Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.141.2.1
      1  1.141.2.1    bouyer /*	$NetBSD: uvm_km.c,v 1.141.2.1 2017/04/21 16:54:09 bouyer Exp $	*/
      2        1.1       mrg 
      3       1.47       chs /*
      4        1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5       1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6        1.1       mrg  *
      7        1.1       mrg  * All rights reserved.
      8        1.1       mrg  *
      9        1.1       mrg  * This code is derived from software contributed to Berkeley by
     10        1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11        1.1       mrg  *
     12        1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13        1.1       mrg  * modification, are permitted provided that the following conditions
     14        1.1       mrg  * are met:
     15        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20      1.108     chuck  * 3. Neither the name of the University nor the names of its contributors
     21        1.1       mrg  *    may be used to endorse or promote products derived from this software
     22        1.1       mrg  *    without specific prior written permission.
     23        1.1       mrg  *
     24        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25        1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26        1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27        1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28        1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29        1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30        1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31        1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32        1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34        1.1       mrg  * SUCH DAMAGE.
     35        1.1       mrg  *
     36        1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37        1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38        1.1       mrg  *
     39        1.1       mrg  *
     40        1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41        1.1       mrg  * All rights reserved.
     42       1.47       chs  *
     43        1.1       mrg  * Permission to use, copy, modify and distribute this software and
     44        1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     45        1.1       mrg  * notice and this permission notice appear in all copies of the
     46        1.1       mrg  * software, derivative works or modified versions, and any portions
     47        1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     48       1.47       chs  *
     49       1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50       1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51        1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52       1.47       chs  *
     53        1.1       mrg  * Carnegie Mellon requests users of this software to return to
     54        1.1       mrg  *
     55        1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56        1.1       mrg  *  School of Computer Science
     57        1.1       mrg  *  Carnegie Mellon University
     58        1.1       mrg  *  Pittsburgh PA 15213-3890
     59        1.1       mrg  *
     60        1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     61        1.1       mrg  * rights to redistribute these changes.
     62        1.1       mrg  */
     63        1.6       mrg 
     64        1.1       mrg /*
     65        1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     66        1.1       mrg  */
     67        1.1       mrg 
     68        1.7     chuck /*
     69        1.7     chuck  * overview of kernel memory management:
     70        1.7     chuck  *
     71        1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72       1.62   thorpej  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73       1.62   thorpej  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74        1.7     chuck  *
     75       1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     76        1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     77        1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     78        1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     79       1.47       chs  * virtual address space that is mapped by a submap is locked by the
     80        1.7     chuck  * submap's lock -- not the kernel_map's lock.
     81        1.7     chuck  *
     82        1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     83        1.7     chuck  * up the locking and protection of the kernel address space into smaller
     84        1.7     chuck  * chunks.
     85        1.7     chuck  *
     86      1.126      para  * the vm system has several standard kernel submaps/arenas, including:
     87      1.126      para  *   kmem_arena => used for kmem/pool (memoryallocators(9))
     88        1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     89        1.7     chuck  *   exec_map => used during exec to handle exec args
     90        1.7     chuck  *   etc...
     91        1.7     chuck  *
     92      1.127     rmind  * The kmem_arena is a "special submap", as it lives in a fixed map entry
     93      1.127     rmind  * within the kernel_map and is controlled by vmem(9).
     94      1.126      para  *
     95        1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
     96        1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     97        1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
     98       1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     99       1.62   thorpej  * object is equal to the size of kernel virtual address space (i.e. the
    100       1.62   thorpej  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    101        1.7     chuck  *
    102      1.101     pooka  * note that just because a kernel object spans the entire kernel virtual
    103        1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    104       1.47       chs  * large chunks of a kernel object's space go unused either because
    105       1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    106        1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    107        1.7     chuck  * objects, the only part of the object that can ever be populated is the
    108        1.7     chuck  * offsets that are managed by the submap.
    109        1.7     chuck  *
    110        1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    111       1.62   thorpej  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    112        1.7     chuck  * example:
    113       1.62   thorpej  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    114        1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    115        1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    116        1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    117       1.47       chs  *   mapped at 0xf8235000.
    118        1.7     chuck  *
    119        1.7     chuck  * kernel object have one other special property: when the kernel virtual
    120        1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    121        1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    122        1.7     chuck  * this has to be done because there is no backing store for kernel pages
    123        1.7     chuck  * and no need to save them after they are no longer referenced.
    124      1.126      para  *
    125      1.127     rmind  * Generic arenas:
    126      1.126      para  *
    127      1.127     rmind  * kmem_arena:
    128      1.127     rmind  *	Main arena controlling the kernel KVA used by other arenas.
    129      1.127     rmind  *
    130      1.127     rmind  * kmem_va_arena:
    131      1.127     rmind  *	Implements quantum caching in order to speedup allocations and
    132      1.127     rmind  *	reduce fragmentation.  The pool(9), unless created with a custom
    133      1.127     rmind  *	meta-data allocator, and kmem(9) subsystems use this arena.
