Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.14
      1  1.14      eeh /*	$NetBSD: uvm_km.c,v 1.14 1998/08/13 02:11:01 eeh Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5   1.1      mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6   1.1      mrg  */
      7   1.1      mrg /*
      8   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9   1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10   1.1      mrg  *
     11   1.1      mrg  * All rights reserved.
     12   1.1      mrg  *
     13   1.1      mrg  * This code is derived from software contributed to Berkeley by
     14   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15   1.1      mrg  *
     16   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     17   1.1      mrg  * modification, are permitted provided that the following conditions
     18   1.1      mrg  * are met:
     19   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     20   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     21   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     23   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     24   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     25   1.1      mrg  *    must display the following acknowledgement:
     26   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     27   1.1      mrg  *      Washington University, the University of California, Berkeley and
     28   1.1      mrg  *      its contributors.
     29   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     30   1.1      mrg  *    may be used to endorse or promote products derived from this software
     31   1.1      mrg  *    without specific prior written permission.
     32   1.1      mrg  *
     33   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43   1.1      mrg  * SUCH DAMAGE.
     44   1.1      mrg  *
     45   1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     46   1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     47   1.1      mrg  *
     48   1.1      mrg  *
     49   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50   1.1      mrg  * All rights reserved.
     51   1.1      mrg  *
     52   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     53   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     54   1.1      mrg  * notice and this permission notice appear in all copies of the
     55   1.1      mrg  * software, derivative works or modified versions, and any portions
     56   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     57   1.1      mrg  *
     58   1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59   1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61   1.1      mrg  *
     62   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     63   1.1      mrg  *
     64   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65   1.1      mrg  *  School of Computer Science
     66   1.1      mrg  *  Carnegie Mellon University
     67   1.1      mrg  *  Pittsburgh PA 15213-3890
     68   1.1      mrg  *
     69   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     70   1.1      mrg  * rights to redistribute these changes.
     71   1.1      mrg  */
     72   1.6      mrg 
     73   1.6      mrg #include "opt_uvmhist.h"
     74   1.6      mrg #include "opt_pmap_new.h"
     75   1.1      mrg 
     76   1.1      mrg /*
     77   1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     78   1.1      mrg  */
     79   1.1      mrg 
     80   1.7    chuck /*
     81   1.7    chuck  * overview of kernel memory management:
     82   1.7    chuck  *
     83   1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     84   1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     85   1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     86   1.7    chuck  *
     87   1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     88   1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     89   1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     90   1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     91   1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     92   1.7    chuck  * submap's lock -- not the kernel_map's lock.
     93   1.7    chuck  *
     94   1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     95   1.7    chuck  * up the locking and protection of the kernel address space into smaller
     96   1.7    chuck  * chunks.
     97   1.7    chuck  *
     98   1.7    chuck  * the vm system has several standard kernel submaps, including:
     99   1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
    100   1.7    chuck  *		malloc.   *** access to kmem_map must be protected
    101   1.7    chuck  *		by splimp() because we are allowed to call malloc()
    102   1.7    chuck  *		at interrupt time ***
    103   1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    104   1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    105   1.7    chuck  *   exec_map => used during exec to handle exec args
    106   1.7    chuck  *   etc...
    107   1.7    chuck  *
    108   1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    109   1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    110   1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    111   1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    112   1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    113   1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    114   1.7    chuck  *
    115   1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    116   1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    117   1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    118   1.7    chuck  * object (e.g. kmem_object, mb_object).
    119   1.7    chuck  *
    120   1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    121   1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    122   1.7    chuck  * large chunks of a kernel object's space go unused either because
    123   1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    124   1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    125   1.7    chuck  * objects, the only part of the object that can ever be populated is the
    126   1.7    chuck  * offsets that are managed by the submap.
    127   1.7    chuck  *
    128   1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    129   1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    130   1.7    chuck  * example:
    131   1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    132   1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    133   1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    134   1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    135   1.7    chuck  *   mapped at 0xf8235000.
    136   1.7    chuck  *
    137   1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    138   1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    139   1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    140   1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    141   1.7    chuck  * in those objects will typically not start at zero.
    142   1.7    chuck  *
    143   1.7    chuck  * kernel object have one other special property: when the kernel virtual
    144   1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    145   1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    146   1.7    chuck  * this has to be done because there is no backing store for kernel pages
    147   1.7    chuck  * and no need to save them after they are no longer referenced.
