uvm_km.c revision 1.155 1 1.155 ad /* $NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.108 chuck * 3. Neither the name of the University nor the names of its contributors
21 1.1 mrg * may be used to endorse or promote products derived from this software
22 1.1 mrg * without specific prior written permission.
23 1.1 mrg *
24 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 mrg * SUCH DAMAGE.
35 1.1 mrg *
36 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 1.1 mrg *
39 1.1 mrg *
40 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 1.1 mrg * All rights reserved.
42 1.47 chs *
43 1.1 mrg * Permission to use, copy, modify and distribute this software and
44 1.1 mrg * its documentation is hereby granted, provided that both the copyright
45 1.1 mrg * notice and this permission notice appear in all copies of the
46 1.1 mrg * software, derivative works or modified versions, and any portions
47 1.1 mrg * thereof, and that both notices appear in supporting documentation.
48 1.47 chs *
49 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 1.47 chs *
53 1.1 mrg * Carnegie Mellon requests users of this software to return to
54 1.1 mrg *
55 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 1.1 mrg * School of Computer Science
57 1.1 mrg * Carnegie Mellon University
58 1.1 mrg * Pittsburgh PA 15213-3890
59 1.1 mrg *
60 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
61 1.1 mrg * rights to redistribute these changes.
62 1.1 mrg */
63 1.6 mrg
64 1.1 mrg /*
65 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
66 1.1 mrg */
67 1.1 mrg
68 1.7 chuck /*
69 1.7 chuck * overview of kernel memory management:
70 1.7 chuck *
71 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 1.7 chuck *
75 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
76 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
77 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
78 1.7 chuck * are typically allocated at boot time and are never released. kernel
79 1.47 chs * virtual address space that is mapped by a submap is locked by the
80 1.7 chuck * submap's lock -- not the kernel_map's lock.
81 1.7 chuck *
82 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
83 1.7 chuck * up the locking and protection of the kernel address space into smaller
84 1.7 chuck * chunks.
85 1.7 chuck *
86 1.126 para * the vm system has several standard kernel submaps/arenas, including:
87 1.126 para * kmem_arena => used for kmem/pool (memoryallocators(9))
88 1.7 chuck * pager_map => used to map "buf" structures into kernel space
89 1.7 chuck * exec_map => used during exec to handle exec args
90 1.7 chuck * etc...
91 1.7 chuck *
92 1.127 rmind * The kmem_arena is a "special submap", as it lives in a fixed map entry
93 1.127 rmind * within the kernel_map and is controlled by vmem(9).
94 1.126 para *
95 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
96 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97 1.7 chuck * are "special" and never die). all kernel objects should be thought of
98 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
99 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
100 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101 1.7 chuck *
102 1.101 pooka * note that just because a kernel object spans the entire kernel virtual
103 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
104 1.47 chs * large chunks of a kernel object's space go unused either because
105 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
106 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
107 1.7 chuck * objects, the only part of the object that can ever be populated is the
108 1.7 chuck * offsets that are managed by the submap.
109 1.7 chuck *
110 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
111 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112 1.7 chuck * example:
113 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
116 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
117 1.47 chs * mapped at 0xf8235000.
118 1.7 chuck *
119 1.7 chuck * kernel object have one other special property: when the kernel virtual
120 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
121 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
122 1.7 chuck * this has to be done because there is no backing store for kernel pages
123 1.7 chuck * and no need to save them after they are no longer referenced.
124 1.126 para *
125 1.127 rmind * Generic arenas:
126 1.126 para *
127 1.127 rmind * kmem_arena:
128 1.127 rmind * Main arena controlling the kernel KVA used by other arenas.
129 1.127 rmind *
130 1.127 rmind * kmem_va_arena:
131 1.127 rmind * Implements quantum caching in order to speedup allocations and
132 1.127 rmind * reduce fragmentation. The pool(9), unless created with a custom
133 1.127 rmind * meta-data allocator, and kmem(9) subsystems use this arena.
134 1.127 rmind *
135 1.127 rmind * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136 1.127 rmind * These arenas cannot use quantum cache. However, kmem_va_meta_arena
137 1.127 rmind * compensates this by importing larger chunks from kmem_arena.
138 1.127 rmind *
139 1.127 rmind * kmem_va_meta_arena:
140 1.127 rmind * Space for meta-data.
141 1.127 rmind *
142 1.127 rmind * kmem_meta_arena:
143 1.127 rmind * Imports from kmem_va_meta_arena. Allocations from this arena are
144 1.127 rmind * backed with the pages.