    134      1.127     rmind  *
    135      1.127     rmind  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
    136      1.127     rmind  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
    137      1.127     rmind  * compensates this by importing larger chunks from kmem_arena.
    138      1.127     rmind  *
    139      1.127     rmind  * kmem_va_meta_arena:
    140      1.127     rmind  *	Space for meta-data.
    141      1.127     rmind  *
    142      1.127     rmind  * kmem_meta_arena:
    143      1.127     rmind  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
    144      1.127     rmind  *	backed with the pages.
    145      1.127     rmind  *
    146      1.127     rmind  * Arena stacking:
    147      1.127     rmind  *
    148      1.127     rmind  *	kmem_arena
    149      1.127     rmind  *		kmem_va_arena
    150      1.127     rmind  *		kmem_va_meta_arena
    151      1.127     rmind  *			kmem_meta_arena
    152        1.7     chuck  */
    153       1.55     lukem 
    154       1.55     lukem #include <sys/cdefs.h>
    155  1.141.2.1    bouyer __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.141.2.1 2017/04/21 16:54:09 bouyer Exp $");
    156       1.55     lukem 
    157       1.55     lukem #include "opt_uvmhist.h"
    158        1.7     chuck 
    159      1.117      para #include "opt_kmempages.h"
    160      1.117      para 
    161      1.117      para #ifndef NKMEMPAGES
    162      1.117      para #define NKMEMPAGES 0
    163      1.117      para #endif
    164      1.117      para 
    165      1.117      para /*
    166      1.117      para  * Defaults for lower and upper-bounds for the kmem_arena page count.
    167      1.117      para  * Can be overridden by kernel config options.
    168      1.117      para  */
    169      1.117      para #ifndef NKMEMPAGES_MIN
    170      1.117      para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    171      1.117      para #endif
    172      1.117      para 
    173      1.117      para #ifndef NKMEMPAGES_MAX
    174      1.117      para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    175      1.117      para #endif
    176      1.117      para 
    177      1.117      para 
    178        1.1       mrg #include <sys/param.h>
    179        1.1       mrg #include <sys/systm.h>
    180        1.1       mrg #include <sys/proc.h>
    181       1.72      yamt #include <sys/pool.h>
    182      1.112      para #include <sys/vmem.h>
    183      1.138      para #include <sys/vmem_impl.h>
    184      1.112      para #include <sys/kmem.h>
    185        1.1       mrg 
    186        1.1       mrg #include <uvm/uvm.h>
    187        1.1       mrg 
    188        1.1       mrg /*
    189        1.1       mrg  * global data structures
    190        1.1       mrg  */
    191        1.1       mrg 
    192       1.49       chs struct vm_map *kernel_map = NULL;
    193        1.1       mrg 
    194        1.1       mrg /*
    195        1.1       mrg  * local data structues
    196        1.1       mrg  */
    197        1.1       mrg 
    198      1.112      para static struct vm_map		kernel_map_store;
    199      1.112      para static struct vm_map_entry	kernel_image_mapent_store;
    200      1.112      para static struct vm_map_entry	kernel_kmem_mapent_store;
    201        1.1       mrg 
    202      1.117      para int nkmempages = 0;
    203      1.112      para vaddr_t kmembase;
    204      1.112      para vsize_t kmemsize;
    205       1.72      yamt 
    206      1.138      para static struct vmem kmem_arena_store;
    207      1.135      para vmem_t *kmem_arena = NULL;
    208      1.138      para static struct vmem kmem_va_arena_store;
    209      1.112      para vmem_t *kmem_va_arena;
    210       1.72      yamt 
    211       1.72      yamt /*
    212      1.117      para  * kmeminit_nkmempages: calculate the size of kmem_arena.
    213      1.117      para  */
    214      1.117      para void
    215      1.117      para kmeminit_nkmempages(void)
    216      1.117      para {
    217      1.117      para 	int npages;
    218      1.117      para 
    219      1.117      para 	if (nkmempages != 0) {
    220      1.117      para 		/*
    221      1.117      para 		 * It's already been set (by us being here before)
    222      1.117      para 		 * bail out now;
    223      1.117      para 		 */
    224      1.117      para 		return;
    225      1.117      para 	}
    226      1.117      para 
    227      1.119      para #if defined(PMAP_MAP_POOLPAGE)
    228      1.119      para 	npages = (physmem / 4);
    229      1.119      para #else
    230      1.119      para 	npages = (physmem / 3) * 2;
    231      1.119      para #endif /* defined(PMAP_MAP_POOLPAGE) */
    232      1.117      para 
    233      1.119      para #ifndef NKMEMPAGES_MAX_UNLIMITED
    234      1.117      para 	if (npages > NKMEMPAGES_MAX)
    235      1.117      para 		npages = NKMEMPAGES_MAX;
    236      1.119      para #endif
    237      1.117      para 
    238      1.117      para 	if (npages < NKMEMPAGES_MIN)
    239      1.117      para 		npages = NKMEMPAGES_MIN;
    240      1.117      para 
    241      1.117      para 	nkmempages = npages;
    242      1.117      para }
    243      1.117      para 
    244      1.117      para /*
    245      1.112      para  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    246        1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    247        1.1       mrg  *
    248       1.62   thorpej  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    249       1.82  christos  *    we assume that [vmin -> start] has already been allocated and that
    250       1.62   thorpej  *    "end" is the end.
