uvm_km.c revision 1.117 1 1.117 para /* $NetBSD: uvm_km.c,v 1.117 2012/02/02 18:59:45 para Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.7 chuck * the vm system has several standard kernel submaps, including:
87 1.7 chuck * pager_map => used to map "buf" structures into kernel space
88 1.7 chuck * exec_map => used during exec to handle exec args
89 1.7 chuck * etc...
90 1.7 chuck *
91 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
92 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 1.7 chuck * are "special" and never die). all kernel objects should be thought of
94 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
96 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 1.7 chuck *
98 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
99 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
100 1.47 chs * large chunks of a kernel object's space go unused either because
101 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
102 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
103 1.7 chuck * objects, the only part of the object that can ever be populated is the
104 1.7 chuck * offsets that are managed by the submap.
105 1.7 chuck *
106 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
107 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 1.7 chuck * example:
109 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
113 1.47 chs * mapped at 0xf8235000.
114 1.7 chuck *
115 1.7 chuck * kernel object have one other special property: when the kernel virtual
116 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
117 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
118 1.7 chuck * this has to be done because there is no backing store for kernel pages
119 1.7 chuck * and no need to save them after they are no longer referenced.
120 1.7 chuck */
121 1.55 lukem
122 1.55 lukem #include <sys/cdefs.h>
123 1.117 para __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.117 2012/02/02 18:59:45 para Exp $");
124 1.55 lukem
125 1.55 lukem #include "opt_uvmhist.h"
126 1.7 chuck
127 1.117 para #include "opt_kmempages.h"
128 1.117 para
129 1.117 para #ifndef NKMEMPAGES
130 1.117 para #define NKMEMPAGES 0
131 1.117 para #endif
132 1.117 para
133 1.117 para /*
134 1.117 para * Defaults for lower and upper-bounds for the kmem_arena page count.
135 1.117 para * Can be overridden by kernel config options.
136 1.117 para */
137 1.117 para #ifndef NKMEMPAGES_MIN
138 1.117 para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
139 1.117 para #endif
140 1.117 para
141 1.117 para #ifndef NKMEMPAGES_MAX
142 1.117 para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
143 1.117 para #endif
144 1.117 para
145 1.117 para
146 1.1 mrg #include <sys/param.h>
147 1.1 mrg #include <sys/systm.h>
148 1.1 mrg #include <sys/proc.h>
149 1.72 yamt #include <sys/pool.h>
150 1.112 para #include <sys/vmem.h>
151 1.112 para #include <sys/kmem.h>
152 1.1 mrg
153 1.1 mrg #include <uvm/uvm.h>
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * global data structures
157 1.1 mrg */
158 1.1 mrg
159 1.49 chs struct vm_map *kernel_map = NULL;
160 1.1 mrg
161 1.1 mrg /*
162 1.1 mrg * local data structues
163 1.1 mrg */
164 1.1 mrg
165 1.112 para static struct vm_map kernel_map_store;
166 1.112 para static struct vm_map_entry kernel_image_mapent_store;
167 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
168 1.1 mrg
169 1.117 para int nkmempages = 0;
170 1.112 para vaddr_t kmembase;
171 1.112 para vsize_t kmemsize;
172 1.72 yamt
173 1.112 para vmem_t *kmem_arena;
174 1.112 para vmem_t *kmem_va_arena;
175 1.72 yamt
176 1.72 yamt /*
177 1.117 para * kmeminit_nkmempages: calculate the size of kmem_arena.