145 1.127 rmind *
146 1.127 rmind * Arena stacking:
147 1.127 rmind *
148 1.127 rmind * kmem_arena
149 1.127 rmind * kmem_va_arena
150 1.127 rmind * kmem_va_meta_arena
151 1.127 rmind * kmem_meta_arena
152 1.7 chuck */
153 1.55 lukem
154 1.55 lukem #include <sys/cdefs.h>
155 1.155 ad __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.155 2020/02/23 15:46:43 ad Exp $");
156 1.55 lukem
157 1.55 lukem #include "opt_uvmhist.h"
158 1.7 chuck
159 1.117 para #include "opt_kmempages.h"
160 1.117 para
161 1.117 para #ifndef NKMEMPAGES
162 1.117 para #define NKMEMPAGES 0
163 1.117 para #endif
164 1.117 para
165 1.117 para /*
166 1.117 para * Defaults for lower and upper-bounds for the kmem_arena page count.
167 1.117 para * Can be overridden by kernel config options.
168 1.117 para */
169 1.117 para #ifndef NKMEMPAGES_MIN
170 1.117 para #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 1.117 para #endif
172 1.117 para
173 1.117 para #ifndef NKMEMPAGES_MAX
174 1.117 para #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 1.117 para #endif
176 1.117 para
177 1.117 para
178 1.1 mrg #include <sys/param.h>
179 1.1 mrg #include <sys/systm.h>
180 1.150 uwe #include <sys/atomic.h>
181 1.1 mrg #include <sys/proc.h>
182 1.72 yamt #include <sys/pool.h>
183 1.112 para #include <sys/vmem.h>
184 1.138 para #include <sys/vmem_impl.h>
185 1.112 para #include <sys/kmem.h>
186 1.147 maxv #include <sys/msan.h>
187 1.1 mrg
188 1.1 mrg #include <uvm/uvm.h>
189 1.1 mrg
190 1.1 mrg /*
191 1.1 mrg * global data structures
192 1.1 mrg */
193 1.1 mrg
194 1.49 chs struct vm_map *kernel_map = NULL;
195 1.1 mrg
196 1.1 mrg /*
197 1.1 mrg * local data structues
198 1.1 mrg */
199 1.1 mrg
200 1.112 para static struct vm_map kernel_map_store;
201 1.112 para static struct vm_map_entry kernel_image_mapent_store;
202 1.112 para static struct vm_map_entry kernel_kmem_mapent_store;
203 1.1 mrg
204 1.117 para int nkmempages = 0;
205 1.112 para vaddr_t kmembase;
206 1.112 para vsize_t kmemsize;
207 1.72 yamt
208 1.138 para static struct vmem kmem_arena_store;
209 1.135 para vmem_t *kmem_arena = NULL;
210 1.138 para static struct vmem kmem_va_arena_store;
211 1.112 para vmem_t *kmem_va_arena;
212 1.72 yamt
213 1.72 yamt /*
214 1.117 para * kmeminit_nkmempages: calculate the size of kmem_arena.
215 1.117 para */
216 1.117 para void
217 1.117 para kmeminit_nkmempages(void)
218 1.117 para {
219 1.117 para int npages;
220 1.117 para
221 1.117 para if (nkmempages != 0) {
222 1.117 para /*
223 1.117 para * It's already been set (by us being here before)
224 1.117 para * bail out now;
225 1.117 para */
226 1.117 para return;
227 1.117 para }
228 1.117 para
229 1.147 maxv #if defined(KMSAN)
230 1.147 maxv npages = (physmem / 8);
231 1.147 maxv #elif defined(PMAP_MAP_POOLPAGE)
232 1.119 para npages = (physmem / 4);
233 1.119 para #else
234 1.119 para npages = (physmem / 3) * 2;
235 1.119 para #endif /* defined(PMAP_MAP_POOLPAGE) */
236 1.117 para
237 1.119 para #ifndef NKMEMPAGES_MAX_UNLIMITED
238 1.117 para if (npages > NKMEMPAGES_MAX)
239 1.117 para npages = NKMEMPAGES_MAX;
240 1.119 para #endif
241 1.117 para
242 1.117 para if (npages < NKMEMPAGES_MIN)
243 1.117 para npages = NKMEMPAGES_MIN;
244 1.117 para
245 1.117 para nkmempages = npages;
246 1.117 para }
247 1.117 para
248 1.117 para /*
249 1.112 para * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
250 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
251 1.1 mrg *
252 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
253 1.82 christos * we assume that [vmin -> start] has already been allocated and that
254 1.62 thorpej * "end" is the end.