    251        1.1       mrg  */
    252        1.1       mrg 
    253        1.8       mrg void
    254      1.112      para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    255        1.1       mrg {
    256      1.119      para 	bool kmem_arena_small;
    257       1.62   thorpej 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    258      1.118      matt 	struct uvm_map_args args;
    259      1.118      matt 	int error;
    260      1.118      matt 
    261      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    262      1.118      matt 	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
    263      1.118      matt 	    start, end, 0,0);
    264       1.27   thorpej 
    265      1.117      para 	kmeminit_nkmempages();
    266      1.119      para 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    267      1.119      para 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    268      1.112      para 
    269      1.118      matt 	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
    270      1.118      matt 
    271       1.27   thorpej 	/*
    272       1.27   thorpej 	 * next, init kernel memory objects.
    273        1.8       mrg 	 */
    274        1.1       mrg 
    275        1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    276       1.95        ad 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    277      1.112      para 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    278        1.1       mrg 
    279       1.24   thorpej 	/*
    280       1.56   thorpej 	 * init the map and reserve any space that might already
    281       1.56   thorpej 	 * have been allocated kernel space before installing.
    282        1.8       mrg 	 */
    283        1.1       mrg 
    284      1.112      para 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    285      1.112      para 	kernel_map_store.pmap = pmap_kernel();
    286       1.70      yamt 	if (start != base) {
    287      1.112      para 		error = uvm_map_prepare(&kernel_map_store,
    288       1.71      yamt 		    base, start - base,
    289       1.70      yamt 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    290       1.62   thorpej 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    291       1.70      yamt 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    292       1.70      yamt 		if (!error) {
    293      1.112      para 			kernel_image_mapent_store.flags =
    294      1.112      para 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    295      1.112      para 			error = uvm_map_enter(&kernel_map_store, &args,
    296      1.112      para 			    &kernel_image_mapent_store);
    297       1.70      yamt 		}
    298       1.70      yamt 
    299       1.70      yamt 		if (error)
    300       1.70      yamt 			panic(
    301      1.112      para 			    "uvm_km_bootstrap: could not reserve space for kernel");
    302      1.112      para 
    303      1.112      para 		kmembase = args.uma_start + args.uma_size;
    304      1.114      matt 	} else {
    305      1.114      matt 		kmembase = base;
    306       1.70      yamt 	}
    307       1.47       chs 
    308      1.118      matt 	error = uvm_map_prepare(&kernel_map_store,
    309      1.118      matt 	    kmembase, kmemsize,
    310      1.118      matt 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    311      1.118      matt 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    312      1.118      matt 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    313      1.118      matt 	if (!error) {
    314      1.118      matt 		kernel_kmem_mapent_store.flags =
    315      1.118      matt 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    316      1.118      matt 		error = uvm_map_enter(&kernel_map_store, &args,
    317      1.118      matt 		    &kernel_kmem_mapent_store);
    318      1.118      matt 	}
    319      1.118      matt 
    320      1.118      matt 	if (error)
    321      1.118      matt 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    322      1.118      matt 
    323        1.8       mrg 	/*
    324        1.8       mrg 	 * install!
    325        1.8       mrg 	 */
    326        1.8       mrg 
    327      1.112      para 	kernel_map = &kernel_map_store;
    328      1.112      para 
    329      1.112      para 	pool_subsystem_init();
    330      1.112      para 
    331      1.138      para 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
    332      1.138      para 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
    333      1.112      para 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    334      1.135      para #ifdef PMAP_GROWKERNEL
    335      1.135      para 	/*
    336      1.135      para 	 * kmem_arena VA allocations happen independently of uvm_map.
    337      1.135      para 	 * grow kernel to accommodate the kmem_arena.
