uvm_km.c revision 1.126 1 1.126 para /* $NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.126 para * the vm system has several standard kernel submaps/arenas, including:
87 1.126 para * kmem_arena => used for kmem/pool (memoryallocators(9))
88 1.7 chuck * pager_map => used to map "buf" structures into kernel space
89 1.7 chuck * exec_map => used during exec to handle exec args
90 1.7 chuck * etc...
91 1.7 chuck *
92 1.126 para * the kmem_arena is a "special submap", as it lives a fixed map entry
93 1.126 para * within the kernel_map and controlled by vmem(9).
94 1.126 para *
95 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
96 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 1.7 chuck * are "special" and never die). all kernel objects should be thought of
98 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
100 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 1.7 chuck *
102 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
103 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
104 1.47 chs * large chunks of a kernel object's space go unused either because
105 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
106 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
107 1.7 chuck * objects, the only part of the object that can ever be populated is the
108 1.7 chuck * offsets that are managed by the submap.
109 1.7 chuck *
110 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
111 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 1.7 chuck * example:
113 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
117 1.47 chs * mapped at 0xf8235000.
118 1.7 chuck *
119 1.7 chuck * kernel object have one other special property: when the kernel virtual
120 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
121 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
122 1.7 chuck * this has to be done because there is no backing store for kernel pages
123 1.7 chuck * and no need to save them after they are no longer referenced.
124 1.126 para *
125 1.126 para * kmem_arena: main arena controlling the kernel kva used by other arenas.
126 1.126 para * kmem_va_arena: it utilizes quantum caching for fast allocations and to
127 1.126 para * lower fragmentation. the pool and kmem allocate from this arena
128 1.126 para * except for some pool meta-data.
129 1.126 para *
130 1.126 para * arenas for metadata allocations used by vmem(9) and pool(9)
131 1.126 para * note: these arenas can't use quantum caching, the kmem_va_meta_arena
132 1.126 para * compensates for this by importing larger chunks from kmem_arena.
133 1.126 para *
134 1.126 para * kmem_va_meta_arena: space for metadata is allocated from this arena.
135 1.126 para * kmem_meta_arena: imports from kmem_va_meta_arena.
136 1.126 para * allocations from this arena are backed with vm_pages.
137 1.126 para *
138 1.126 para * arena stacking:
139 1.126 para * kmem_arena
140 1.126 para * kmem_va_arena
141 1.126 para * kmem_va_meta_arena
142 1.126 para * kmem_meta_arena
143 1.126 para *
144 1.7 chuck */
145 1.55 lukem
146 1.55 lukem #include <sys/cdefs.h>
147 1.126 para __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.126 2012/06/02 08:42:37 para Exp $");
148 1.55 lukem
149 1.55 lukem #include "opt_uvmhist.h"
150 1.7 chuck
151 1.117 para #include "opt_kmempages.h"
152 1.117 para
153 1.117 para #ifndef NKMEMPAGES
154 1.117 para #define NKMEMPAGES 0
155 1.117 para #endif
156 1.117 para
157 1.117 para /*
158 1.117 para * Defaults for lower and upper-bounds for the kmem_arena page count.
159 1.117 para * Can be overridden by kernel config options.