255 1.1 mrg */
256 1.1 mrg
257 1.8 mrg void
258 1.112 para uvm_km_bootstrap(vaddr_t start, vaddr_t end)
259 1.1 mrg {
260 1.119 para bool kmem_arena_small;
261 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
262 1.118 matt struct uvm_map_args args;
263 1.118 matt int error;
264 1.118 matt
265 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
266 1.144 pgoyette UVMHIST_LOG(maphist, "start=%#jx end=%#jx", start, end, 0,0);
267 1.27 thorpej
268 1.117 para kmeminit_nkmempages();
269 1.119 para kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
270 1.119 para kmem_arena_small = kmemsize < 64 * 1024 * 1024;
271 1.112 para
272 1.144 pgoyette UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
273 1.118 matt
274 1.27 thorpej /*
275 1.27 thorpej * next, init kernel memory objects.
276 1.8 mrg */
277 1.1 mrg
278 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
279 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
280 1.112 para VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
281 1.1 mrg
282 1.24 thorpej /*
283 1.56 thorpej * init the map and reserve any space that might already
284 1.56 thorpej * have been allocated kernel space before installing.
285 1.8 mrg */
286 1.1 mrg
287 1.112 para uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
288 1.112 para kernel_map_store.pmap = pmap_kernel();
289 1.70 yamt if (start != base) {
290 1.112 para error = uvm_map_prepare(&kernel_map_store,
291 1.71 yamt base, start - base,
292 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
293 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295 1.70 yamt if (!error) {
296 1.112 para kernel_image_mapent_store.flags =
297 1.112 para UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
298 1.112 para error = uvm_map_enter(&kernel_map_store, &args,
299 1.112 para &kernel_image_mapent_store);
300 1.70 yamt }
301 1.70 yamt
302 1.70 yamt if (error)
303 1.70 yamt panic(
304 1.112 para "uvm_km_bootstrap: could not reserve space for kernel");
305 1.112 para
306 1.112 para kmembase = args.uma_start + args.uma_size;
307 1.114 matt } else {
308 1.114 matt kmembase = base;
309 1.70 yamt }
310 1.47 chs
311 1.118 matt error = uvm_map_prepare(&kernel_map_store,
312 1.118 matt kmembase, kmemsize,
313 1.118 matt NULL, UVM_UNKNOWN_OFFSET, 0,
314 1.118 matt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
315 1.118 matt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
316 1.118 matt if (!error) {
317 1.118 matt kernel_kmem_mapent_store.flags =
318 1.118 matt UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
319 1.118 matt error = uvm_map_enter(&kernel_map_store, &args,
320 1.118 matt &kernel_kmem_mapent_store);
321 1.118 matt }
322 1.118 matt
323 1.118 matt if (error)
324 1.118 matt panic("uvm_km_bootstrap: could not reserve kernel kmem");
325 1.118 matt
326 1.8 mrg /*
327 1.8 mrg * install!
328 1.8 mrg */
329 1.8 mrg
330 1.112 para kernel_map = &kernel_map_store;
331 1.112 para
332 1.112 para pool_subsystem_init();
333 1.112 para
334 1.138 para kmem_arena = vmem_init(&kmem_arena_store, "kmem",
335 1.138 para kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
336 1.112 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
337 1.135 para #ifdef PMAP_GROWKERNEL
338 1.135 para /*
339 1.135 para * kmem_arena VA allocations happen independently of uvm_map.
340 1.135 para * grow kernel to accommodate the kmem_arena.
341 1.135 para */
342 1.135 para if (uvm_maxkaddr < kmembase + kmemsize) {
343 1.135 para uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
344 1.135 para KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
345 1.135 para "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
346 1.135 para uvm_maxkaddr, kmembase, kmemsize);
347 1.135 para }
348 1.135 para #endif
349 1.112 para
350 1.138 para vmem_subsystem_init(kmem_arena);
351 1.112 para
352 1.144 pgoyette UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
353 1.144 pgoyette kmembase, kmemsize, 0,0);
354 1.118 matt
355 1.138 para kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
356 1.138 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
357 1.138 para (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
358 1.138 para VM_NOSLEEP, IPL_VM);
359 1.118 matt
360 1.118 matt UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
361 1.112 para }
362 1.112 para
363 1.112 para /*
364 1.112 para * uvm_km_init: init the kernel maps virtual memory caches
365 1.112 para * and start the pool/kmem allocator.
