uvm_km.c revision 1.120.2.3.2.1 1 1.120.2.3.2.1 bouyer /* $NetBSD: uvm_km.c,v 1.120.2.3.2.1 2013/11/25 08:30:20 bouyer Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.7 chuck * the vm system has several standard kernel submaps, including:
87 1.7 chuck * pager_map => used to map "buf" structures into kernel space
88 1.7 chuck * exec_map => used during exec to handle exec args
89 1.7 chuck * etc...
90 1.7 chuck *
91 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
92 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 1.7 chuck * are "special" and never die). all kernel objects should be thought of
94 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
96 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 1.7 chuck *
98 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
99 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
100 1.47 chs * large chunks of a kernel object's space go unused either because
101 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
102 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
103 1.7 chuck * objects, the only part of the object that can ever be populated is the
104 1.7 chuck * offsets that are managed by the submap.
105 1.7 chuck *
106 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
107 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 1.7 chuck * example:
109 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
113 1.47 chs * mapped at 0xf8235000.
114 1.7 chuck *
115 1.7 chuck * kernel object have one other special property: when the kernel virtual
116 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
117 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
118 1.7 chuck * this has to be done because there is no backing store for kernel pages
119 1.7 chuck * and no need to save them after they are no longer referenced.
120 1.7 chuck */
121 1.55 lukem
122 1.55 lukem #include <sys/cdefs.h>
123 1.120.2.3.2.1 bouyer __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.120.2.3.2.1 2013/11/25 08:30:20 bouyer Exp $");
124 1.55 lukem
125 1.55 lukem #include "opt_uvmhist.h"
126 1.7 chuck
127 1.117 para #include "opt_kmempages.h"
128 1.117 para
129 1.117 para #ifndef NKMEMPAGES
130 1.117 para #define NKMEMPAGES 0
131 1.117 para #endif
132 1.117 para
133 1.117 para /*
134 1.117 para * Defaults for lower and upper-bounds for the kmem_arena page count.
135 1.117 para * Can be overridden by kernel config options.
136 1.117 para */
137 1.117 para #ifndef NKMEMPAGES_MIN
138 1.117 para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
139 1.117 para #endif
140 1.117 para
141 1.117 para #ifndef NKMEMPAGES_MAX
142 1.117 para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
143 1.117 para #endif
144 1.117 para
145 1.117 para
146 1.1 mrg #include <sys/param.h>
147 1.1 mrg #include <sys/systm.h>
148 1.1 mrg #include <sys/proc.h>
149 1.72 yamt #include <sys/pool.h>
150 1.112 para #include <sys/vmem.h>
151 1.112 para #include <sys/kmem.h>
152 1.1 mrg
153 1.1 mrg #include <uvm/uvm.h>
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * global data structures
157 1.1 mrg */
158 1.1 mrg
159 1.49 chs struct vm_map *kernel_map = NULL;
160 1.1 mrg
161 1.1 mrg /*
162 1.1 mrg * local data structues
163 1.1 mrg */
164 1.1 mrg
165 1.112 para static struct vm_map kernel_map_store;
166 1.112 para static struct vm_map_entry kernel_image_mapent_store;
167 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
168 1.1 mrg
169 1.117 para int nkmempages = 0;
170 1.112 para vaddr_t kmembase;
171 1.112 para vsize_t kmemsize;
172 1.72 yamt
173 1.120.2.3 riz vmem_t *kmem_arena = NULL;
174 1.112 para vmem_t *kmem_va_arena;
175 1.72 yamt
176 1.72 yamt /*
177 1.117 para * kmeminit_nkmempages: calculate the size of kmem_arena.