    338      1.135      para 	 */
    339      1.135      para 	if (uvm_maxkaddr < kmembase + kmemsize) {
    340      1.135      para 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    341      1.135      para 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    342      1.135      para 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    343      1.135      para 		    uvm_maxkaddr, kmembase, kmemsize);
    344      1.135      para 	}
    345      1.135      para #endif
    346      1.112      para 
    347      1.138      para 	vmem_subsystem_init(kmem_arena);
    348      1.112      para 
    349      1.118      matt 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
    350      1.118      matt 	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
    351      1.118      matt 
    352      1.138      para 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
    353      1.138      para 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
    354      1.138      para 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
    355      1.138      para 	    VM_NOSLEEP, IPL_VM);
    356      1.118      matt 
    357      1.118      matt 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    358      1.112      para }
    359      1.112      para 
    360      1.112      para /*
    361      1.112      para  * uvm_km_init: init the kernel maps virtual memory caches
    362      1.112      para  * and start the pool/kmem allocator.
    363      1.112      para  */
    364      1.112      para void
    365      1.112      para uvm_km_init(void)
    366      1.112      para {
    367      1.112      para 	kmem_init();
    368        1.1       mrg }
    369        1.1       mrg 
    370        1.1       mrg /*
    371        1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    372        1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    373        1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    374        1.1       mrg  *
    375       1.82  christos  * => if `fixed' is true, *vmin specifies where the region described
    376      1.112      para  *   pager_map => used to map "buf" structures into kernel space
    377        1.5   thorpej  *      by the submap must start
    378        1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    379        1.1       mrg  *	alloc a new map
    380        1.1       mrg  */
    381       1.78      yamt 
    382        1.8       mrg struct vm_map *
    383       1.83   thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    384       1.93   thorpej     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    385      1.112      para     struct vm_map *submap)
    386        1.8       mrg {
    387        1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    388      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    389        1.1       mrg 
    390       1.71      yamt 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    391       1.71      yamt 
    392        1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    393        1.1       mrg 
    394        1.8       mrg 	/*
    395        1.8       mrg 	 * first allocate a blank spot in the parent map
    396        1.8       mrg 	 */
    397        1.8       mrg 
    398       1.82  christos 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    399        1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    400       1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    401      1.118      matt 		panic("%s: unable to allocate space in parent map", __func__);
    402        1.8       mrg 	}
    403        1.8       mrg 
    404        1.8       mrg 	/*
    405       1.82  christos 	 * set VM bounds (vmin is filled in by uvm_map)
    406        1.8       mrg 	 */
    407        1.1       mrg 
    408       1.82  christos 	*vmax = *vmin + size;
    409        1.5   thorpej 
    410        1.8       mrg 	/*
    411        1.8       mrg 	 * add references to pmap and create or init the submap
    412        1.8       mrg 	 */
    413        1.1       mrg 
    414        1.8       mrg 	pmap_reference(vm_map_pmap(map));
    415        1.8       mrg 	if (submap == NULL) {
    416      1.112      para 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    417        1.8       mrg 		if (submap == NULL)
    418        1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    419        1.8       mrg 	}
    420      1.112      para 	uvm_map_setup(submap, *vmin, *vmax, flags);
    421      1.112      para 	submap->pmap = vm_map_pmap(map);
    422        1.1       mrg 
    423        1.8       mrg 	/*
    424        1.8       mrg 	 * now let uvm_map_submap plug in it...
    425        1.8       mrg 	 */
    426        1.1       mrg 
    427      1.112      para 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    428        1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    429        1.1       mrg 
    430      1.112      para 	return(submap);
    431        1.1       mrg }
    432        1.1       mrg 
    433        1.1       mrg /*
    434      1.110      yamt  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    435        1.1       mrg  */
    436        1.1       mrg 
    437        1.8       mrg void
    438       1.83   thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    439        1.1       mrg {
    440       1.95        ad 	struct uvm_object * const uobj = uvm_kernel_object;
    441       1.78      yamt 	const voff_t start = startva - vm_map_min(kernel_map);
    442       1.78      yamt 	const voff_t end = endva - vm_map_min(kernel_map);
    443       1.53       chs 	struct vm_page *pg;
    444       1.52       chs 	voff_t curoff, nextoff;
    445       1.53       chs 	int swpgonlydelta = 0;
    446      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    447        1.1       mrg 
    448       1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    449       1.78      yamt 	KASSERT(startva < endva);
    450       1.86      yamt 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    451       1.78      yamt 
    452      1.109     rmind 	mutex_enter(uobj->vmobjlock);
    453      1.110      yamt 	pmap_remove(pmap_kernel(), startva, endva);
    454       1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    455       1.52       chs 		nextoff = curoff + PAGE_SIZE;
    456       1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    457       1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    458       1.52       chs 			pg->flags |= PG_WANTED;
    459      1.109     rmind 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    460       1.52       chs 				    "km_pgrm", 0);
    461      1.109     rmind 			mutex_enter(uobj->vmobjlock);
    462       1.52       chs 			nextoff = curoff;
    463        1.8       mrg 			continue;
    464       1.52       chs 		}
    465        1.8       mrg 
    466       1.52       chs 		/*
    467       1.52       chs 		 * free the swap slot, then the page.