160 1.117 para */
161 1.117 para #ifndef NKMEMPAGES_MIN
162 1.117 para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
163 1.117 para #endif
164 1.117 para
165 1.117 para #ifndef NKMEMPAGES_MAX
166 1.117 para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
167 1.117 para #endif
168 1.117 para
169 1.117 para
170 1.1 mrg #include <sys/param.h>
171 1.1 mrg #include <sys/systm.h>
172 1.1 mrg #include <sys/proc.h>
173 1.72 yamt #include <sys/pool.h>
174 1.112 para #include <sys/vmem.h>
175 1.112 para #include <sys/kmem.h>
176 1.1 mrg
177 1.1 mrg #include <uvm/uvm.h>
178 1.1 mrg
179 1.1 mrg /*
180 1.1 mrg * global data structures
181 1.1 mrg */
182 1.1 mrg
183 1.49 chs struct vm_map *kernel_map = NULL;
184 1.1 mrg
185 1.1 mrg /*
186 1.1 mrg * local data structues
187 1.1 mrg */
188 1.1 mrg
189 1.112 para static struct vm_map kernel_map_store;
190 1.112 para static struct vm_map_entry kernel_image_mapent_store;
191 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
192 1.1 mrg
193 1.117 para int nkmempages = 0;
194 1.112 para vaddr_t kmembase;
195 1.112 para vsize_t kmemsize;
196 1.72 yamt
197 1.112 para vmem_t *kmem_arena;
198 1.112 para vmem_t *kmem_va_arena;
199 1.72 yamt
200 1.72 yamt /*
201 1.117 para * kmeminit_nkmempages: calculate the size of kmem_arena.
202 1.117 para */
203 1.117 para void
204 1.117 para kmeminit_nkmempages(void)
205 1.117 para {
206 1.117 para int npages;
207 1.117 para
208 1.117 para if (nkmempages != 0) {
209 1.117 para /*
210 1.117 para * It's already been set (by us being here before)
211 1.117 para * bail out now;
212 1.117 para */
213 1.117 para return;
214 1.117 para }
215 1.117 para
216 1.119 para #if defined(PMAP_MAP_POOLPAGE)
217 1.119 para npages = (physmem / 4);
218 1.119 para #else
219 1.119 para npages = (physmem / 3) * 2;
220 1.119 para #endif /* defined(PMAP_MAP_POOLPAGE) */
221 1.117 para
222 1.119 para #ifndef NKMEMPAGES_MAX_UNLIMITED
223 1.117 para if (npages > NKMEMPAGES_MAX)
224 1.117 para npages = NKMEMPAGES_MAX;
225 1.119 para #endif
226 1.117 para
227 1.117 para if (npages < NKMEMPAGES_MIN)
228 1.117 para npages = NKMEMPAGES_MIN;
229 1.117 para
230 1.117 para nkmempages = npages;
231 1.117 para }
232 1.117 para
233 1.117 para /*
234 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
235 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
236 1.1 mrg *
237 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
238 1.82 christos * we assume that [vmin -> start] has already been allocated and that
239 1.62 thorpej * "end" is the end.
240 1.1 mrg */
241 1.1 mrg
242 1.8 mrg void
243 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
244 1.1 mrg {
245 1.119 para bool kmem_arena_small;
246 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
247 1.118 matt struct uvm_map_args args;
248 1.118 matt int error;
249 1.118 matt
250 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
251 1.118 matt UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
252 1.118 matt start, end, 0,0);
253 1.27 thorpej
254 1.117 para kmeminit_nkmempages();
255 1.119 para kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
256 1.119 para kmem_arena_small = kmemsize < 64 * 1024 * 1024;
257 1.112 para
258 1.118 matt UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
259 1.118 matt
260 1.27 thorpej /*
261 1.27 thorpej * next, init kernel memory objects.
262 1.8 mrg */
263 1.1 mrg
264 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
265 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
266 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
267 1.1 mrg
268 1.24 thorpej /*
269 1.56 thorpej * init the map and reserve any space that might already
270 1.56 thorpej * have been allocated kernel space before installing.