    148   1.7    chuck  */
    149   1.7    chuck 
    150   1.1      mrg #include <sys/param.h>
    151   1.1      mrg #include <sys/systm.h>
    152   1.1      mrg #include <sys/proc.h>
    153   1.1      mrg 
    154   1.1      mrg #include <vm/vm.h>
    155   1.1      mrg #include <vm/vm_page.h>
    156   1.1      mrg #include <vm/vm_kern.h>
    157   1.1      mrg 
    158   1.1      mrg #include <uvm/uvm.h>
    159   1.1      mrg 
    160   1.1      mrg /*
    161   1.1      mrg  * global data structures
    162   1.1      mrg  */
    163   1.1      mrg 
    164   1.1      mrg vm_map_t kernel_map = NULL;
    165   1.1      mrg 
    166   1.1      mrg /*
    167   1.1      mrg  * local functions
    168   1.1      mrg  */
    169   1.1      mrg 
    170  1.14      eeh static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    171   1.8      mrg 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    172   1.1      mrg /*
    173   1.1      mrg  * local data structues
    174   1.1      mrg  */
    175   1.1      mrg 
    176   1.1      mrg static struct vm_map		kernel_map_store;
    177   1.1      mrg static struct uvm_object	kmem_object_store;
    178   1.1      mrg static struct uvm_object	mb_object_store;
    179   1.1      mrg 
    180   1.1      mrg static struct uvm_pagerops km_pager = {
    181   1.8      mrg 	NULL,	/* init */
    182   1.8      mrg 	NULL, /* attach */
    183   1.8      mrg 	NULL, /* reference */
    184   1.8      mrg 	NULL, /* detach */
    185   1.8      mrg 	NULL, /* fault */
    186   1.8      mrg 	NULL, /* flush */
    187   1.8      mrg 	uvm_km_get, /* get */
    188   1.8      mrg 	/* ... rest are NULL */
    189   1.1      mrg };
    190   1.1      mrg 
    191   1.1      mrg /*
    192   1.1      mrg  * uvm_km_get: pager get function for kernel objects
    193   1.1      mrg  *
    194   1.1      mrg  * => currently we do not support pageout to the swap area, so this
    195   1.1      mrg  *    pager is very simple.    eventually we may want an anonymous
    196   1.1      mrg  *    object pager which will do paging.
    197   1.7    chuck  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    198   1.1      mrg  */
    199   1.1      mrg 
    200   1.1      mrg 
    201   1.8      mrg static int
    202   1.8      mrg uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    203   1.8      mrg 	struct uvm_object *uobj;
    204  1.14      eeh 	vaddr_t offset;
    205   1.8      mrg 	struct vm_page **pps;
    206   1.8      mrg 	int *npagesp;
    207   1.8      mrg 	int centeridx, advice, flags;
    208   1.8      mrg 	vm_prot_t access_type;
    209   1.8      mrg {
    210  1.14      eeh 	vaddr_t current_offset;
    211   1.8      mrg 	vm_page_t ptmp;
    212   1.8      mrg 	int lcv, gotpages, maxpages;
    213   1.8      mrg 	boolean_t done;
    214   1.8      mrg 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    215   1.8      mrg 
    216   1.8      mrg 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    217   1.8      mrg 
    218   1.8      mrg 	/*
    219   1.8      mrg 	 * get number of pages
    220   1.8      mrg 	 */
    221   1.8      mrg 
    222   1.8      mrg 	maxpages = *npagesp;
    223   1.8      mrg 
    224   1.8      mrg 	/*
    225   1.8      mrg 	 * step 1: handled the case where fault data structures are locked.
    226   1.8      mrg 	 */
    227   1.8      mrg 
    228   1.8      mrg 	if (flags & PGO_LOCKED) {
    229   1.8      mrg 
    230   1.8      mrg 		/*
    231   1.8      mrg 		 * step 1a: get pages that are already resident.   only do
    232   1.8      mrg 		 * this if the data structures are locked (i.e. the first time
    233   1.8      mrg 		 * through).
    234   1.8      mrg 		 */
    235   1.8      mrg 
    236   1.8      mrg 		done = TRUE;	/* be optimistic */
    237   1.8      mrg 		gotpages = 0;	/* # of pages we got so far */
    238   1.8      mrg 
    239   1.8      mrg 		for (lcv = 0, current_offset = offset ;
    240   1.8      mrg 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    241   1.8      mrg 
    242   1.8      mrg 			/* do we care about this page?  if not, skip it */
    243   1.8      mrg 			if (pps[lcv] == PGO_DONTCARE)
    244   1.8      mrg 				continue;
    245   1.8      mrg 
    246   1.8      mrg 			/* lookup page */
    247   1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    248   1.8      mrg 
    249   1.8      mrg 			/* null?  attempt to allocate the page */
    250   1.8      mrg 			if (ptmp == NULL) {
    251   1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    252   1.8      mrg 				    NULL);
    253   1.8      mrg 				if (ptmp) {
    254   1.8      mrg 					/* new page */
    255   1.8      mrg 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    256   1.8      mrg 					UVM_PAGE_OWN(ptmp, NULL);
    257   1.8      mrg 					uvm_pagezero(ptmp);
    258   1.8      mrg 				}
    259   1.8      mrg 			}
    260   1.8      mrg 
    261   1.8      mrg 			/*
    262   1.8      mrg 			 * to be useful must get a non-busy, non-released page
    263   1.8      mrg 			 */
    264   1.8      mrg 			if (ptmp == NULL ||
    265   1.8      mrg 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    266   1.8      mrg 				if (lcv == centeridx ||
    267   1.8      mrg 				    (flags & PGO_ALLPAGES) != 0)
    268   1.8      mrg 					/* need to do a wait or I/O! */
    269   1.8      mrg 					done = FALSE;
    270   1.8      mrg 				continue;
    271   1.8      mrg 			}
    272   1.8      mrg 
    273   1.8      mrg 			/*
    274   1.8      mrg 			 * useful page: busy/lock it and plug it in our
    275   1.8      mrg 			 * result array
    276   1.8      mrg 			 */
    277   1.8      mrg 
    278   1.8      mrg 			/* caller must un-busy this page */
    279   1.8      mrg 			ptmp->flags |= PG_BUSY;
    280   1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    281   1.8      mrg 			pps[lcv] = ptmp;
    282   1.8      mrg 			gotpages++;
    283   1.8      mrg 
    284   1.8      mrg 		}	/* "for" lcv loop */
    285   1.8      mrg 
    286   1.8      mrg 		/*
    287   1.8      mrg 		 * step 1b: now we've either done everything needed or we
    288   1.8      mrg 		 * to unlock and do some waiting or I/O.