178 1.117 para */
179 1.117 para void
180 1.117 para kmeminit_nkmempages(void)
181 1.117 para {
182 1.117 para int npages;
183 1.117 para
184 1.117 para if (nkmempages != 0) {
185 1.117 para /*
186 1.117 para * It's already been set (by us being here before)
187 1.117 para * bail out now;
188 1.117 para */
189 1.117 para return;
190 1.117 para }
191 1.117 para
192 1.117 para npages = physmem;
193 1.117 para
194 1.117 para if (npages > NKMEMPAGES_MAX)
195 1.117 para npages = NKMEMPAGES_MAX;
196 1.117 para
197 1.117 para if (npages < NKMEMPAGES_MIN)
198 1.117 para npages = NKMEMPAGES_MIN;
199 1.117 para
200 1.117 para nkmempages = npages;
201 1.117 para }
202 1.117 para
203 1.117 para /*
204 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
205 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
206 1.1 mrg *
207 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
208 1.82 christos * we assume that [vmin -> start] has already been allocated and that
209 1.62 thorpej * "end" is the end.
210 1.1 mrg */
211 1.1 mrg
212 1.8 mrg void
213 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
214 1.1 mrg {
215 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
216 1.27 thorpej
217 1.117 para kmeminit_nkmempages();
218 1.117 para kmemsize = nkmempages * PAGE_SIZE;
219 1.117 para
220 1.117 para /* kmemsize = MIN((((vsize_t)(end - start)) / 3),
221 1.116 para ((((vsize_t)uvmexp.npages) * PAGE_SIZE) / 2));
222 1.117 para kmemsize = round_page(kmemsize); */
223 1.112 para
224 1.27 thorpej /*
225 1.27 thorpej * next, init kernel memory objects.
226 1.8 mrg */
227 1.1 mrg
228 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
229 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
230 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
231 1.1 mrg
232 1.24 thorpej /*
233 1.56 thorpej * init the map and reserve any space that might already
234 1.56 thorpej * have been allocated kernel space before installing.
235 1.8 mrg */
236 1.1 mrg
237 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
238 1.112 para kernel_map_store.pmap = pmap_kernel();
239 1.70 yamt if (start != base) {
240 1.70 yamt int error;
241 1.70 yamt struct uvm_map_args args;
242 1.70 yamt
243 1.112 para error = uvm_map_prepare(&kernel_map_store,
244 1.71 yamt base, start - base,
245 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
246 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
247 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
248 1.70 yamt if (!error) {
249 1.112 para kernel_image_mapent_store.flags =
250 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
251 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
252 1.112 para &kernel_image_mapent_store);
253 1.70 yamt }
254 1.70 yamt
255 1.70 yamt if (error)
256 1.70 yamt panic(
257 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
258 1.112 para
259 1.112 para kmembase = args.uma_start + args.uma_size;
260 1.112 para error = uvm_map_prepare(&kernel_map_store,
261 1.112 para kmembase, kmemsize,
262 1.112 para NULL, UVM_UNKNOWN_OFFSET, 0,
263 1.112 para UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
264 1.112 para UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
265 1.112 para if (!error) {
266 1.112 para kernel_kmem_mapent_store.flags =
267 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
268 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
269 1.112 para &kernel_kmem_mapent_store);
270 1.112 para }
271 1.112 para
272 1.112 para if (error)
273 1.112 para panic(
274 1.112 para "uvm_km_bootstrap: could not reserve kernel kmem");
275 1.114 matt } else {
276 1.114 matt kmembase = base;
277 1.70 yamt }
278 1.47 chs
279 1.8 mrg /*
280 1.8 mrg * install!
281 1.8 mrg */
282 1.8 mrg
283 1.112 para kernel_map = &kernel_map_store;
284 1.112 para
285 1.112 para pool_subsystem_init();
286 1.112 para vmem_bootstrap();
287 1.112 para
288 1.112 para kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
289 1.112 para NULL, NULL, NULL,
290 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
291 1.112 para
292 1.112 para vmem_init(kmem_arena);
293 1.112 para
294 1.112 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
295 1.112 para vmem_alloc, vmem_free, kmem_arena,
296 1.112 para 16 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
297 1.112 para }
298 1.112 para
299 1.112 para /*
300 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
301 1.112 para * and start the pool/kmem allocator.