178 1.117 para */
179 1.117 para void
180 1.117 para kmeminit_nkmempages(void)
181 1.117 para {
182 1.117 para int npages;
183 1.117 para
184 1.117 para if (nkmempages != 0) {
185 1.117 para /*
186 1.117 para * It's already been set (by us being here before)
187 1.117 para * bail out now;
188 1.117 para */
189 1.117 para return;
190 1.117 para }
191 1.117 para
192 1.119 para #if defined(PMAP_MAP_POOLPAGE)
193 1.119 para npages = (physmem / 4);
194 1.119 para #else
195 1.119 para npages = (physmem / 3) * 2;
196 1.119 para #endif /* defined(PMAP_MAP_POOLPAGE) */
197 1.117 para
198 1.119 para #ifndef NKMEMPAGES_MAX_UNLIMITED
199 1.117 para if (npages > NKMEMPAGES_MAX)
200 1.117 para npages = NKMEMPAGES_MAX;
201 1.119 para #endif
202 1.117 para
203 1.117 para if (npages < NKMEMPAGES_MIN)
204 1.117 para npages = NKMEMPAGES_MIN;
205 1.117 para
206 1.117 para nkmempages = npages;
207 1.117 para }
208 1.117 para
209 1.117 para /*
210 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
211 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
212 1.1 mrg *
213 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
214 1.82 christos * we assume that [vmin -> start] has already been allocated and that
215 1.62 thorpej * "end" is the end.
216 1.1 mrg */
217 1.1 mrg
218 1.8 mrg void
219 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
220 1.1 mrg {
221 1.119 para bool kmem_arena_small;
222 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
223 1.118 matt struct uvm_map_args args;
224 1.118 matt int error;
225 1.118 matt
226 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
227 1.118 matt UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
228 1.118 matt start, end, 0,0);
229 1.27 thorpej
230 1.117 para kmeminit_nkmempages();
231 1.119 para kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
232 1.119 para kmem_arena_small = kmemsize < 64 * 1024 * 1024;
233 1.112 para
234 1.118 matt UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
235 1.118 matt
236 1.27 thorpej /*
237 1.27 thorpej * next, init kernel memory objects.
238 1.8 mrg */
239 1.1 mrg
240 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
241 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
242 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
243 1.1 mrg
244 1.24 thorpej /*
245 1.56 thorpej * init the map and reserve any space that might already
246 1.56 thorpej * have been allocated kernel space before installing.
247 1.8 mrg */
248 1.1 mrg
249 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
250 1.112 para kernel_map_store.pmap = pmap_kernel();
251 1.70 yamt if (start != base) {
252 1.112 para error = uvm_map_prepare(&kernel_map_store,
253 1.71 yamt base, start - base,
254 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
255 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
256 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
257 1.70 yamt if (!error) {
258 1.112 para kernel_image_mapent_store.flags =
259 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
260 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
261 1.112 para &kernel_image_mapent_store);
262 1.70 yamt }
263 1.70 yamt
264 1.70 yamt if (error)
265 1.70 yamt panic(
266 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
267 1.112 para
268 1.112 para kmembase = args.uma_start + args.uma_size;
269 1.114 matt } else {
270 1.114 matt kmembase = base;
271 1.70 yamt }
272 1.47 chs
273 1.118 matt error = uvm_map_prepare(&kernel_map_store,
274 1.118 matt kmembase, kmemsize,
275 1.118 matt NULL, UVM_UNKNOWN_OFFSET, 0,
276 1.118 matt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
277 1.118 matt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
278 1.118 matt if (!error) {
279 1.118 matt kernel_kmem_mapent_store.flags =
280 1.118 matt UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
281 1.118 matt error = uvm_map_enter(&kernel_map_store, &args,
282 1.118 matt &kernel_kmem_mapent_store);
283 1.118 matt }
284 1.118 matt
285 1.118 matt if (error)
286 1.118 matt panic("uvm_km_bootstrap: could not reserve kernel kmem");
287 1.118 matt
288 1.8 mrg /*
289 1.8 mrg * install!