    289   1.8      mrg 		 */
    290   1.8      mrg 
    291   1.8      mrg 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    292   1.8      mrg 
    293   1.8      mrg 		*npagesp = gotpages;
    294   1.8      mrg 		if (done)
    295   1.8      mrg 			return(VM_PAGER_OK);		/* bingo! */
    296   1.8      mrg 		else
    297   1.8      mrg 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    298   1.8      mrg 							 * unlock and I/O */
    299   1.8      mrg 	}
    300   1.8      mrg 
    301   1.8      mrg 	/*
    302   1.8      mrg 	 * step 2: get non-resident or busy pages.
    303   1.8      mrg 	 * object is locked.   data structures are unlocked.
    304   1.8      mrg 	 */
    305   1.8      mrg 
    306   1.8      mrg 	for (lcv = 0, current_offset = offset ;
    307   1.8      mrg 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    308   1.8      mrg 
    309   1.8      mrg 		/* skip over pages we've already gotten or don't want */
    310   1.8      mrg 		/* skip over pages we don't _have_ to get */
    311   1.8      mrg 		if (pps[lcv] != NULL ||
    312   1.8      mrg 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    313   1.8      mrg 			continue;
    314   1.8      mrg 
    315   1.8      mrg 		/*
    316   1.8      mrg 		 * we have yet to locate the current page (pps[lcv]).   we
    317   1.8      mrg 		 * first look for a page that is already at the current offset.
    318   1.8      mrg 		 * if we find a page, we check to see if it is busy or
    319   1.8      mrg 		 * released.  if that is the case, then we sleep on the page
    320   1.8      mrg 		 * until it is no longer busy or released and repeat the
    321   1.8      mrg 		 * lookup.    if the page we found is neither busy nor
    322   1.8      mrg 		 * released, then we busy it (so we own it) and plug it into
    323   1.8      mrg 		 * pps[lcv].   this 'break's the following while loop and
    324   1.8      mrg 		 * indicates we are ready to move on to the next page in the
    325   1.8      mrg 		 * "lcv" loop above.
    326   1.8      mrg 		 *
    327   1.8      mrg 		 * if we exit the while loop with pps[lcv] still set to NULL,
    328   1.8      mrg 		 * then it means that we allocated a new busy/fake/clean page
    329   1.8      mrg 		 * ptmp in the object and we need to do I/O to fill in the
    330   1.8      mrg 		 * data.
    331   1.8      mrg 		 */
    332   1.8      mrg 
    333   1.8      mrg 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    334   1.8      mrg 
    335   1.8      mrg 			/* look for a current page */
    336   1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    337   1.8      mrg 
    338   1.8      mrg 			/* nope?   allocate one now (if we can) */
    339   1.8      mrg 			if (ptmp == NULL) {
    340   1.8      mrg 
    341   1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    342   1.8      mrg 				    NULL);	/* alloc */
    343   1.8      mrg 
    344   1.8      mrg 				/* out of RAM? */
    345   1.8      mrg 				if (ptmp == NULL) {
    346   1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    347   1.8      mrg 					uvm_wait("kmgetwait1");
    348   1.8      mrg 					simple_lock(&uobj->vmobjlock);
    349   1.8      mrg 					/* goto top of pps while loop */
    350   1.8      mrg 					continue;
    351   1.8      mrg 				}
    352   1.8      mrg 
    353   1.8      mrg 				/*
    354   1.8      mrg 				 * got new page ready for I/O.  break pps
    355   1.8      mrg 				 * while loop.  pps[lcv] is still NULL.
    356   1.8      mrg 				 */
    357   1.8      mrg 				break;
    358   1.8      mrg 			}
    359   1.8      mrg 
    360   1.8      mrg 			/* page is there, see if we need to wait on it */
    361   1.8      mrg 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    362   1.8      mrg 				ptmp->flags |= PG_WANTED;
    363   1.8      mrg 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    364   1.8      mrg 				    "uvn_get",0);
    365   1.8      mrg 				simple_lock(&uobj->vmobjlock);
    366   1.8      mrg 				continue;	/* goto top of pps while loop */
    367   1.8      mrg 			}
    368   1.8      mrg 
    369   1.8      mrg 			/*
    370   1.8      mrg 			 * if we get here then the page has become resident
    371   1.8      mrg 			 * and unbusy between steps 1 and 2.  we busy it now
    372   1.8      mrg 			 * (so we own it) and set pps[lcv] (so that we exit
    373   1.8      mrg 			 * the while loop).  caller must un-busy.
    374   1.8      mrg 			 */
    375   1.8      mrg 			ptmp->flags |= PG_BUSY;
    376   1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    377   1.8      mrg 			pps[lcv] = ptmp;
    378   1.8      mrg 		}
    379   1.8      mrg 
    380   1.8      mrg 		/*
    381   1.8      mrg 		 * if we own the a valid page at the correct offset, pps[lcv]
    382   1.8      mrg 		 * will point to it.   nothing more to do except go to the
    383   1.8      mrg 		 * next page.