302 1.112 para */
303 1.112 para void
304 1.112 para uvm_km_init(void)
305 1.112 para {
306 1.112 para
307 1.112 para kmem_init();
308 1.112 para
309 1.112 para kmeminit(); // killme
310 1.1 mrg }
311 1.1 mrg
312 1.1 mrg /*
313 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
314 1.1 mrg * is allocated all references to that area of VM must go through it. this
315 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
316 1.1 mrg *
317 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
318 1.112 para * pager_map => used to map "buf" structures into kernel space
319 1.5 thorpej * by the submap must start
320 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
321 1.1 mrg * alloc a new map
322 1.1 mrg */
323 1.78 yamt
324 1.8 mrg struct vm_map *
325 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
326 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
327 1.112 para struct vm_map *submap)
328 1.8 mrg {
329 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
330 1.1 mrg
331 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
332 1.71 yamt
333 1.8 mrg size = round_page(size); /* round up to pagesize */
334 1.1 mrg
335 1.8 mrg /*
336 1.8 mrg * first allocate a blank spot in the parent map
337 1.8 mrg */
338 1.8 mrg
339 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
340 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
341 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
342 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
343 1.8 mrg }
344 1.8 mrg
345 1.8 mrg /*
346 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
347 1.8 mrg */
348 1.1 mrg
349 1.82 christos *vmax = *vmin + size;
350 1.5 thorpej
351 1.8 mrg /*
352 1.8 mrg * add references to pmap and create or init the submap
353 1.8 mrg */
354 1.1 mrg
355 1.8 mrg pmap_reference(vm_map_pmap(map));
356 1.8 mrg if (submap == NULL) {
357 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
358 1.8 mrg if (submap == NULL)
359 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
360 1.8 mrg }
361 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
362 1.112 para submap->pmap = vm_map_pmap(map);
363 1.1 mrg
364 1.8 mrg /*
365 1.8 mrg * now let uvm_map_submap plug in it...
366 1.8 mrg */
367 1.1 mrg
368 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
369 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
370 1.1 mrg
371 1.112 para return(submap);
372 1.1 mrg }
373 1.1 mrg
374 1.1 mrg /*
375 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
376 1.1 mrg */
377 1.1 mrg
378 1.8 mrg void
379 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
380 1.1 mrg {
381 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
382 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
383 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
384 1.53 chs struct vm_page *pg;
385 1.52 chs voff_t curoff, nextoff;
386 1.53 chs int swpgonlydelta = 0;
387 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
388 1.1 mrg
389 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
390 1.78 yamt KASSERT(startva < endva);
391 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
392 1.78 yamt
393 1.109 rmind mutex_enter(uobj->vmobjlock);
394 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
395 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
396 1.52 chs nextoff = curoff + PAGE_SIZE;
397 1.52 chs pg = uvm_pagelookup(uobj, curoff);
398 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
399 1.52 chs pg->flags |= PG_WANTED;
400 1.109 rmind UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
401 1.52 chs "km_pgrm", 0);
402 1.109 rmind mutex_enter(uobj->vmobjlock);
403 1.52 chs nextoff = curoff;
404 1.8 mrg continue;
405 1.52 chs }
406 1.8 mrg
407 1.52 chs /*
408 1.52 chs * free the swap slot, then the page.
409 1.52 chs */
410 1.8 mrg
411 1.53 chs if (pg == NULL &&
412 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
413 1.53 chs swpgonlydelta++;
414 1.53 chs }
415 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
416 1.53 chs if (pg != NULL) {
417 1.97 ad mutex_enter(&uvm_pageqlock);
418 1.53 chs uvm_pagefree(pg);
419 1.97 ad mutex_exit(&uvm_pageqlock);
420 1.53 chs }
421 1.8 mrg }
422 1.109 rmind mutex_exit(uobj->vmobjlock);
423 1.8 mrg
424 1.54 chs if (swpgonlydelta > 0) {
425 1.95 ad mutex_enter(&uvm_swap_data_lock);
426 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
427 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
428 1.95 ad mutex_exit(&uvm_swap_data_lock);
429 1.54 chs }
430 1.24 thorpej }
431 1.24 thorpej
432 1.24 thorpej
433 1.24 thorpej /*
434 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
435 1.78 yamt * regions.