290 1.8 mrg */
291 1.8 mrg
292 1.112 para kernel_map = &kernel_map_store;
293 1.112 para
294 1.112 para pool_subsystem_init();
295 1.112 para vmem_bootstrap();
296 1.112 para
297 1.112 para kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
298 1.112 para NULL, NULL, NULL,
299 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
300 1.120.2.3 riz #ifdef PMAP_GROWKERNEL
301 1.120.2.3 riz /*
302 1.120.2.3 riz * kmem_arena VA allocations happen independently of uvm_map.
303 1.120.2.3 riz * grow kernel to accommodate the kmem_arena.
304 1.120.2.3 riz */
305 1.120.2.3 riz if (uvm_maxkaddr < kmembase + kmemsize) {
306 1.120.2.3 riz uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
307 1.120.2.3 riz KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
308 1.120.2.3 riz "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
309 1.120.2.3 riz uvm_maxkaddr, kmembase, kmemsize);
310 1.120.2.3 riz }
311 1.120.2.3 riz #endif
312 1.112 para
313 1.112 para vmem_init(kmem_arena);
314 1.112 para
315 1.118 matt UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
316 1.118 matt ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
317 1.118 matt
318 1.112 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
319 1.112 para vmem_alloc, vmem_free, kmem_arena,
320 1.120 para (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
321 1.119 para VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
322 1.118 matt
323 1.118 matt UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
324 1.112 para }
325 1.112 para
326 1.112 para /*
327 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
328 1.112 para * and start the pool/kmem allocator.
329 1.112 para */
330 1.112 para void
331 1.112 para uvm_km_init(void)
332 1.112 para {
333 1.112 para
334 1.112 para kmem_init();
335 1.112 para
336 1.112 para kmeminit(); // killme
337 1.1 mrg }
338 1.1 mrg
339 1.1 mrg /*
340 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
341 1.1 mrg * is allocated all references to that area of VM must go through it. this
342 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
343 1.1 mrg *
344 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
345 1.112 para * pager_map => used to map "buf" structures into kernel space
346 1.5 thorpej * by the submap must start
347 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
348 1.1 mrg * alloc a new map
349 1.1 mrg */
350 1.78 yamt
351 1.8 mrg struct vm_map *
352 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
353 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
354 1.112 para struct vm_map *submap)
355 1.8 mrg {
356 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
357 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
358 1.1 mrg
359 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
360 1.71 yamt
361 1.8 mrg size = round_page(size); /* round up to pagesize */
362 1.1 mrg
363 1.8 mrg /*
364 1.8 mrg * first allocate a blank spot in the parent map
365 1.8 mrg */
366 1.8 mrg
367 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
368 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
369 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
370 1.118 matt panic("%s: unable to allocate space in parent map", __func__);
371 1.8 mrg }
372 1.8 mrg
373 1.8 mrg /*
374 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
375 1.8 mrg */
376 1.1 mrg
377 1.82 christos *vmax = *vmin + size;
378 1.5 thorpej
379 1.8 mrg /*
380 1.8 mrg * add references to pmap and create or init the submap
381 1.8 mrg */
382 1.1 mrg
383 1.8 mrg pmap_reference(vm_map_pmap(map));
384 1.8 mrg if (submap == NULL) {
385 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
386 1.8 mrg if (submap == NULL)
387 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
388 1.8 mrg }
389 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
390 1.112 para submap->pmap = vm_map_pmap(map);
391 1.1 mrg
392 1.8 mrg /*
393 1.8 mrg * now let uvm_map_submap plug in it...