271 1.8 mrg */
272 1.1 mrg
273 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
274 1.112 para kernel_map_store.pmap = pmap_kernel();
275 1.70 yamt if (start != base) {
276 1.112 para error = uvm_map_prepare(&kernel_map_store,
277 1.71 yamt base, start - base,
278 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
279 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
280 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
281 1.70 yamt if (!error) {
282 1.112 para kernel_image_mapent_store.flags =
283 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
284 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
285 1.112 para &kernel_image_mapent_store);
286 1.70 yamt }
287 1.70 yamt
288 1.70 yamt if (error)
289 1.70 yamt panic(
290 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
291 1.112 para
292 1.112 para kmembase = args.uma_start + args.uma_size;
293 1.114 matt } else {
294 1.114 matt kmembase = base;
295 1.70 yamt }
296 1.47 chs
297 1.118 matt error = uvm_map_prepare(&kernel_map_store,
298 1.118 matt kmembase, kmemsize,
299 1.118 matt NULL, UVM_UNKNOWN_OFFSET, 0,
300 1.118 matt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
301 1.118 matt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
302 1.118 matt if (!error) {
303 1.118 matt kernel_kmem_mapent_store.flags =
304 1.118 matt UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
305 1.118 matt error = uvm_map_enter(&kernel_map_store, &args,
306 1.118 matt &kernel_kmem_mapent_store);
307 1.118 matt }
308 1.118 matt
309 1.118 matt if (error)
310 1.118 matt panic("uvm_km_bootstrap: could not reserve kernel kmem");
311 1.118 matt
312 1.8 mrg /*
313 1.8 mrg * install!
314 1.8 mrg */
315 1.8 mrg
316 1.112 para kernel_map = &kernel_map_store;
317 1.112 para
318 1.112 para pool_subsystem_init();
319 1.112 para vmem_bootstrap();
320 1.112 para
321 1.112 para kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
322 1.112 para NULL, NULL, NULL,
323 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
324 1.112 para
325 1.112 para vmem_init(kmem_arena);
326 1.112 para
327 1.118 matt UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
328 1.118 matt ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
329 1.118 matt
330 1.112 para kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
331 1.112 para vmem_alloc, vmem_free, kmem_arena,
332 1.120 para (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
333 1.119 para VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
334 1.118 matt
335 1.118 matt UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
336 1.112 para }
337 1.112 para
338 1.112 para /*
339 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
340 1.112 para * and start the pool/kmem allocator.
341 1.112 para */
342 1.112 para void
343 1.112 para uvm_km_init(void)
344 1.112 para {
345 1.112 para
346 1.112 para kmem_init();
347 1.112 para
348 1.112 para kmeminit(); // killme
349 1.1 mrg }
350 1.1 mrg
351 1.1 mrg /*
352 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
353 1.1 mrg * is allocated all references to that area of VM must go through it. this
354 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
355 1.1 mrg *
356 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
357 1.112 para * pager_map => used to map "buf" structures into kernel space
358 1.5 thorpej * by the submap must start
359 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
360 1.1 mrg * alloc a new map
361 1.1 mrg */
362 1.78 yamt
363 1.8 mrg struct vm_map *
364 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
365 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
366 1.112 para struct vm_map *submap)
367 1.8 mrg {
368 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
369 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
370 1.1 mrg
371 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
372 1.71 yamt
373 1.8 mrg size = round_page(size); /* round up to pagesize */
374 1.1 mrg
375 1.8 mrg /*
376 1.8 mrg * first allocate a blank spot in the parent map
377 1.8 mrg */
378 1.8 mrg
379 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
380 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
381 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
382 1.118 matt panic("%s: unable to allocate space in parent map", __func__);
383 1.8 mrg }
384 1.8 mrg
385 1.8 mrg /*
386 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
387 1.8 mrg */
388 1.1 mrg
389 1.82 christos *vmax = *vmin + size;
390 1.5 thorpej
391 1.8 mrg /*
392 1.8 mrg * add references to pmap and create or init the submap
393 1.8 mrg */
394 1.1 mrg
395 1.8 mrg pmap_reference(vm_map_pmap(map));
396 1.8 mrg if (submap == NULL) {
397 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
398 1.8 mrg if (submap == NULL)
399 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
400 1.8 mrg }
401 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
402 1.112 para submap->pmap = vm_map_pmap(map);
403 1.1 mrg
404 1.8 mrg /*
405 1.8 mrg * now let uvm_map_submap plug in it...