    384   1.8      mrg 		 */
    385   1.8      mrg 
    386   1.8      mrg 		if (pps[lcv])
    387   1.8      mrg 			continue;			/* next lcv */
    388   1.8      mrg 
    389   1.8      mrg 		/*
    390   1.8      mrg 		 * we have a "fake/busy/clean" page that we just allocated.
    391   1.8      mrg 		 * do the needed "i/o" (in this case that means zero it).
    392   1.8      mrg 		 */
    393   1.8      mrg 
    394   1.8      mrg 		uvm_pagezero(ptmp);
    395   1.8      mrg 		ptmp->flags &= ~(PG_FAKE);
    396   1.8      mrg 		pps[lcv] = ptmp;
    397   1.1      mrg 
    398   1.8      mrg 	}	/* lcv loop */
    399   1.1      mrg 
    400   1.8      mrg 	/*
    401   1.8      mrg 	 * finally, unlock object and return.
    402   1.8      mrg 	 */
    403   1.8      mrg 
    404   1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    405   1.8      mrg 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    406   1.8      mrg 	return(VM_PAGER_OK);
    407   1.1      mrg }
    408   1.1      mrg 
    409   1.1      mrg /*
    410   1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    411   1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    412   1.1      mrg  *
    413   1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    414   1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    415   1.1      mrg  *    "end" is the end.
    416   1.1      mrg  */
    417   1.1      mrg 
    418   1.8      mrg void
    419   1.8      mrg uvm_km_init(start, end)
    420  1.14      eeh 	vaddr_t start, end;
    421   1.1      mrg {
    422  1.14      eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    423   1.1      mrg 
    424   1.8      mrg 	/*
    425   1.8      mrg 	 * first, init kernel memory objects.
    426   1.8      mrg 	 */
    427   1.1      mrg 
    428   1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    429   1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    430   1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    431   1.1      mrg 
    432   1.8      mrg 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    433   1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    434   1.8      mrg 	kmem_object_store.pgops = &km_pager;
    435   1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    436   1.8      mrg 	kmem_object_store.uo_npages = 0;
    437   1.8      mrg 	/* we are special.  we never die */
    438   1.8      mrg 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    439   1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    440   1.8      mrg 
    441   1.8      mrg 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    442   1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    443   1.8      mrg 	mb_object_store.pgops = &km_pager;
    444   1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    445   1.8      mrg 	mb_object_store.uo_npages = 0;
    446   1.8      mrg 	/* we are special.  we never die */
    447   1.8      mrg 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    448   1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    449   1.8      mrg 
    450   1.8      mrg 	/*
    451   1.8      mrg 	 * init the map and reserve allready allocated kernel space
    452   1.8      mrg 	 * before installing.
    453   1.8      mrg 	 */
    454   1.1      mrg 
    455   1.8      mrg 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    456   1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    457   1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    458   1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    459   1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    460   1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    461   1.8      mrg 
    462   1.8      mrg 	/*
    463   1.8      mrg 	 * install!
    464   1.8      mrg 	 */
    465   1.8      mrg 
    466   1.8      mrg 	kernel_map = &kernel_map_store;
    467   1.1      mrg }
    468   1.1      mrg 
    469   1.1      mrg /*
    470   1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    471   1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    472   1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    473   1.1      mrg  *
    474   1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    475   1.5  thorpej  *      by the submap must start
    476   1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    477   1.1      mrg  *	alloc a new map
    478   1.1      mrg  */
    479   1.8      mrg struct vm_map *
    480   1.8      mrg uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    481   1.8      mrg 	struct vm_map *map;
    482  1.14      eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    483  1.14      eeh 	vsize_t size;
    484   1.8      mrg 	boolean_t pageable;
    485   1.8      mrg 	boolean_t fixed;
    486   1.8      mrg 	struct vm_map *submap;
    487   1.8      mrg {
    488   1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    489   1.1      mrg 
    490   1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    491   1.1      mrg 
    492   1.8      mrg 	/*
    493   1.8      mrg 	 * first allocate a blank spot in the parent map
    494   1.8      mrg 	 */
    495   1.8      mrg 
    496   1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    497   1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    498   1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    499   1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    500   1.8      mrg 	}
    501   1.8      mrg 
    502   1.8      mrg 	/*
    503   1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    504   1.8      mrg 	 */
    505   1.1      mrg 
    506   1.8      mrg 	*max = *min + size;
    507   1.5  thorpej 
    508   1.8      mrg 	/*
    509   1.8      mrg 	 * add references to pmap and create or init the submap
    510   1.8      mrg 	 */
    511   1.1      mrg 
    512   1.8      mrg 	pmap_reference(vm_map_pmap(map));
    513   1.8      mrg 	if (submap == NULL) {
    514   1.8      mrg 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    515   1.8      mrg 		if (submap == NULL)
    516   1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    517   1.8      mrg 	} else {
    518   1.8      mrg 		uvm_map_setup(submap, *min, *max, pageable);
    519   1.8      mrg 		submap->pmap = vm_map_pmap(map);
    520   1.8      mrg 	}
    521   1.1      mrg 
    522   1.8      mrg 	/*
    523   1.8      mrg 	 * now let uvm_map_submap plug in it...
