaflags;
467 1.89 drochner vm_prot_t prot;
468 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
469 1.1 mrg
470 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
471 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
472 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
473 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
474 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
475 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
476 1.1 mrg
477 1.8 mrg /*
478 1.8 mrg * setup for call
479 1.8 mrg */
480 1.8 mrg
481 1.78 yamt kva = vm_map_min(map); /* hint */
482 1.8 mrg size = round_page(size);
483 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
484 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
485 1.78 yamt map, obj, size, flags);
486 1.1 mrg
487 1.8 mrg /*
488 1.8 mrg * allocate some virtual space
489 1.8 mrg */
490 1.8 mrg
491 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
492 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
493 1.78 yamt UVM_ADV_RANDOM,
494 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
495 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
496 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
497 1.8 mrg return(0);
498 1.8 mrg }
499 1.8 mrg
500 1.8 mrg /*
501 1.8 mrg * if all we wanted was VA, return now
502 1.8 mrg */
503 1.8 mrg
504 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
505 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
506 1.8 mrg return(kva);
507 1.8 mrg }
508 1.40 chs
509 1.8 mrg /*
510 1.8 mrg * recover object offset from virtual address
511 1.8 mrg */
512 1.8 mrg
513 1.8 mrg offset = kva - vm_map_min(kernel_map);
514 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
515 1.8 mrg
516 1.8 mrg /*
517 1.8 mrg * now allocate and map in the memory... note that we are the only ones
518 1.8 mrg * whom should ever get a handle on this area of VM.
519 1.8 mrg */
520 1.8 mrg
521 1.8 mrg loopva = kva;
522 1.44 thorpej loopsize = size;
523 1.78 yamt
524 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
525 1.103 ad if (flags & UVM_KMF_NOWAIT)
526 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
527 1.78 yamt if (flags & UVM_KMF_ZERO)
528 1.78 yamt pgaflags |= UVM_PGA_ZERO;
529 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
530 1.89 drochner if (flags & UVM_KMF_EXEC)
531 1.89 drochner prot |= VM_PROT_EXECUTE;
532 1.44 thorpej while (loopsize) {
533 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
534 1.114 matt "loopva=%#"PRIxVADDR, loopva);
535 1.78 yamt
536 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
537 1.107 matt #ifdef UVM_KM_VMFREELIST
538 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
539 1.107 matt #else
540 1.107 matt UVM_PGA_STRAT_NORMAL, 0
541 1.107 matt #endif
542 1.107 matt );
543 1.47 chs
544 1.8 mrg /*
545 1.8 mrg * out of memory?
546 1.8 mrg */
547 1.8 mrg
548 1.35 thorpej if (__predict_false(pg == NULL)) {
549 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
550 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
551 1.8 mrg /* free everything! */
552 1.78 yamt uvm_km_free(map, kva, size,
553 1.78 yamt flags & UVM_KMF_TYPEMASK);
554 1.58 chs return (0);
555 1.8 mrg } else {
556 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
557 1.8 mrg continue;
558 1.8 mrg }
559 1.8 mrg }
560 1.47 chs
561 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
562 1.78 yamt UVM_PAGE_OWN(pg, NULL);
563 1.78 yamt
564 1.8 mrg /*
565 1.52 chs * map it in
566 1.8 mrg */
567 1.40 chs
568 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
569 1.106 cegger prot, PMAP_KMPAGE);
570 1.8 mrg loopva += PAGE_SIZE;
571 1.8 mrg offset += PAGE_SIZE;
572 1.44 thorpej loopsize -= PAGE_SIZE;
573 1.8 mrg }
574 1.69 junyoung
575 1.112 para pmap_update(pmap_kernel());
576 1.69 junyoung
577 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
578 1.8 mrg return(kva);
579 1.1 mrg }
580 1.1 mrg
581 1.1 mrg /*
582 1.1 mrg * uvm_km_free: free an area of kernel memory
583 1.1 mrg */
584 1.1 mrg
585 1.8 mrg void
586 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
587 1.8 mrg {
588 1.1 mrg
589 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
590 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
591 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
592 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
593 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
594 1.1 mrg
595 1.8 mrg size = round_page(size);
596 1.1 mrg
597 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
598 1.78 yamt uvm_km_pgremove(addr, addr + size);
599 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
600 1.109 rmind /*
601 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
602 1.109 rmind * remove it after. See comment below about KVA visibility.