394 1.8 mrg */
395 1.1 mrg
396 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
397 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
398 1.1 mrg
399 1.112 para return(submap);
400 1.1 mrg }
401 1.1 mrg
402 1.1 mrg /*
403 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
404 1.1 mrg */
405 1.1 mrg
406 1.8 mrg void
407 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
408 1.1 mrg {
409 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
410 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
411 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
412 1.53 chs struct vm_page *pg;
413 1.52 chs voff_t curoff, nextoff;
414 1.53 chs int swpgonlydelta = 0;
415 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
416 1.1 mrg
417 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
418 1.78 yamt KASSERT(startva < endva);
419 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
420 1.78 yamt
421 1.109 rmind mutex_enter(uobj->vmobjlock);
422 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
423 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
424 1.52 chs nextoff = curoff + PAGE_SIZE;
425 1.52 chs pg = uvm_pagelookup(uobj, curoff);
426 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
427 1.52 chs pg->flags |= PG_WANTED;
428 1.109 rmind UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
429 1.52 chs "km_pgrm", 0);
430 1.109 rmind mutex_enter(uobj->vmobjlock);
431 1.52 chs nextoff = curoff;
432 1.8 mrg continue;
433 1.52 chs }
434 1.8 mrg
435 1.52 chs /*
436 1.52 chs * free the swap slot, then the page.
437 1.52 chs */
438 1.8 mrg
439 1.53 chs if (pg == NULL &&
440 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
441 1.53 chs swpgonlydelta++;
442 1.53 chs }
443 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
444 1.53 chs if (pg != NULL) {
445 1.97 ad mutex_enter(&uvm_pageqlock);
446 1.53 chs uvm_pagefree(pg);
447 1.97 ad mutex_exit(&uvm_pageqlock);
448 1.53 chs }
449 1.8 mrg }
450 1.109 rmind mutex_exit(uobj->vmobjlock);
451 1.8 mrg
452 1.54 chs if (swpgonlydelta > 0) {
453 1.95 ad mutex_enter(&uvm_swap_data_lock);
454 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
455 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
456 1.95 ad mutex_exit(&uvm_swap_data_lock);
457 1.54 chs }
458 1.24 thorpej }
459 1.24 thorpej
460 1.24 thorpej
461 1.24 thorpej /*
462 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
463 1.78 yamt * regions.
464 1.24 thorpej *
465 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
466 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
467 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
468 1.52 chs * be on the active or inactive queues (because they have no object).
469 1.24 thorpej */
470 1.24 thorpej
471 1.24 thorpej void
472 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
473 1.24 thorpej {
474 1.120.2.1 riz #define __PGRM_BATCH 16
475 1.52 chs struct vm_page *pg;
476 1.120.2.1 riz paddr_t pa[__PGRM_BATCH];
477 1.120.2.1 riz int npgrm, i;
478 1.120.2.1 riz vaddr_t va, batch_vastart;
479 1.120.2.1 riz
480 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
481 1.24 thorpej
482 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
483 1.102 ad KASSERT(vm_map_min(map) <= start);
484 1.78 yamt KASSERT(start < end);
485 1.102 ad KASSERT(end <= vm_map_max(map));
486 1.78 yamt
487 1.120.2.1 riz for (va = start; va < end;) {
488 1.120.2.1 riz batch_vastart = va;
489 1.120.2.1 riz /* create a batch of at most __PGRM_BATCH pages to free */
490 1.120.2.1 riz for (i = 0;
491 1.120.2.1 riz i < __PGRM_BATCH && va < end;
492 1.120.2.1 riz va += PAGE_SIZE) {
493 1.120.2.1 riz if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
494 1.120.2.1 riz continue;
495 1.120.2.1 riz }
496 1.120.2.1 riz i++;
497 1.120.2.1 riz }
498 1.120.2.1 riz npgrm = i;
499 1.120.2.1 riz /* now remove the mappings */
500 1.120.2.1 riz pmap_kremove(batch_vastart, PAGE_SIZE * npgrm);
501 1.120.2.1 riz /* and free the pages */
502 1.120.2.1 riz for (i = 0; i < npgrm; i++) {
503 1.120.2.1 riz pg = PHYS_TO_VM_PAGE(pa[i]);