    468       1.52       chs 		 */
    469        1.8       mrg 
    470       1.53       chs 		if (pg == NULL &&
    471       1.64        pk 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    472       1.53       chs 			swpgonlydelta++;
    473       1.53       chs 		}
    474       1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    475       1.53       chs 		if (pg != NULL) {
    476       1.97        ad 			mutex_enter(&uvm_pageqlock);
    477       1.53       chs 			uvm_pagefree(pg);
    478       1.97        ad 			mutex_exit(&uvm_pageqlock);
    479       1.53       chs 		}
    480        1.8       mrg 	}
    481      1.109     rmind 	mutex_exit(uobj->vmobjlock);
    482        1.8       mrg 
    483       1.54       chs 	if (swpgonlydelta > 0) {
    484       1.95        ad 		mutex_enter(&uvm_swap_data_lock);
    485       1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    486       1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    487       1.95        ad 		mutex_exit(&uvm_swap_data_lock);
    488       1.54       chs 	}
    489       1.24   thorpej }
    490       1.24   thorpej 
    491       1.24   thorpej 
    492       1.24   thorpej /*
    493       1.78      yamt  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    494       1.78      yamt  *    regions.
    495       1.24   thorpej  *
    496       1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    497       1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    498       1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    499       1.52       chs  *    be on the active or inactive queues (because they have no object).
    500       1.24   thorpej  */
    501       1.24   thorpej 
    502       1.24   thorpej void
    503      1.102        ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    504       1.24   thorpej {
    505      1.122    bouyer #define __PGRM_BATCH 16
    506       1.52       chs 	struct vm_page *pg;
    507      1.122    bouyer 	paddr_t pa[__PGRM_BATCH];
    508      1.122    bouyer 	int npgrm, i;
    509      1.122    bouyer 	vaddr_t va, batch_vastart;
    510      1.122    bouyer 
    511      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    512       1.24   thorpej 
    513      1.102        ad 	KASSERT(VM_MAP_IS_KERNEL(map));
    514      1.128      matt 	KASSERTMSG(vm_map_min(map) <= start,
    515      1.128      matt 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
    516      1.128      matt 	    " (size=%#"PRIxVSIZE")",
    517      1.128      matt 	    vm_map_min(map), start, end - start);
    518       1.78      yamt 	KASSERT(start < end);
    519      1.102        ad 	KASSERT(end <= vm_map_max(map));
    520       1.78      yamt 
    521      1.122    bouyer 	for (va = start; va < end;) {
    522      1.122    bouyer 		batch_vastart = va;
    523      1.122    bouyer 		/* create a batch of at most __PGRM_BATCH pages to free */
    524      1.122    bouyer 		for (i = 0;
    525      1.122    bouyer 		     i < __PGRM_BATCH && va < end;
    526      1.122    bouyer 		     va += PAGE_SIZE) {
    527      1.122    bouyer 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    528      1.122    bouyer 				continue;
    529      1.122    bouyer 			}
    530      1.122    bouyer 			i++;
    531      1.122    bouyer 		}
    532      1.122    bouyer 		npgrm = i;
    533      1.122    bouyer 		/* now remove the mappings */
    534      1.124    bouyer 		pmap_kremove(batch_vastart, va - batch_vastart);
    535      1.122    bouyer 		/* and free the pages */
    536      1.122    bouyer 		for (i = 0; i < npgrm; i++) {
    537      1.122    bouyer 			pg = PHYS_TO_VM_PAGE(pa[i]);
    538      1.122    bouyer 			KASSERT(pg);
    539      1.122    bouyer 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    540      1.122    bouyer 			KASSERT((pg->flags & PG_BUSY) == 0);
    541      1.122    bouyer 			uvm_pagefree(pg);
    542       1.40       chs 		}
    543       1.24   thorpej 	}
    544      1.122    bouyer #undef __PGRM_BATCH
    545        1.1       mrg }
    546        1.1       mrg 
    547       1.78      yamt #if defined(DEBUG)
    548       1.78      yamt void
    549      1.102        ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    550       1.78      yamt {
    551      1.102        ad 	struct vm_page *pg;
    552       1.78      yamt 	vaddr_t va;
    553       1.78      yamt 	paddr_t pa;
    554      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    555       1.78      yamt 
    556      1.102        ad 	KDASSERT(VM_MAP_IS_KERNEL(map));
    557      1.102        ad 	KDASSERT(vm_map_min(map) <= start);
    558       1.78      yamt 	KDASSERT(start < end);
    559      1.102        ad 	KDASSERT(end <= vm_map_max(map));
    560       1.78      yamt 
    561       1.78      yamt 	for (va = start; va < end; va += PAGE_SIZE) {
    562       1.78      yamt 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    563       1.81    simonb 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    564       1.81    simonb 			    (void *)va, (long long)pa);
    565       1.78      yamt 		}
    566      1.121     rmind 		mutex_enter(uvm_kernel_object->vmobjlock);
    567      1.121     rmind 		pg = uvm_pagelookup(uvm_kernel_object,
    568      1.121     rmind 		    va - vm_map_min(kernel_map));
    569      1.121     rmind 		mutex_exit(uvm_kernel_object->vmobjlock);
    570      1.121     rmind 		if (pg) {
    571      1.121     rmind 			panic("uvm_km_check_empty: "
    572      1.121     rmind 			    "has page hashed at %p", (const void *)va);
    573       1.78      yamt 		}
    574       1.78      yamt 	}
    575       1.78      yamt }
    576       1.78      yamt #endif /* defined(DEBUG) */
    577        1.1       mrg 
    578        1.1       mrg /*
    579       1.78      yamt  * uvm_km_alloc: allocate an area of kernel memory.