406 1.8 mrg */
407 1.1 mrg
408 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
409 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
410 1.1 mrg
411 1.112 para return(submap);
412 1.1 mrg }
413 1.1 mrg
414 1.1 mrg /*
415 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
416 1.1 mrg */
417 1.1 mrg
418 1.8 mrg void
419 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
420 1.1 mrg {
421 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
422 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
423 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
424 1.53 chs struct vm_page *pg;
425 1.52 chs voff_t curoff, nextoff;
426 1.53 chs int swpgonlydelta = 0;
427 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
428 1.1 mrg
429 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
430 1.78 yamt KASSERT(startva < endva);
431 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
432 1.78 yamt
433 1.109 rmind mutex_enter(uobj->vmobjlock);
434 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
435 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
436 1.52 chs nextoff = curoff + PAGE_SIZE;
437 1.52 chs pg = uvm_pagelookup(uobj, curoff);
438 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
439 1.52 chs pg->flags |= PG_WANTED;
440 1.109 rmind UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
441 1.52 chs "km_pgrm", 0);
442 1.109 rmind mutex_enter(uobj->vmobjlock);
443 1.52 chs nextoff = curoff;
444 1.8 mrg continue;
445 1.52 chs }
446 1.8 mrg
447 1.52 chs /*
448 1.52 chs * free the swap slot, then the page.
449 1.52 chs */
450 1.8 mrg
451 1.53 chs if (pg == NULL &&
452 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
453 1.53 chs swpgonlydelta++;
454 1.53 chs }
455 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
456 1.53 chs if (pg != NULL) {
457 1.97 ad mutex_enter(&uvm_pageqlock);
458 1.53 chs uvm_pagefree(pg);
459 1.97 ad mutex_exit(&uvm_pageqlock);
460 1.53 chs }
461 1.8 mrg }
462 1.109 rmind mutex_exit(uobj->vmobjlock);
463 1.8 mrg
464 1.54 chs if (swpgonlydelta > 0) {
465 1.95 ad mutex_enter(&uvm_swap_data_lock);
466 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
467 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
468 1.95 ad mutex_exit(&uvm_swap_data_lock);
469 1.54 chs }
470 1.24 thorpej }
471 1.24 thorpej
472 1.24 thorpej
473 1.24 thorpej /*
474 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
475 1.78 yamt * regions.
476 1.24 thorpej *
477 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
478 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
479 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
480 1.52 chs * be on the active or inactive queues (because they have no object).
481 1.24 thorpej */
482 1.24 thorpej
483 1.24 thorpej void
484 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
485 1.24 thorpej {
486 1.122 bouyer #define __PGRM_BATCH 16
487 1.52 chs struct vm_page *pg;
488 1.122 bouyer paddr_t pa[__PGRM_BATCH];
489 1.122 bouyer int npgrm, i;
490 1.122 bouyer vaddr_t va, batch_vastart;
491 1.122 bouyer
492 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
493 1.24 thorpej
494 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
495 1.102 ad KASSERT(vm_map_min(map) <= start);
496 1.78 yamt KASSERT(start < end);
497 1.102 ad KASSERT(end <= vm_map_max(map));
498 1.78 yamt
499 1.122 bouyer for (va = start; va < end;) {
500 1.122 bouyer batch_vastart = va;
501 1.122 bouyer /* create a batch of at most __PGRM_BATCH pages to free */
502 1.122 bouyer for (i = 0;
503 1.122 bouyer i < __PGRM_BATCH && va < end;
504 1.122 bouyer va += PAGE_SIZE) {
505 1.122 bouyer if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
506 1.122 bouyer continue;
507 1.122 bouyer }
508 1.122 bouyer i++;
509 1.122 bouyer }
510 1.122 bouyer npgrm = i;
511 1.122 bouyer /* now remove the mappings */
512 1.124 bouyer pmap_kremove(batch_vastart, va - batch_vastart);
513 1.122 bouyer /* and free the pages */
514 1.122 bouyer for (i = 0; i < npgrm; i++) {