504 1.120.2.1 riz KASSERT(pg);
505 1.120.2.1 riz KASSERT(pg->uobject == NULL && pg->uanon == NULL);
506 1.120.2.1 riz KASSERT((pg->flags & PG_BUSY) == 0);
507 1.120.2.1 riz uvm_pagefree(pg);
508 1.40 chs }
509 1.24 thorpej }
510 1.120.2.1 riz #undef __PGRM_BATCH
511 1.1 mrg }
512 1.1 mrg
513 1.78 yamt #if defined(DEBUG)
514 1.78 yamt void
515 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
516 1.78 yamt {
517 1.102 ad struct vm_page *pg;
518 1.78 yamt vaddr_t va;
519 1.78 yamt paddr_t pa;
520 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
521 1.78 yamt
522 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
523 1.102 ad KDASSERT(vm_map_min(map) <= start);
524 1.78 yamt KDASSERT(start < end);
525 1.102 ad KDASSERT(end <= vm_map_max(map));
526 1.78 yamt
527 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
528 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
529 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
530 1.81 simonb (void *)va, (long long)pa);
531 1.78 yamt }
532 1.102 ad if ((map->flags & VM_MAP_INTRSAFE) == 0) {
533 1.109 rmind mutex_enter(uvm_kernel_object->vmobjlock);
534 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
535 1.78 yamt va - vm_map_min(kernel_map));
536 1.109 rmind mutex_exit(uvm_kernel_object->vmobjlock);
537 1.78 yamt if (pg) {
538 1.78 yamt panic("uvm_km_check_empty: "
539 1.78 yamt "has page hashed at %p", (const void *)va);
540 1.78 yamt }
541 1.78 yamt }
542 1.78 yamt }
543 1.78 yamt }
544 1.78 yamt #endif /* defined(DEBUG) */
545 1.1 mrg
546 1.1 mrg /*
547 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
548 1.1 mrg *
549 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
550 1.1 mrg * free VM space in the map... caller should be prepared to handle
551 1.1 mrg * this case.
552 1.1 mrg * => we return KVA of memory allocated
553 1.1 mrg */
554 1.1 mrg
555 1.14 eeh vaddr_t
556 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
557 1.1 mrg {
558 1.14 eeh vaddr_t kva, loopva;
559 1.14 eeh vaddr_t offset;
560 1.44 thorpej vsize_t loopsize;
561 1.8 mrg struct vm_page *pg;
562 1.78 yamt struct uvm_object *obj;
563 1.78 yamt int pgaflags;
564 1.89 drochner vm_prot_t prot;
565 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
566 1.1 mrg
567 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
568 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
569 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
570 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
571 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
572 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
573 1.1 mrg
574 1.8 mrg /*
575 1.8 mrg * setup for call
576 1.8 mrg */
577 1.8 mrg
578 1.78 yamt kva = vm_map_min(map); /* hint */
579 1.8 mrg size = round_page(size);
580 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
581 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
582 1.78 yamt map, obj, size, flags);
583 1.1 mrg
584 1.8 mrg /*
585 1.8 mrg * allocate some virtual space
586 1.8 mrg */
587 1.8 mrg
588 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
589 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
590 1.78 yamt UVM_ADV_RANDOM,
591 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
592 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
593 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
594 1.8 mrg return(0);
595 1.8 mrg }
596 1.8 mrg
597 1.8 mrg /*
598 1.8 mrg * if all we wanted was VA, return now
599 1.8 mrg */
600 1.8 mrg
601 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
602 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
603 1.8 mrg return(kva);
604 1.8 mrg }
605 1.40 chs
606 1.8 mrg /*
607 1.8 mrg * recover object offset from virtual address
608 1.8 mrg */
609 1.8 mrg
610 1.8 mrg offset = kva - vm_map_min(kernel_map);
611 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
612 1.8 mrg
613 1.8 mrg /*
614 1.8 mrg * now allocate and map in the memory... note that we are the only ones
615 1.8 mrg * whom should ever get a handle on this area of VM.