    524   1.8      mrg 	 */
    525   1.1      mrg 
    526   1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    527   1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    528   1.1      mrg 
    529   1.8      mrg 	return(submap);
    530   1.1      mrg }
    531   1.1      mrg 
    532   1.1      mrg /*
    533   1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    534   1.1      mrg  *
    535   1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    536   1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    537   1.1      mrg  */
    538   1.1      mrg 
    539   1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    540   1.1      mrg 
    541   1.8      mrg void
    542   1.8      mrg uvm_km_pgremove(uobj, start, end)
    543   1.8      mrg 	struct uvm_object *uobj;
    544  1.14      eeh 	vaddr_t start, end;
    545   1.1      mrg {
    546   1.8      mrg 	boolean_t by_list, is_aobj;
    547   1.8      mrg 	struct vm_page *pp, *ppnext;
    548  1.14      eeh 	vaddr_t curoff;
    549   1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    550   1.1      mrg 
    551   1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    552   1.1      mrg 
    553   1.8      mrg 	/* is uobj an aobj? */
    554   1.8      mrg 	is_aobj = uobj->pgops == &aobj_pager;
    555   1.3      chs 
    556   1.8      mrg 	/* choose cheapest traversal */
    557   1.8      mrg 	by_list = (uobj->uo_npages <=
    558   1.1      mrg 	     ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
    559   1.1      mrg 
    560   1.8      mrg 	if (by_list)
    561   1.8      mrg 		goto loop_by_list;
    562   1.1      mrg 
    563   1.8      mrg 	/* by hash */
    564   1.1      mrg 
    565   1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    566   1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    567   1.8      mrg 		if (pp == NULL)
    568   1.8      mrg 			continue;
    569   1.8      mrg 
    570   1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    571   1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    572   1.8      mrg 		/* now do the actual work */
    573   1.8      mrg 		if (pp->flags & PG_BUSY)
    574   1.8      mrg 			/* owner must check for this when done */
    575   1.8      mrg 			pp->flags |= PG_RELEASED;
    576   1.8      mrg 		else {
    577   1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    578   1.8      mrg 
    579   1.8      mrg 			/*
    580   1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    581   1.8      mrg 			 */
    582   1.8      mrg 			if (is_aobj) {
    583   1.8      mrg 				int slot = uao_set_swslot(uobj,
    584   1.8      mrg 				    curoff / PAGE_SIZE, 0);
    585   1.8      mrg 
    586   1.8      mrg 				if (slot)
    587   1.8      mrg 					uvm_swap_free(slot, 1);
    588   1.8      mrg 			}
    589   1.8      mrg 
    590   1.8      mrg 			uvm_lock_pageq();
    591   1.8      mrg 			uvm_pagefree(pp);
    592   1.8      mrg 			uvm_unlock_pageq();
    593   1.8      mrg 		}
    594   1.8      mrg 		/* done */
    595   1.8      mrg 
    596   1.8      mrg 	}
    597   1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    598   1.8      mrg 	return;
    599   1.1      mrg 
    600   1.1      mrg loop_by_list:
    601   1.1      mrg 
    602   1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    603   1.8      mrg 
    604   1.8      mrg 		ppnext = pp->listq.tqe_next;
    605   1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    606   1.8      mrg 			continue;
    607   1.8      mrg 		}
    608   1.8      mrg 
    609   1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    610   1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    611   1.8      mrg 		/* now do the actual work */
    612   1.8      mrg 		if (pp->flags & PG_BUSY)
    613   1.8      mrg 			/* owner must check for this when done */
    614   1.8      mrg 			pp->flags |= PG_RELEASED;
    615   1.8      mrg 		else {
    616   1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    617   1.8      mrg 
    618   1.8      mrg 			/*
    619   1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    620   1.8      mrg 			 */
    621   1.8      mrg 			if (is_aobj) {
    622   1.8      mrg 				int slot = uao_set_swslot(uobj,
    623   1.8      mrg 				    pp->offset / PAGE_SIZE, 0);
    624   1.8      mrg 
    625   1.8      mrg 				if (slot)
    626   1.8      mrg 					uvm_swap_free(slot, 1);
    627   1.8      mrg 			}
    628   1.8      mrg 
    629   1.8      mrg 			uvm_lock_pageq();
    630   1.8      mrg 			uvm_pagefree(pp);
    631   1.8      mrg 			uvm_unlock_pageq();
    632   1.8      mrg 		}
    633   1.8      mrg 		/* done */
    634   1.1      mrg 
    635   1.8      mrg 	}
    636   1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    637   1.8      mrg 	return;
    638   1.1      mrg }
    639   1.1      mrg 
    640   1.1      mrg 
    641   1.1      mrg /*
    642   1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    643   1.1      mrg  *
    644   1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    645   1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    646   1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    647   1.1      mrg  *	this case.