    580        1.1       mrg  *
    581       1.78      yamt  * => NOTE: we can return 0 even if we can wait if there is not enough
    582        1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    583        1.1       mrg  *	this case.
    584        1.1       mrg  * => we return KVA of memory allocated
    585        1.1       mrg  */
    586        1.1       mrg 
    587       1.14       eeh vaddr_t
    588       1.83   thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    589        1.1       mrg {
    590       1.14       eeh 	vaddr_t kva, loopva;
    591       1.14       eeh 	vaddr_t offset;
    592       1.44   thorpej 	vsize_t loopsize;
    593        1.8       mrg 	struct vm_page *pg;
    594       1.78      yamt 	struct uvm_object *obj;
    595       1.78      yamt 	int pgaflags;
    596      1.141      maxv 	vm_prot_t prot, vaprot;
    597       1.78      yamt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    598        1.1       mrg 
    599       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    600       1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    601       1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    602       1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    603      1.111      matt 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    604      1.111      matt 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    605        1.1       mrg 
    606        1.8       mrg 	/*
    607        1.8       mrg 	 * setup for call
    608        1.8       mrg 	 */
    609        1.8       mrg 
    610       1.78      yamt 	kva = vm_map_min(map);	/* hint */
    611        1.8       mrg 	size = round_page(size);
    612       1.95        ad 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    613       1.78      yamt 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    614       1.78      yamt 		    map, obj, size, flags);
    615        1.1       mrg 
    616        1.8       mrg 	/*
    617        1.8       mrg 	 * allocate some virtual space
    618        1.8       mrg 	 */
    619        1.8       mrg 
    620      1.141      maxv 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
    621       1.78      yamt 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    622      1.141      maxv 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
    623       1.78      yamt 	    UVM_ADV_RANDOM,
    624      1.111      matt 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    625      1.112      para 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    626        1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    627        1.8       mrg 		return(0);
    628        1.8       mrg 	}
    629        1.8       mrg 
    630        1.8       mrg 	/*
    631        1.8       mrg 	 * if all we wanted was VA, return now
    632        1.8       mrg 	 */
    633        1.8       mrg 
    634       1.78      yamt 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    635        1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    636        1.8       mrg 		return(kva);
    637        1.8       mrg 	}
    638       1.40       chs 
    639        1.8       mrg 	/*
    640        1.8       mrg 	 * recover object offset from virtual address
    641        1.8       mrg 	 */
    642        1.8       mrg 
    643        1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    644        1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    645        1.8       mrg 
    646        1.8       mrg 	/*
    647        1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    648        1.8       mrg 	 * whom should ever get a handle on this area of VM.
    649        1.8       mrg 	 */
    650        1.8       mrg 
    651        1.8       mrg 	loopva = kva;
    652       1.44   thorpej 	loopsize = size;
    653       1.78      yamt 
    654      1.107      matt 	pgaflags = UVM_FLAG_COLORMATCH;
    655      1.103        ad 	if (flags & UVM_KMF_NOWAIT)
    656      1.103        ad 		pgaflags |= UVM_PGA_USERESERVE;
    657       1.78      yamt 	if (flags & UVM_KMF_ZERO)
    658       1.78      yamt 		pgaflags |= UVM_PGA_ZERO;
    659       1.89  drochner 	prot = VM_PROT_READ | VM_PROT_WRITE;
    660       1.89  drochner 	if (flags & UVM_KMF_EXEC)
    661       1.89  drochner 		prot |= VM_PROT_EXECUTE;
    662       1.44   thorpej 	while (loopsize) {
    663      1.114      matt 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    664      1.114      matt 		    "loopva=%#"PRIxVADDR, loopva);
    665       1.78      yamt 
    666      1.107      matt 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    667      1.107      matt #ifdef UVM_KM_VMFREELIST
    668      1.107      matt 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    669      1.107      matt #else
    670      1.107      matt 		   UVM_PGA_STRAT_NORMAL, 0
    671      1.107      matt #endif
    672      1.107      matt 		   );
    673       1.47       chs 
    674        1.8       mrg 		/*
    675        1.8       mrg 		 * out of memory?