616 1.8 mrg */
617 1.8 mrg
618 1.8 mrg loopva = kva;
619 1.44 thorpej loopsize = size;
620 1.78 yamt
621 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
622 1.103 ad if (flags & UVM_KMF_NOWAIT)
623 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
624 1.78 yamt if (flags & UVM_KMF_ZERO)
625 1.78 yamt pgaflags |= UVM_PGA_ZERO;
626 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
627 1.89 drochner if (flags & UVM_KMF_EXEC)
628 1.89 drochner prot |= VM_PROT_EXECUTE;
629 1.44 thorpej while (loopsize) {
630 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
631 1.114 matt "loopva=%#"PRIxVADDR, loopva);
632 1.78 yamt
633 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
634 1.107 matt #ifdef UVM_KM_VMFREELIST
635 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
636 1.107 matt #else
637 1.107 matt UVM_PGA_STRAT_NORMAL, 0
638 1.107 matt #endif
639 1.107 matt );
640 1.47 chs
641 1.8 mrg /*
642 1.8 mrg * out of memory?
643 1.8 mrg */
644 1.8 mrg
645 1.35 thorpej if (__predict_false(pg == NULL)) {
646 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
647 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
648 1.8 mrg /* free everything! */
649 1.78 yamt uvm_km_free(map, kva, size,
650 1.78 yamt flags & UVM_KMF_TYPEMASK);
651 1.58 chs return (0);
652 1.8 mrg } else {
653 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
654 1.8 mrg continue;
655 1.8 mrg }
656 1.8 mrg }
657 1.47 chs
658 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
659 1.78 yamt UVM_PAGE_OWN(pg, NULL);
660 1.78 yamt
661 1.8 mrg /*
662 1.52 chs * map it in
663 1.8 mrg */
664 1.40 chs
665 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
666 1.106 cegger prot, PMAP_KMPAGE);
667 1.8 mrg loopva += PAGE_SIZE;
668 1.8 mrg offset += PAGE_SIZE;
669 1.44 thorpej loopsize -= PAGE_SIZE;
670 1.8 mrg }
671 1.69 junyoung
672 1.112 para pmap_update(pmap_kernel());
673 1.69 junyoung
674 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
675 1.8 mrg return(kva);
676 1.1 mrg }
677 1.1 mrg
678 1.1 mrg /*
679 1.1 mrg * uvm_km_free: free an area of kernel memory
680 1.1 mrg */
681 1.1 mrg
682 1.8 mrg void
683 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
684 1.8 mrg {
685 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
686 1.1 mrg
687 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
688 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
689 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
690 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
691 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
692 1.1 mrg
693 1.8 mrg size = round_page(size);
694 1.1 mrg
695 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
696 1.78 yamt uvm_km_pgremove(addr, addr + size);
697 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
698 1.109 rmind /*
699 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
700 1.109 rmind * remove it after. See comment below about KVA visibility.
701 1.109 rmind */
702 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
703 1.8 mrg }
704 1.99 yamt
705 1.99 yamt /*
706 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
707 1.109 rmind * KVA becomes globally available.
708 1.99 yamt */
709 1.8 mrg
710 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
711 1.66 pk }
712 1.66 pk
713 1.10 thorpej /* Sanity; must specify both or none. */
714 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
715 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
716 1.10 thorpej #error Must specify MAP and UNMAP together.