    648   1.1      mrg  * => we return KVA of memory allocated
    649   1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    650   1.1      mrg  *	lock the map
    651   1.1      mrg  */
    652   1.1      mrg 
    653  1.14      eeh vaddr_t
    654   1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    655   1.8      mrg 	vm_map_t map;
    656   1.8      mrg 	struct uvm_object *obj;
    657  1.14      eeh 	vsize_t size;
    658   1.8      mrg 	int flags;
    659   1.1      mrg {
    660  1.14      eeh 	vaddr_t kva, loopva;
    661  1.14      eeh 	vaddr_t offset;
    662   1.8      mrg 	struct vm_page *pg;
    663   1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    664   1.1      mrg 
    665   1.1      mrg 
    666   1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    667   1.1      mrg 	map, obj, size, flags);
    668   1.1      mrg #ifdef DIAGNOSTIC
    669   1.8      mrg 	/* sanity check */
    670   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    671   1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    672   1.1      mrg #endif
    673   1.1      mrg 
    674   1.8      mrg 	/*
    675   1.8      mrg 	 * setup for call
    676   1.8      mrg 	 */
    677   1.8      mrg 
    678   1.8      mrg 	size = round_page(size);
    679   1.8      mrg 	kva = vm_map_min(map);	/* hint */
    680   1.1      mrg 
    681   1.8      mrg 	/*
    682   1.8      mrg 	 * allocate some virtual space
    683   1.8      mrg 	 */
    684   1.8      mrg 
    685   1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    686   1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    687   1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    688   1.8      mrg 			!= KERN_SUCCESS) {
    689   1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    690   1.8      mrg 		return(0);
    691   1.8      mrg 	}
    692   1.8      mrg 
    693   1.8      mrg 	/*
    694   1.8      mrg 	 * if all we wanted was VA, return now
    695   1.8      mrg 	 */
    696   1.8      mrg 
    697   1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    698   1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    699   1.8      mrg 		return(kva);
    700   1.8      mrg 	}
    701   1.8      mrg 	/*
    702   1.8      mrg 	 * recover object offset from virtual address
    703   1.8      mrg 	 */
    704   1.8      mrg 
    705   1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    706   1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    707   1.8      mrg 
    708   1.8      mrg 	/*
    709   1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    710   1.8      mrg 	 * whom should ever get a handle on this area of VM.
    711   1.8      mrg 	 */
    712   1.8      mrg 
    713   1.8      mrg 	loopva = kva;
    714   1.8      mrg 	while (size) {
    715   1.8      mrg 		simple_lock(&obj->vmobjlock);
    716   1.8      mrg 		pg = uvm_pagealloc(obj, offset, NULL);
    717   1.8      mrg 		if (pg) {
    718   1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    719   1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    720   1.8      mrg 		}
    721   1.8      mrg 		simple_unlock(&obj->vmobjlock);
    722   1.8      mrg 
    723   1.8      mrg 		/*
    724   1.8      mrg 		 * out of memory?
    725   1.8      mrg 		 */
    726   1.8      mrg 
    727   1.8      mrg 		if (pg == NULL) {
    728   1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    729   1.8      mrg 				/* free everything! */
    730   1.8      mrg 				uvm_unmap(map, kva, kva + size, 0);
    731   1.8      mrg 				return(0);
    732   1.8      mrg 			} else {
    733   1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    734   1.8      mrg 				continue;
    735   1.8      mrg 			}
    736   1.8      mrg 		}
    737   1.8      mrg 
    738   1.8      mrg 		/*
    739   1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    740   1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    741   1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    742   1.8      mrg 		 * it will need to lock it itself!)
    743   1.8      mrg 		 */
    744   1.1      mrg #if defined(PMAP_NEW)
    745   1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    746   1.1      mrg #else
    747   1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    748   1.8      mrg 		    UVM_PROT_ALL, TRUE);
    749   1.1      mrg #endif
    750   1.8      mrg 		loopva += PAGE_SIZE;
    751   1.8      mrg 		offset += PAGE_SIZE;
    752   1.8      mrg 		size -= PAGE_SIZE;
    753   1.8      mrg 	}
    754   1.1      mrg 
    755   1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    756   1.8      mrg 	return(kva);
    757   1.1      mrg }
    758   1.1      mrg 
    759   1.1      mrg /*
    760   1.1      mrg  * uvm_km_free: free an area of kernel memory
    761   1.1      mrg  */
    762   1.1      mrg 
    763   1.8      mrg void
    764   1.8      mrg uvm_km_free(map, addr, size)
    765   1.8      mrg 	vm_map_t map;
    766  1.14      eeh 	vaddr_t addr;
    767  1.14      eeh 	vsize_t size;
    768   1.8      mrg {
    769   1.1      mrg 
    770   1.8      mrg 	uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
    771   1.1      mrg }
    772   1.1      mrg 
    773   1.1      mrg /*
    774   1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    775   1.1      mrg  * anyone waiting for vm space.