    676        1.8       mrg 		 */
    677        1.8       mrg 
    678       1.35   thorpej 		if (__predict_false(pg == NULL)) {
    679       1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    680       1.80      yamt 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    681        1.8       mrg 				/* free everything! */
    682       1.78      yamt 				uvm_km_free(map, kva, size,
    683       1.78      yamt 				    flags & UVM_KMF_TYPEMASK);
    684       1.58       chs 				return (0);
    685        1.8       mrg 			} else {
    686        1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    687        1.8       mrg 				continue;
    688        1.8       mrg 			}
    689        1.8       mrg 		}
    690       1.47       chs 
    691       1.78      yamt 		pg->flags &= ~PG_BUSY;	/* new page */
    692       1.78      yamt 		UVM_PAGE_OWN(pg, NULL);
    693       1.78      yamt 
    694        1.8       mrg 		/*
    695       1.52       chs 		 * map it in
    696        1.8       mrg 		 */
    697       1.40       chs 
    698      1.104    cegger 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    699      1.106    cegger 		    prot, PMAP_KMPAGE);
    700        1.8       mrg 		loopva += PAGE_SIZE;
    701        1.8       mrg 		offset += PAGE_SIZE;
    702       1.44   thorpej 		loopsize -= PAGE_SIZE;
    703        1.8       mrg 	}
    704       1.69  junyoung 
    705      1.112      para 	pmap_update(pmap_kernel());
    706       1.69  junyoung 
    707        1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    708        1.8       mrg 	return(kva);
    709        1.1       mrg }
    710        1.1       mrg 
    711        1.1       mrg /*
    712      1.140      maxv  * uvm_km_protect: change the protection of an allocated area
    713      1.140      maxv  */
    714      1.140      maxv 
    715      1.140      maxv int
    716      1.140      maxv uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
    717      1.140      maxv {
    718      1.140      maxv 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
    719      1.140      maxv }
    720      1.140      maxv 
    721      1.140      maxv /*
    722        1.1       mrg  * uvm_km_free: free an area of kernel memory
    723        1.1       mrg  */
    724        1.1       mrg 
    725        1.8       mrg void
    726       1.83   thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    727        1.8       mrg {
    728      1.118      matt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    729        1.1       mrg 
    730       1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    731       1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    732       1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    733       1.78      yamt 	KASSERT((addr & PAGE_MASK) == 0);
    734       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    735        1.1       mrg 
    736        1.8       mrg 	size = round_page(size);
    737        1.1       mrg 
    738       1.78      yamt 	if (flags & UVM_KMF_PAGEABLE) {
    739       1.78      yamt 		uvm_km_pgremove(addr, addr + size);
    740       1.78      yamt 	} else if (flags & UVM_KMF_WIRED) {
    741      1.109     rmind 		/*
    742      1.109     rmind 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    743      1.109     rmind 		 * remove it after.  See comment below about KVA visibility.
    744      1.109     rmind 		 */
    745      1.102        ad 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    746        1.8       mrg 	}
    747       1.99      yamt 
    748       1.99      yamt 	/*
    749      1.109     rmind 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    750      1.109     rmind 	 * KVA becomes globally available.
    751       1.99      yamt 	 */
    752        1.8       mrg 
    753      1.112      para 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    754       1.66        pk }
    755       1.66        pk 
    756       1.10   thorpej /* Sanity; must specify both or none. */
    757       1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    758       1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    759       1.10   thorpej #error Must specify MAP and UNMAP together.
    760       1.10   thorpej #endif
    761       1.10   thorpej 
    762      1.112      para int
    763      1.112      para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    764      1.112      para     vmem_addr_t *addr)
    765       1.72      yamt {
    766       1.72      yamt 	struct vm_page *pg;
    767      1.112      para 	vmem_addr_t va;
    768      1.112      para 	int rc;
    769      1.112      para 	vaddr_t loopva;
    770      1.112      para 	vsize_t loopsize;
    771       1.72      yamt 
    772      1.112      para 	size = round_page(size);
    773       1.72      yamt 
    774      1.112      para #if defined(PMAP_MAP_POOLPAGE)
    775      1.112      para 	if (size == PAGE_SIZE) {
    776       1.72      yamt again:
    777      1.112      para #ifdef PMAP_ALLOC_POOLPAGE
    778      1.112      para 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    779      1.112      para 		   0 : UVM_PGA_USERESERVE);
    780      1.112      para #else
    781      1.112      para 		pg = uvm_pagealloc(NULL, 0, NULL,
    782      1.112      para 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    783      1.112      para #endif /* PMAP_ALLOC_POOLPAGE */
    784      1.112      para 		if (__predict_false(pg == NULL)) {
    785      1.112      para 			if (flags & VM_SLEEP) {
    786      1.112      para 				uvm_wait("plpg");
    787      1.112      para 				goto again;
    788      1.112      para 			}
    789      1.123     rmind 			return ENOMEM;
    790      1.112      para 		}
    791      1.112      para 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    792      1.112      para 		if (__predict_false(va == 0)) {
    793      1.112      para 			uvm_pagefree(pg);
    794      1.112      para 			return ENOMEM;
    795       1.72      yamt 		}
    796      1.112      para 		*addr = va;
    797      1.112      para 		return 0;
    798       1.72      yamt 	}
    799      1.112      para #endif /* PMAP_MAP_POOLPAGE */
    800      1.112      para 
    801      1.112      para 	rc = vmem_alloc(vm, size, flags, &va);
    802      1.112      para 	if (rc != 0)
    803      1.112      para 		return rc;
    804       1.72      yamt 
    805      1.130      matt #ifdef PMAP_GROWKERNEL
    806      1.130      matt 	/*
    807      1.135      para 	 * These VA allocations happen independently of uvm_map
    808      1.135      para 	 * so this allocation must not extend beyond the current limit.