515 1.122 bouyer pg = PHYS_TO_VM_PAGE(pa[i]);
516 1.122 bouyer KASSERT(pg);
517 1.122 bouyer KASSERT(pg->uobject == NULL && pg->uanon == NULL);
518 1.122 bouyer KASSERT((pg->flags & PG_BUSY) == 0);
519 1.122 bouyer uvm_pagefree(pg);
520 1.40 chs }
521 1.24 thorpej }
522 1.122 bouyer #undef __PGRM_BATCH
523 1.1 mrg }
524 1.1 mrg
525 1.78 yamt #if defined(DEBUG)
526 1.78 yamt void
527 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
528 1.78 yamt {
529 1.102 ad struct vm_page *pg;
530 1.78 yamt vaddr_t va;
531 1.78 yamt paddr_t pa;
532 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
533 1.78 yamt
534 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
535 1.102 ad KDASSERT(vm_map_min(map) <= start);
536 1.78 yamt KDASSERT(start < end);
537 1.102 ad KDASSERT(end <= vm_map_max(map));
538 1.78 yamt
539 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
540 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
541 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
542 1.81 simonb (void *)va, (long long)pa);
543 1.78 yamt }
544 1.121 rmind mutex_enter(uvm_kernel_object->vmobjlock);
545 1.121 rmind pg = uvm_pagelookup(uvm_kernel_object,
546 1.121 rmind va - vm_map_min(kernel_map));
547 1.121 rmind mutex_exit(uvm_kernel_object->vmobjlock);
548 1.121 rmind if (pg) {
549 1.121 rmind panic("uvm_km_check_empty: "
550 1.121 rmind "has page hashed at %p", (const void *)va);
551 1.78 yamt }
552 1.78 yamt }
553 1.78 yamt }
554 1.78 yamt #endif /* defined(DEBUG) */
555 1.1 mrg
556 1.1 mrg /*
557 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
558 1.1 mrg *
559 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
560 1.1 mrg * free VM space in the map... caller should be prepared to handle
561 1.1 mrg * this case.
562 1.1 mrg * => we return KVA of memory allocated
563 1.1 mrg */
564 1.1 mrg
565 1.14 eeh vaddr_t
566 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
567 1.1 mrg {
568 1.14 eeh vaddr_t kva, loopva;
569 1.14 eeh vaddr_t offset;
570 1.44 thorpej vsize_t loopsize;
571 1.8 mrg struct vm_page *pg;
572 1.78 yamt struct uvm_object *obj;
573 1.78 yamt int pgaflags;
574 1.89 drochner vm_prot_t prot;
575 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
576 1.1 mrg
577 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
578 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
579 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
580 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
581 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
582 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
583 1.1 mrg
584 1.8 mrg /*
585 1.8 mrg * setup for call
586 1.8 mrg */
587 1.8 mrg
588 1.78 yamt kva = vm_map_min(map); /* hint */
589 1.8 mrg size = round_page(size);
590 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
591 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
592 1.78 yamt map, obj, size, flags);
593 1.1 mrg
594 1.8 mrg /*
595 1.8 mrg * allocate some virtual space
596 1.8 mrg */
597 1.8 mrg
598 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
599 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
600 1.78 yamt UVM_ADV_RANDOM,
601 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
602 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
603 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
604 1.8 mrg return(0);
605 1.8 mrg }
606 1.8 mrg
607 1.8 mrg /*
608 1.8 mrg * if all we wanted was VA, return now
609 1.8 mrg */
610 1.8 mrg
611 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
612 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
613 1.8 mrg return(kva);
614 1.8 mrg }
615 1.40 chs
616 1.8 mrg /*
617 1.8 mrg * recover object offset from virtual address
618 1.8 mrg */
619 1.8 mrg
620 1.8 mrg offset = kva - vm_map_min(kernel_map);
621 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
622 1.8 mrg
623 1.8 mrg /*
624 1.8 mrg * now allocate and map in the memory... note that we are the only ones
625 1.8 mrg * whom should ever get a handle on this area of VM.