717 1.10 thorpej #endif
718 1.10 thorpej
719 1.112 para int
720 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
721 1.112 para vmem_addr_t *addr)
722 1.72 yamt {
723 1.72 yamt struct vm_page *pg;
724 1.112 para vmem_addr_t va;
725 1.112 para int rc;
726 1.112 para vaddr_t loopva;
727 1.112 para vsize_t loopsize;
728 1.72 yamt
729 1.112 para size = round_page(size);
730 1.72 yamt
731 1.112 para #if defined(PMAP_MAP_POOLPAGE)
732 1.112 para if (size == PAGE_SIZE) {
733 1.72 yamt again:
734 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
735 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
736 1.112 para 0 : UVM_PGA_USERESERVE);
737 1.112 para #else
738 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
739 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
740 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
741 1.112 para if (__predict_false(pg == NULL)) {
742 1.112 para if (flags & VM_SLEEP) {
743 1.112 para uvm_wait("plpg");
744 1.112 para goto again;
745 1.112 para }
746 1.120.2.2 bouyer return ENOMEM;
747 1.112 para }
748 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
749 1.112 para if (__predict_false(va == 0)) {
750 1.112 para uvm_pagefree(pg);
751 1.112 para return ENOMEM;
752 1.72 yamt }
753 1.112 para *addr = va;
754 1.112 para return 0;
755 1.72 yamt }
756 1.112 para #endif /* PMAP_MAP_POOLPAGE */
757 1.112 para
758 1.112 para rc = vmem_alloc(vm, size, flags, &va);
759 1.112 para if (rc != 0)
760 1.112 para return rc;
761 1.72 yamt
762 1.120.2.3 riz #ifdef PMAP_GROWKERNEL
763 1.120.2.3 riz /*
764 1.120.2.3 riz * These VA allocations happen independently of uvm_map
765 1.120.2.3 riz * so this allocation must not extend beyond the current limit.
766 1.120.2.3 riz */
767 1.120.2.3 riz KASSERTMSG(uvm_maxkaddr >= va + size,
768 1.120.2.3 riz "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
769 1.120.2.3 riz uvm_maxkaddr, va, size);
770 1.120.2.3 riz #endif
771 1.120.2.3 riz
772 1.112 para loopva = va;
773 1.112 para loopsize = size;
774 1.72 yamt
775 1.112 para while (loopsize) {
776 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
777 1.114 matt "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
778 1.114 matt loopva, loopsize, vm);
779 1.114 matt
780 1.114 matt pg = uvm_pagealloc(NULL, loopva, NULL,
781 1.115 matt UVM_FLAG_COLORMATCH
782 1.114 matt | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
783 1.112 para if (__predict_false(pg == NULL)) {
784 1.112 para if (flags & VM_SLEEP) {
785 1.112 para uvm_wait("plpg");
786 1.112 para continue;
787 1.112 para } else {
788 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
789 1.112 para va + size);
790 1.120.2.3.2.1 bouyer vmem_free(vm, va, size);
791 1.112 para return ENOMEM;
792 1.112 para }
793 1.112 para }
794 1.120.2.2 bouyer
795 1.112 para pg->flags &= ~PG_BUSY; /* new page */
796 1.112 para UVM_PAGE_OWN(pg, NULL);
797 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
798 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
799 1.107 matt
800 1.112 para loopva += PAGE_SIZE;
801 1.112 para loopsize -= PAGE_SIZE;
802 1.15 thorpej }
803 1.112 para pmap_update(pmap_kernel());
804 1.112 para
805 1.112 para *addr = va;
806 1.16 thorpej
807 1.112 para return 0;
808 1.10 thorpej }
809 1.10 thorpej
810 1.10 thorpej void
811 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
812 1.72 yamt {
813 1.112 para
814 1.112 para size = round_page(size);
815 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
816 1.112 para if (size == PAGE_SIZE) {
817 1.112 para paddr_t pa;
818 1.72 yamt
819 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
820 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
821 1.72 yamt return;
822 1.72 yamt }
823 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
824 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
825 1.112 para pmap_update(pmap_kernel());
826 1.72 yamt
827 1.112 para vmem_free(vm, addr, size);
828 1.72 yamt }
829 1.72 yamt
830 1.112 para bool
831 1.112 para uvm_km_va_starved_p(void)
832 1.10 thorpej {
833 1.112 para vmem_size_t total;
834 1.112 para vmem_size_t free;
835 1.112 para
836 1.120.2.3 riz if (kmem_arena == NULL)
837 1.120.2.3 riz return false;
838 1.120.2.3 riz
839 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
840 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
841 1.10 thorpej
842 1.112 para return (free < (total / 10));
843 1.1 mrg }
844