    809      1.135      para 	 */
    810      1.135      para 	KASSERTMSG(uvm_maxkaddr >= va + size,
    811      1.135      para 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    812      1.135      para 	    uvm_maxkaddr, va, size);
    813      1.130      matt #endif
    814      1.130      matt 
    815      1.112      para 	loopva = va;
    816      1.112      para 	loopsize = size;
    817       1.72      yamt 
    818      1.112      para 	while (loopsize) {
    819  1.141.2.1    bouyer 		paddr_t pa __diagused;
    820      1.128      matt 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
    821      1.128      matt 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
    822      1.128      matt 		    " pa=%#"PRIxPADDR" vmem=%p",
    823      1.128      matt 		    loopva, loopsize, pa, vm);
    824      1.114      matt 
    825      1.114      matt 		pg = uvm_pagealloc(NULL, loopva, NULL,
    826      1.115      matt 		    UVM_FLAG_COLORMATCH
    827      1.114      matt 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    828      1.112      para 		if (__predict_false(pg == NULL)) {
    829      1.112      para 			if (flags & VM_SLEEP) {
    830      1.112      para 				uvm_wait("plpg");
    831      1.112      para 				continue;
    832      1.112      para 			} else {
    833      1.112      para 				uvm_km_pgremove_intrsafe(kernel_map, va,
    834      1.112      para 				    va + size);
    835      1.125      yamt 				vmem_free(vm, va, size);
    836      1.112      para 				return ENOMEM;
    837      1.112      para 			}
    838      1.112      para 		}
    839      1.123     rmind 
    840      1.112      para 		pg->flags &= ~PG_BUSY;	/* new page */
    841      1.112      para 		UVM_PAGE_OWN(pg, NULL);
    842      1.112      para 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    843      1.112      para 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    844      1.107      matt 
    845      1.112      para 		loopva += PAGE_SIZE;
    846      1.112      para 		loopsize -= PAGE_SIZE;
    847       1.15   thorpej 	}
    848      1.112      para 	pmap_update(pmap_kernel());
    849      1.112      para 
    850      1.112      para 	*addr = va;
    851       1.16   thorpej 
    852      1.112      para 	return 0;
    853       1.10   thorpej }
    854       1.10   thorpej 
    855       1.10   thorpej void
    856      1.112      para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    857       1.72      yamt {
    858      1.112      para 
    859      1.112      para 	size = round_page(size);
    860       1.72      yamt #if defined(PMAP_UNMAP_POOLPAGE)
    861      1.112      para 	if (size == PAGE_SIZE) {
    862      1.112      para 		paddr_t pa;
    863       1.72      yamt 
    864      1.112      para 		pa = PMAP_UNMAP_POOLPAGE(addr);
    865      1.112      para 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    866       1.72      yamt 		return;
    867       1.72      yamt 	}
    868      1.112      para #endif /* PMAP_UNMAP_POOLPAGE */
    869      1.112      para 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    870      1.112      para 	pmap_update(pmap_kernel());
    871       1.72      yamt 
    872      1.112      para 	vmem_free(vm, addr, size);
    873       1.72      yamt }
    874       1.72      yamt 
    875      1.112      para bool
    876      1.112      para uvm_km_va_starved_p(void)
    877       1.10   thorpej {
    878      1.112      para 	vmem_size_t total;
    879      1.112      para 	vmem_size_t free;
    880      1.112      para 
    881      1.135      para 	if (kmem_arena == NULL)
    882      1.135      para 		return false;
    883      1.135      para 
    884      1.112      para 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    885      1.112      para 	free = vmem_size(kmem_arena, VMEM_FREE);
    886       1.10   thorpej 
    887      1.112      para 	return (free < (total / 10));
    888        1.1       mrg }
    889