    776   1.1      mrg  *
    777   1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    778   1.1      mrg  */
    779   1.1      mrg 
    780   1.8      mrg void
    781   1.8      mrg uvm_km_free_wakeup(map, addr, size)
    782   1.8      mrg 	vm_map_t map;
    783  1.14      eeh 	vaddr_t addr;
    784  1.14      eeh 	vsize_t size;
    785   1.1      mrg {
    786   1.8      mrg 	vm_map_entry_t dead_entries;
    787   1.1      mrg 
    788   1.8      mrg 	vm_map_lock(map);
    789   1.8      mrg 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
    790   1.1      mrg 			 &dead_entries);
    791   1.8      mrg 	thread_wakeup(map);
    792   1.8      mrg 	vm_map_unlock(map);
    793   1.1      mrg 
    794   1.8      mrg 	if (dead_entries != NULL)
    795   1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    796   1.1      mrg }
    797   1.1      mrg 
    798   1.1      mrg /*
    799   1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    800   1.1      mrg  *
    801   1.1      mrg  * => we can sleep if needed
    802   1.1      mrg  */
    803   1.1      mrg 
    804  1.14      eeh vaddr_t
    805   1.8      mrg uvm_km_alloc1(map, size, zeroit)
    806   1.8      mrg 	vm_map_t map;
    807  1.14      eeh 	vsize_t size;
    808   1.8      mrg 	boolean_t zeroit;
    809   1.1      mrg {
    810  1.14      eeh 	vaddr_t kva, loopva, offset;
    811   1.8      mrg 	struct vm_page *pg;
    812   1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    813   1.1      mrg 
    814   1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    815   1.1      mrg 
    816   1.1      mrg #ifdef DIAGNOSTIC
    817   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    818   1.8      mrg 		panic("uvm_km_alloc1");
    819   1.1      mrg #endif
    820   1.1      mrg 
    821   1.8      mrg 	size = round_page(size);
    822   1.8      mrg 	kva = vm_map_min(map);		/* hint */
    823   1.1      mrg 
    824   1.8      mrg 	/*
    825   1.8      mrg 	 * allocate some virtual space
    826   1.8      mrg 	 */
    827   1.1      mrg 
    828   1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    829   1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    830   1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    831   1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    832   1.8      mrg 		return(0);
    833   1.8      mrg 	}
    834   1.8      mrg 
    835   1.8      mrg 	/*
    836   1.8      mrg 	 * recover object offset from virtual address
    837   1.8      mrg 	 */
    838   1.8      mrg 
    839   1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    840   1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    841   1.8      mrg 
    842   1.8      mrg 	/*
    843   1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    844   1.8      mrg 	 */
    845   1.8      mrg 
    846   1.8      mrg 	loopva = kva;
    847   1.8      mrg 	while (size) {
    848   1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    849   1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    850   1.8      mrg 
    851   1.8      mrg 		/*
    852   1.8      mrg 		 * if we found a page in an unallocated region, it must be
    853   1.8      mrg 		 * released
    854   1.8      mrg 		 */
    855   1.8      mrg 		if (pg) {
    856   1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    857   1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    858   1.8      mrg 			pg->flags |= PG_WANTED;
    859   1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    860   1.8      mrg 			    0, "km_alloc", 0);
    861   1.8      mrg 			continue;   /* retry */
    862   1.8      mrg 		}
    863   1.8      mrg 
    864   1.8      mrg 		/* allocate ram */
    865   1.8      mrg 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    866   1.8      mrg 		if (pg) {
    867   1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    868   1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    869   1.8      mrg 		}
    870   1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    871   1.8      mrg 		if (pg == NULL) {
    872   1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    873   1.8      mrg 			continue;
    874   1.8      mrg 		}
    875   1.8      mrg 
    876   1.8      mrg 		/* map it in */
    877   1.1      mrg #if defined(PMAP_NEW)
    878   1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    879   1.1      mrg #else
    880   1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    881   1.8      mrg 		    UVM_PROT_ALL, TRUE);
    882   1.1      mrg #endif
    883   1.8      mrg 		loopva += PAGE_SIZE;
    884   1.8      mrg 		offset += PAGE_SIZE;
    885   1.8      mrg 		size -= PAGE_SIZE;
    886   1.8      mrg 	}
    887   1.8      mrg 
    888   1.8      mrg 	/*
    889   1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    890   1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    891   1.8      mrg 	 */
    892   1.1      mrg 
    893   1.8      mrg 	if (zeroit)
    894  1.13    perry 		memset((caddr_t)kva, 0, loopva - kva);
    895   1.1      mrg 
    896   1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    897   1.8      mrg 	return(kva);
    898   1.1      mrg }
    899   1.1      mrg 
    900   1.1      mrg /*
    901   1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    902   1.1      mrg  *
    903   1.1      mrg  * => memory is not allocated until fault time
    904   1.1      mrg  */
    905   1.1      mrg 
    906  1.14      eeh vaddr_t
    907   1.8      mrg uvm_km_valloc(map, size)
    908   1.8      mrg 	vm_map_t map;
    909  1.14      eeh 	vsize_t size;
    910   1.1      mrg {
    911  1.14      eeh 	vaddr_t kva;
    912   1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    913   1.1      mrg 
    914   1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    915   1.1      mrg 
    916   1.1      mrg #ifdef DIAGNOSTIC
    917   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    918   1.8      mrg 		panic("uvm_km_valloc");
    919   1.1      mrg #endif
    920   1.1      mrg 
    921   1.8      mrg 	size = round_page(size);
    922   1.8      mrg 	kva = vm_map_min(map);		/* hint */
    923   1.1      mrg 
    924   1.8      mrg 	/*
    925   1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    926   1.8      mrg 	 */
    927   1.1      mrg 
    928   1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    929   1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    930   1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    931   1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    932   1.8      mrg 		return(0);
    933   1.8      mrg 	}
    934   1.1      mrg 
    935   1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    936   1.8      mrg 	return(kva);
    937   1.1      mrg }
    938   1.1      mrg 
    939   1.1      mrg /*
    940   1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    941   1.1      mrg  *
    942   1.1      mrg  * => memory is not allocated until fault time
    943   1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    944   1.1      mrg  *    is larger than map (in which case we return 0)
    945   1.1      mrg  */
    946   1.1      mrg 
    947  1.14      eeh vaddr_t
    948   1.8      mrg uvm_km_valloc_wait(map, size)
    949   1.8      mrg 	vm_map_t map;
    950  1.14      eeh 	vsize_t size;
    951   1.1      mrg {
    952  1.14      eeh 	vaddr_t kva;
    953   1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    954   1.1      mrg 
    955   1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    956   1.1      mrg 
    957   1.1      mrg #ifdef DIAGNOSTIC
    958   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    959   1.8      mrg 		panic("uvm_km_valloc_wait");
    960   1.1      mrg #endif
    961   1.1      mrg 
    962   1.8      mrg 	size = round_page(size);
    963   1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    964   1.8      mrg 		return(0);
    965   1.8      mrg 
    966   1.8      mrg 	while (1) {
    967   1.8      mrg 		kva = vm_map_min(map);		/* hint */
    968   1.8      mrg 
    969   1.8      mrg 		/*
    970   1.8      mrg 		 * allocate some virtual space.   will be demand filled
    971   1.8      mrg 		 * by kernel_object.