436 1.24 thorpej *
437 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
438 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
439 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
440 1.52 chs * be on the active or inactive queues (because they have no object).
441 1.24 thorpej */
442 1.24 thorpej
443 1.24 thorpej void
444 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
445 1.24 thorpej {
446 1.52 chs struct vm_page *pg;
447 1.52 chs paddr_t pa;
448 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
449 1.24 thorpej
450 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
451 1.102 ad KASSERT(vm_map_min(map) <= start);
452 1.78 yamt KASSERT(start < end);
453 1.102 ad KASSERT(end <= vm_map_max(map));
454 1.78 yamt
455 1.52 chs for (; start < end; start += PAGE_SIZE) {
456 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
457 1.24 thorpej continue;
458 1.40 chs }
459 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
460 1.52 chs KASSERT(pg);
461 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
462 1.110 yamt KASSERT((pg->flags & PG_BUSY) == 0);
463 1.52 chs uvm_pagefree(pg);
464 1.24 thorpej }
465 1.1 mrg }
466 1.1 mrg
467 1.78 yamt #if defined(DEBUG)
468 1.78 yamt void
469 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
470 1.78 yamt {
471 1.102 ad struct vm_page *pg;
472 1.78 yamt vaddr_t va;
473 1.78 yamt paddr_t pa;
474 1.78 yamt
475 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
476 1.102 ad KDASSERT(vm_map_min(map) <= start);
477 1.78 yamt KDASSERT(start < end);
478 1.102 ad KDASSERT(end <= vm_map_max(map));
479 1.78 yamt
480 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
481 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
482 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
483 1.81 simonb (void *)va, (long long)pa);
484 1.78 yamt }
485 1.102 ad if ((map->flags & VM_MAP_INTRSAFE) == 0) {
486 1.109 rmind mutex_enter(uvm_kernel_object->vmobjlock);
487 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
488 1.78 yamt va - vm_map_min(kernel_map));
489 1.109 rmind mutex_exit(uvm_kernel_object->vmobjlock);
490 1.78 yamt if (pg) {
491 1.78 yamt panic("uvm_km_check_empty: "
492 1.78 yamt "has page hashed at %p", (const void *)va);
493 1.78 yamt }
494 1.78 yamt }
495 1.78 yamt }
496 1.78 yamt }
497 1.78 yamt #endif /* defined(DEBUG) */
498 1.1 mrg
499 1.1 mrg /*
500 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
501 1.1 mrg *
502 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
503 1.1 mrg * free VM space in the map... caller should be prepared to handle
504 1.1 mrg * this case.
505 1.1 mrg * => we return KVA of memory allocated
506 1.1 mrg */
507 1.1 mrg
508 1.14 eeh vaddr_t
509 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
510 1.1 mrg {
511 1.14 eeh vaddr_t kva, loopva;
512 1.14 eeh vaddr_t offset;
513 1.44 thorpej vsize_t loopsize;
514 1.8 mrg struct vm_page *pg;
515 1.78 yamt struct uvm_object *obj;
516 1.78 yamt int pgaflags;
517 1.89 drochner vm_prot_t prot;
518 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
519 1.1 mrg
520 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
521 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
522 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
523 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
524 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
525 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
526 1.1 mrg
527 1.8 mrg /*
528 1.8 mrg * setup for call
529 1.8 mrg */
530 1.8 mrg
531 1.78 yamt kva = vm_map_min(map); /* hint */
532 1.8 mrg size = round_page(size);
533 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
534 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
535 1.78 yamt map, obj, size, flags);
536 1.1 mrg
537 1.8 mrg /*
538 1.8 mrg * allocate some virtual space
539 1.8 mrg */
540 1.8 mrg
541 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
542 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
543 1.78 yamt UVM_ADV_RANDOM,
544 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
545 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
546 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
547 1.8 mrg return(0);
548 1.8 mrg }
549 1.8 mrg
550 1.8 mrg /*
551 1.8 mrg * if all we wanted was VA, return now
552 1.8 mrg */
553 1.8 mrg
554 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
555 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
556 1.8 mrg return(kva);
557 1.8 mrg }
558 1.40 chs
559 1.8 mrg /*
560 1.8 mrg * recover object offset from virtual address
561 1.8 mrg */
562 1.8 mrg
563 1.8 mrg offset = kva - vm_map_min(kernel_map);
564 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
565 1.8 mrg
566 1.8 mrg /*
567 1.8 mrg * now allocate and map in the memory... note that we are the only ones
568 1.8 mrg * whom should ever get a handle on this area of VM.