603 1.109 rmind */
604 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
605 1.78 yamt pmap_kremove(addr, size);
606 1.8 mrg }
607 1.99 yamt
608 1.99 yamt /*
609 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
610 1.109 rmind * KVA becomes globally available.
611 1.99 yamt */
612 1.8 mrg
613 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
614 1.66 pk }
615 1.66 pk
616 1.10 thorpej /* Sanity; must specify both or none. */
617 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
618 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
619 1.10 thorpej #error Must specify MAP and UNMAP together.
620 1.10 thorpej #endif
621 1.10 thorpej
622 1.112 para int
623 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
624 1.112 para vmem_addr_t *addr)
625 1.72 yamt {
626 1.72 yamt struct vm_page *pg;
627 1.112 para vmem_addr_t va;
628 1.112 para int rc;
629 1.112 para vaddr_t loopva;
630 1.112 para vsize_t loopsize;
631 1.72 yamt
632 1.112 para size = round_page(size);
633 1.72 yamt
634 1.112 para #if defined(PMAP_MAP_POOLPAGE)
635 1.112 para if (size == PAGE_SIZE) {
636 1.72 yamt again:
637 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
638 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
639 1.112 para 0 : UVM_PGA_USERESERVE);
640 1.112 para #else
641 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
642 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
643 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
644 1.112 para if (__predict_false(pg == NULL)) {
645 1.112 para if (flags & VM_SLEEP) {
646 1.112 para uvm_wait("plpg");
647 1.112 para goto again;
648 1.112 para }
649 1.112 para }
650 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
651 1.112 para if (__predict_false(va == 0)) {
652 1.112 para uvm_pagefree(pg);
653 1.112 para return ENOMEM;
654 1.72 yamt }
655 1.112 para *addr = va;
656 1.112 para return 0;
657 1.72 yamt }
658 1.112 para #endif /* PMAP_MAP_POOLPAGE */
659 1.112 para
660 1.112 para rc = vmem_alloc(vm, size, flags, &va);
661 1.112 para if (rc != 0)
662 1.112 para return rc;
663 1.72 yamt
664 1.112 para loopva = va;
665 1.112 para loopsize = size;
666 1.72 yamt
667 1.112 para while (loopsize) {
668 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
669 1.114 matt "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
670 1.114 matt loopva, loopsize, vm);
671 1.114 matt
672 1.114 matt pg = uvm_pagealloc(NULL, loopva, NULL,
673 1.115 matt UVM_FLAG_COLORMATCH
674 1.114 matt | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
675 1.112 para if (__predict_false(pg == NULL)) {
676 1.112 para if (flags & VM_SLEEP) {
677 1.112 para uvm_wait("plpg");
678 1.112 para continue;
679 1.112 para } else {
680 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
681 1.112 para va + size);
682 1.112 para pmap_kremove(va, size);
683 1.112 para vmem_free(kmem_va_arena, va, size);
684 1.112 para return ENOMEM;
685 1.112 para }
686 1.112 para }
687 1.112 para
688 1.112 para pg->flags &= ~PG_BUSY; /* new page */
689 1.112 para UVM_PAGE_OWN(pg, NULL);
690 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
691 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
692 1.107 matt
693 1.112 para loopva += PAGE_SIZE;
694 1.112 para loopsize -= PAGE_SIZE;
695 1.15 thorpej }
696 1.112 para pmap_update(pmap_kernel());
697 1.112 para
698 1.112 para *addr = va;
699 1.16 thorpej
700 1.112 para return 0;
701 1.10 thorpej }
702 1.10 thorpej
703 1.10 thorpej void
704 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
705 1.72 yamt {
706 1.112 para
707 1.112 para size = round_page(size);
708 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
709 1.112 para if (size == PAGE_SIZE) {
710 1.112 para paddr_t pa;
711 1.72 yamt
712 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
713 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
714 1.72 yamt return;
715 1.72 yamt }
716 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
717 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
718 1.112 para pmap_kremove(addr, size);
719 1.112 para pmap_update(pmap_kernel());
720 1.72 yamt
721 1.112 para vmem_free(vm, addr, size);
722 1.72 yamt }
723 1.72 yamt
724 1.112 para bool
725 1.112 para uvm_km_va_starved_p(void)
726 1.10 thorpej {
727 1.112 para vmem_size_t total;
728 1.112 para vmem_size_t free;
729 1.112 para
730 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
731 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
732 1.10 thorpej
733 1.112 para return (free < (total / 10));
734 1.1 mrg }
735 1.112 para
736