    972   1.8      mrg 		 */
    973   1.8      mrg 
    974   1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    975   1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    976   1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    977   1.8      mrg 		    == KERN_SUCCESS) {
    978   1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    979   1.8      mrg 			return(kva);
    980   1.8      mrg 		}
    981   1.8      mrg 
    982   1.8      mrg 		/*
    983   1.8      mrg 		 * failed.  sleep for a while (on map)
    984   1.8      mrg 		 */
    985   1.8      mrg 
    986   1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    987   1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    988   1.8      mrg 	}
    989   1.8      mrg 	/*NOTREACHED*/
    990  1.10  thorpej }
    991  1.10  thorpej 
    992  1.10  thorpej /* Sanity; must specify both or none. */
    993  1.10  thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    994  1.10  thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    995  1.10  thorpej #error Must specify MAP and UNMAP together.
    996  1.10  thorpej #endif
    997  1.10  thorpej 
    998  1.10  thorpej /*
    999  1.10  thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
   1000  1.10  thorpej  *
   1001  1.10  thorpej  * => if the pmap specifies an alternate mapping method, we use it.
   1002  1.10  thorpej  */
   1003  1.10  thorpej 
   1004  1.11  thorpej /* ARGSUSED */
   1005  1.14      eeh vaddr_t
   1006  1.12  thorpej uvm_km_alloc_poolpage1(map, obj)
   1007  1.11  thorpej 	vm_map_t map;
   1008  1.12  thorpej 	struct uvm_object *obj;
   1009  1.10  thorpej {
   1010  1.10  thorpej #if defined(PMAP_MAP_POOLPAGE)
   1011  1.10  thorpej 	struct vm_page *pg;
   1012  1.14      eeh 	vaddr_t va;
   1013  1.10  thorpej 
   1014  1.10  thorpej 	pg = uvm_pagealloc(NULL, 0, NULL);
   1015  1.10  thorpej 	if (pg == NULL)
   1016  1.10  thorpej 		return (0);
   1017  1.10  thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1018  1.10  thorpej 	if (va == 0)
   1019  1.10  thorpej 		uvm_pagefree(pg);
   1020  1.10  thorpej 	return (va);
   1021  1.10  thorpej #else
   1022  1.14      eeh 	vaddr_t va;
   1023  1.10  thorpej 	int s;
   1024  1.10  thorpej 
   1025  1.10  thorpej 	s = splimp();
   1026  1.12  thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, UVM_KMF_NOWAIT);
   1027  1.10  thorpej 	splx(s);
   1028  1.10  thorpej 	return (va);
   1029  1.10  thorpej #endif /* PMAP_MAP_POOLPAGE */
   1030  1.10  thorpej }
   1031  1.10  thorpej 
   1032  1.10  thorpej /*
   1033  1.10  thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
   1034  1.10  thorpej  *
   1035  1.10  thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
   1036  1.10  thorpej  */
   1037  1.10  thorpej 
   1038  1.11  thorpej /* ARGSUSED */
   1039  1.10  thorpej void
   1040  1.11  thorpej uvm_km_free_poolpage1(map, addr)
   1041  1.11  thorpej 	vm_map_t map;
   1042  1.14      eeh 	vaddr_t addr;
   1043  1.10  thorpej {
   1044  1.10  thorpej #if defined(PMAP_UNMAP_POOLPAGE)
   1045  1.14      eeh 	paddr_t pa;
   1046  1.10  thorpej 
   1047  1.10  thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1048  1.10  thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1049  1.10  thorpej #else
   1050  1.10  thorpej 	int s;
   1051  1.10  thorpej 
   1052  1.10  thorpej 	s = splimp();
   1053  1.11  thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
   1054  1.10  thorpej 	splx(s);
   1055  1.10  thorpej #endif /* PMAP_UNMAP_POOLPAGE */
   1056   1.1      mrg }
   1057