569 1.8 mrg */
570 1.8 mrg
571 1.8 mrg loopva = kva;
572 1.44 thorpej loopsize = size;
573 1.78 yamt
574 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
575 1.103 ad if (flags & UVM_KMF_NOWAIT)
576 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
577 1.78 yamt if (flags & UVM_KMF_ZERO)
578 1.78 yamt pgaflags |= UVM_PGA_ZERO;
579 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
580 1.89 drochner if (flags & UVM_KMF_EXEC)
581 1.89 drochner prot |= VM_PROT_EXECUTE;
582 1.44 thorpej while (loopsize) {
583 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
584 1.114 matt "loopva=%#"PRIxVADDR, loopva);
585 1.78 yamt
586 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
587 1.107 matt #ifdef UVM_KM_VMFREELIST
588 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
589 1.107 matt #else
590 1.107 matt UVM_PGA_STRAT_NORMAL, 0
591 1.107 matt #endif
592 1.107 matt );
593 1.47 chs
594 1.8 mrg /*
595 1.8 mrg * out of memory?
596 1.8 mrg */
597 1.8 mrg
598 1.35 thorpej if (__predict_false(pg == NULL)) {
599 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
600 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
601 1.8 mrg /* free everything! */
602 1.78 yamt uvm_km_free(map, kva, size,
603 1.78 yamt flags & UVM_KMF_TYPEMASK);
604 1.58 chs return (0);
605 1.8 mrg } else {
606 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
607 1.8 mrg continue;
608 1.8 mrg }
609 1.8 mrg }
610 1.47 chs
611 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
612 1.78 yamt UVM_PAGE_OWN(pg, NULL);
613 1.78 yamt
614 1.8 mrg /*
615 1.52 chs * map it in
616 1.8 mrg */
617 1.40 chs
618 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
619 1.106 cegger prot, PMAP_KMPAGE);
620 1.8 mrg loopva += PAGE_SIZE;
621 1.8 mrg offset += PAGE_SIZE;
622 1.44 thorpej loopsize -= PAGE_SIZE;
623 1.8 mrg }
624 1.69 junyoung
625 1.112 para pmap_update(pmap_kernel());
626 1.69 junyoung
627 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
628 1.8 mrg return(kva);
629 1.1 mrg }
630 1.1 mrg
631 1.1 mrg /*
632 1.1 mrg * uvm_km_free: free an area of kernel memory
633 1.1 mrg */
634 1.1 mrg
635 1.8 mrg void
636 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
637 1.8 mrg {
638 1.1 mrg
639 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
640 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
641 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
642 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
643 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
644 1.1 mrg
645 1.8 mrg size = round_page(size);
646 1.1 mrg
647 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
648 1.78 yamt uvm_km_pgremove(addr, addr + size);
649 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
650 1.109 rmind /*
651 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
652 1.109 rmind * remove it after. See comment below about KVA visibility.
653 1.109 rmind */
654 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
655 1.78 yamt pmap_kremove(addr, size);
656 1.8 mrg }
657 1.99 yamt
658 1.99 yamt /*
659 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
660 1.109 rmind * KVA becomes globally available.
661 1.99 yamt */
662 1.8 mrg
663 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
664 1.66 pk }
665 1.66 pk
666 1.10 thorpej /* Sanity; must specify both or none. */
667 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
668 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
669 1.10 thorpej #error Must specify MAP and UNMAP together.