626 1.8 mrg */
627 1.8 mrg
628 1.8 mrg loopva = kva;
629 1.44 thorpej loopsize = size;
630 1.78 yamt
631 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
632 1.103 ad if (flags & UVM_KMF_NOWAIT)
633 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
634 1.78 yamt if (flags & UVM_KMF_ZERO)
635 1.78 yamt pgaflags |= UVM_PGA_ZERO;
636 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
637 1.89 drochner if (flags & UVM_KMF_EXEC)
638 1.89 drochner prot |= VM_PROT_EXECUTE;
639 1.44 thorpej while (loopsize) {
640 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
641 1.114 matt "loopva=%#"PRIxVADDR, loopva);
642 1.78 yamt
643 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
644 1.107 matt #ifdef UVM_KM_VMFREELIST
645 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
646 1.107 matt #else
647 1.107 matt UVM_PGA_STRAT_NORMAL, 0
648 1.107 matt #endif
649 1.107 matt );
650 1.47 chs
651 1.8 mrg /*
652 1.8 mrg * out of memory?
653 1.8 mrg */
654 1.8 mrg
655 1.35 thorpej if (__predict_false(pg == NULL)) {
656 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
657 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
658 1.8 mrg /* free everything! */
659 1.78 yamt uvm_km_free(map, kva, size,
660 1.78 yamt flags & UVM_KMF_TYPEMASK);
661 1.58 chs return (0);
662 1.8 mrg } else {
663 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
664 1.8 mrg continue;
665 1.8 mrg }
666 1.8 mrg }
667 1.47 chs
668 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
669 1.78 yamt UVM_PAGE_OWN(pg, NULL);
670 1.78 yamt
671 1.8 mrg /*
672 1.52 chs * map it in
673 1.8 mrg */
674 1.40 chs
675 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
676 1.106 cegger prot, PMAP_KMPAGE);
677 1.8 mrg loopva += PAGE_SIZE;
678 1.8 mrg offset += PAGE_SIZE;
679 1.44 thorpej loopsize -= PAGE_SIZE;
680 1.8 mrg }
681 1.69 junyoung
682 1.112 para pmap_update(pmap_kernel());
683 1.69 junyoung
684 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
685 1.8 mrg return(kva);
686 1.1 mrg }
687 1.1 mrg
688 1.1 mrg /*
689 1.1 mrg * uvm_km_free: free an area of kernel memory
690 1.1 mrg */
691 1.1 mrg
692 1.8 mrg void
693 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
694 1.8 mrg {
695 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
696 1.1 mrg
697 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
698 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
699 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
700 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
701 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
702 1.1 mrg
703 1.8 mrg size = round_page(size);
704 1.1 mrg
705 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
706 1.78 yamt uvm_km_pgremove(addr, addr + size);
707 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
708 1.109 rmind /*
709 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
710 1.109 rmind * remove it after. See comment below about KVA visibility.
711 1.109 rmind */
712 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
713 1.8 mrg }
714 1.99 yamt
715 1.99 yamt /*
716 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
717 1.109 rmind * KVA becomes globally available.
718 1.99 yamt */
719 1.8 mrg
720 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
721 1.66 pk }
722 1.66 pk
723 1.10 thorpej /* Sanity; must specify both or none. */
724 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
725 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
726 1.10 thorpej #error Must specify MAP and UNMAP together.
727 1.10 thorpej #endif
728 1.10 thorpej
729 1.112 para int
730 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
731 1.112 para vmem_addr_t *addr)
732 1.72 yamt {
733 1.72 yamt struct vm_page *pg;
734 1.112 para vmem_addr_t va;
735 1.112 para int rc;
736 1.112 para vaddr_t loopva;
737 1.112 para vsize_t loopsize;
738 1.72 yamt
739 1.112 para size = round_page(size);
740 1.72 yamt
741 1.112 para #if defined(PMAP_MAP_POOLPAGE)
742 1.112 para if (size == PAGE_SIZE) {
743 1.72 yamt again:
744 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
745 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
746 1.112 para 0 : UVM_PGA_USERESERVE);
747 1.112 para #else
748 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
749 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
750 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
751 1.112 para if (__predict_false(pg == NULL)) {
752 1.112 para if (flags & VM_SLEEP) {
753 1.112 para uvm_wait("plpg");
754 1.112 para goto again;
755 1.112 para }
756 1.123 rmind return ENOMEM;
757 1.112 para }
758 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
759 1.112 para if (__predict_false(va == 0)) {
760 1.112 para uvm_pagefree(pg);
761 1.112 para return ENOMEM;
762 1.72 yamt }
763 1.112 para *addr = va;
764 1.112 para return 0;
765 1.72 yamt }
766 1.112 para #endif /* PMAP_MAP_POOLPAGE */
767 1.112 para
768 1.112 para rc = vmem_alloc(vm, size, flags, &va);
769 1.112 para if (rc != 0)
770 1.112 para return rc;
771 1.72 yamt
772 1.112 para loopva = va;
773 1.112 para loopsize = size;
774 1.72 yamt
775 1.112 para while (loopsize) {
776 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
777 1.114 matt "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
778 1.114 matt loopva, loopsize, vm);
779 1.114 matt
780 1.114 matt pg = uvm_pagealloc(NULL, loopva, NULL,
781 1.115 matt UVM_FLAG_COLORMATCH
782 1.114 matt | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
783 1.112 para if (__predict_false(pg == NULL)) {
784 1.112 para if (flags & VM_SLEEP) {
785 1.112 para uvm_wait("plpg");
786 1.112 para continue;
787 1.112 para } else {
788 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
789 1.112 para va + size);
790 1.125 yamt vmem_free(vm, va, size);
791 1.112 para return ENOMEM;
792 1.112 para }
793 1.112 para }
794 1.123 rmind
795 1.112 para pg->flags &= ~PG_BUSY; /* new page */
796 1.112 para UVM_PAGE_OWN(pg, NULL);
797 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
798 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
799 1.107 matt
800 1.112 para loopva += PAGE_SIZE;
801 1.112 para loopsize -= PAGE_SIZE;
802 1.15 thorpej }
803 1.112 para pmap_update(pmap_kernel());
804 1.112 para
805 1.112 para *addr = va;
806 1.16 thorpej
807 1.112 para return 0;
808 1.10 thorpej }
809 1.10 thorpej
810 1.10 thorpej void
811 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
812 1.72 yamt {
813 1.112 para
814 1.112 para size = round_page(size);
815 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
816 1.112 para if (size == PAGE_SIZE) {
817 1.112 para paddr_t pa;
818 1.72 yamt
819 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
820 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
821 1.72 yamt return;
822 1.72 yamt }
823 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
824 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
825 1.112 para pmap_update(pmap_kernel());
826 1.72 yamt
827 1.112 para vmem_free(vm, addr, size);
828 1.72 yamt }
829 1.72 yamt
830 1.112 para bool
831 1.112 para uvm_km_va_starved_p(void)
832 1.10 thorpej {
833 1.112 para vmem_size_t total;
834 1.112 para vmem_size_t free;
835 1.112 para
836 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
837 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
838 1.10 thorpej
839 1.112 para return (free < (total / 10));
840 1.1 mrg }
841