670 1.10 thorpej #endif
671 1.10 thorpej
672 1.112 para int
673 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
674 1.112 para vmem_addr_t *addr)
675 1.72 yamt {
676 1.72 yamt struct vm_page *pg;
677 1.112 para vmem_addr_t va;
678 1.112 para int rc;
679 1.112 para vaddr_t loopva;
680 1.112 para vsize_t loopsize;
681 1.72 yamt
682 1.112 para size = round_page(size);
683 1.72 yamt
684 1.112 para #if defined(PMAP_MAP_POOLPAGE)
685 1.112 para if (size == PAGE_SIZE) {
686 1.72 yamt again:
687 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
688 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
689 1.112 para 0 : UVM_PGA_USERESERVE);
690 1.112 para #else
691 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
692 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
693 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
694 1.112 para if (__predict_false(pg == NULL)) {
695 1.112 para if (flags & VM_SLEEP) {
696 1.112 para uvm_wait("plpg");
697 1.112 para goto again;
698 1.112 para }
699 1.112 para }
700 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
701 1.112 para if (__predict_false(va == 0)) {
702 1.112 para uvm_pagefree(pg);
703 1.112 para return ENOMEM;
704 1.72 yamt }
705 1.112 para *addr = va;
706 1.112 para return 0;
707 1.72 yamt }
708 1.112 para #endif /* PMAP_MAP_POOLPAGE */
709 1.112 para
710 1.112 para rc = vmem_alloc(vm, size, flags, &va);
711 1.112 para if (rc != 0)
712 1.112 para return rc;
713 1.72 yamt
714 1.112 para loopva = va;
715 1.112 para loopsize = size;
716 1.72 yamt
717 1.112 para while (loopsize) {
718 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
719 1.114 matt "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
720 1.114 matt loopva, loopsize, vm);
721 1.114 matt
722 1.114 matt pg = uvm_pagealloc(NULL, loopva, NULL,
723 1.115 matt UVM_FLAG_COLORMATCH
724 1.114 matt | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
725 1.112 para if (__predict_false(pg == NULL)) {
726 1.112 para if (flags & VM_SLEEP) {
727 1.112 para uvm_wait("plpg");
728 1.112 para continue;
729 1.112 para } else {
730 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
731 1.112 para va + size);
732 1.112 para pmap_kremove(va, size);
733 1.112 para vmem_free(kmem_va_arena, va, size);
734 1.112 para return ENOMEM;
735 1.112 para }
736 1.112 para }
737 1.112 para
738 1.112 para pg->flags &= ~PG_BUSY; /* new page */
739 1.112 para UVM_PAGE_OWN(pg, NULL);
740 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
741 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
742 1.107 matt
743 1.112 para loopva += PAGE_SIZE;
744 1.112 para loopsize -= PAGE_SIZE;
745 1.15 thorpej }
746 1.112 para pmap_update(pmap_kernel());
747 1.112 para
748 1.112 para *addr = va;
749 1.16 thorpej
750 1.112 para return 0;
751 1.10 thorpej }
752 1.10 thorpej
753 1.10 thorpej void
754 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
755 1.72 yamt {
756 1.112 para
757 1.112 para size = round_page(size);
758 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
759 1.112 para if (size == PAGE_SIZE) {
760 1.112 para paddr_t pa;
761 1.72 yamt
762 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
763 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
764 1.72 yamt return;
765 1.72 yamt }
766 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
767 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
768 1.112 para pmap_kremove(addr, size);
769 1.112 para pmap_update(pmap_kernel());
770 1.72 yamt
771 1.112 para vmem_free(vm, addr, size);
772 1.72 yamt }
773 1.72 yamt
774 1.112 para bool
775 1.112 para uvm_km_va_starved_p(void)
776 1.10 thorpej {
777 1.112 para vmem_size_t total;
778 1.112 para vmem_size_t free;
779 1.112 para
780 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
781 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
782 1.10 thorpej
783 1.112 para return (free < (total / 10));
784 1.1 mrg }
785 1.112 para
786