366 1.112 para */
367 1.112 para void
368 1.112 para uvm_km_init(void)
369 1.112 para {
370 1.112 para kmem_init();
371 1.1 mrg }
372 1.1 mrg
373 1.1 mrg /*
374 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
375 1.1 mrg * is allocated all references to that area of VM must go through it. this
376 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
377 1.1 mrg *
378 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
379 1.112 para * pager_map => used to map "buf" structures into kernel space
380 1.5 thorpej * by the submap must start
381 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
382 1.1 mrg * alloc a new map
383 1.1 mrg */
384 1.78 yamt
385 1.8 mrg struct vm_map *
386 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
387 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
388 1.112 para struct vm_map *submap)
389 1.8 mrg {
390 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
391 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
392 1.1 mrg
393 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
394 1.71 yamt
395 1.8 mrg size = round_page(size); /* round up to pagesize */
396 1.1 mrg
397 1.8 mrg /*
398 1.8 mrg * first allocate a blank spot in the parent map
399 1.8 mrg */
400 1.8 mrg
401 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
402 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
403 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
404 1.118 matt panic("%s: unable to allocate space in parent map", __func__);
405 1.8 mrg }
406 1.8 mrg
407 1.8 mrg /*
408 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
409 1.8 mrg */
410 1.1 mrg
411 1.82 christos *vmax = *vmin + size;
412 1.5 thorpej
413 1.8 mrg /*
414 1.8 mrg * add references to pmap and create or init the submap
415 1.8 mrg */
416 1.1 mrg
417 1.8 mrg pmap_reference(vm_map_pmap(map));
418 1.8 mrg if (submap == NULL) {
419 1.112 para submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
420 1.8 mrg }
421 1.112 para uvm_map_setup(submap, *vmin, *vmax, flags);
422 1.112 para submap->pmap = vm_map_pmap(map);
423 1.1 mrg
424 1.8 mrg /*
425 1.8 mrg * now let uvm_map_submap plug in it...
426 1.8 mrg */
427 1.1 mrg
428 1.112 para if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
429 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
430 1.1 mrg
431 1.112 para return(submap);
432 1.1 mrg }
433 1.1 mrg
434 1.1 mrg /*
435 1.110 yamt * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
436 1.1 mrg */
437 1.1 mrg
438 1.8 mrg void
439 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
440 1.1 mrg {
441 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
442 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
443 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
444 1.53 chs struct vm_page *pg;
445 1.52 chs voff_t curoff, nextoff;
446 1.53 chs int swpgonlydelta = 0;
447 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
448 1.1 mrg
449 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
450 1.78 yamt KASSERT(startva < endva);
451 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
452 1.78 yamt
453 1.155 ad rw_enter(uobj->vmobjlock, RW_WRITER);
454 1.110 yamt pmap_remove(pmap_kernel(), startva, endva);
455 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
456 1.52 chs nextoff = curoff + PAGE_SIZE;
457 1.52 chs pg = uvm_pagelookup(uobj, curoff);
458 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
459 1.52 chs pg->flags |= PG_WANTED;
460 1.155 ad UVM_UNLOCK_AND_WAIT_RW(pg, uobj->vmobjlock, 0,
461 1.52 chs "km_pgrm", 0);
462 1.155 ad rw_enter(uobj->vmobjlock, RW_WRITER);
463 1.52 chs nextoff = curoff;
464 1.8 mrg continue;
465 1.52 chs }
466 1.8 mrg
467 1.52 chs /*
468 1.52 chs * free the swap slot, then the page.
469 1.52 chs */
470 1.8 mrg
471 1.53 chs if (pg == NULL &&
472 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
473 1.53 chs swpgonlydelta++;
474 1.53 chs }
475 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
476 1.53 chs if (pg != NULL) {
477 1.53 chs uvm_pagefree(pg);
478 1.53 chs }
479 1.8 mrg }
480 1.155 ad rw_exit(uobj->vmobjlock);
481 1.8 mrg
482 1.54 chs if (swpgonlydelta > 0) {
483 1.149 ad KASSERT(uvmexp.swpgonly >= swpgonlydelta);
484 1.148 ad atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
485 1.54 chs }
486 1.24 thorpej }
487 1.24 thorpej
488 1.24 thorpej
489 1.24 thorpej /*
490 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
491 1.78 yamt * regions.
492 1.24 thorpej *
493 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
494 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
495 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
496 1.52 chs * be on the active or inactive queues (because they have no object).
497 1.24 thorpej */
498 1.24 thorpej
499 1.24 thorpej void
500 1.102 ad uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
501 1.24 thorpej {
502 1.122 bouyer #define __PGRM_BATCH 16
503 1.52 chs struct vm_page *pg;
504 1.122 bouyer paddr_t pa[__PGRM_BATCH];
505 1.122 bouyer int npgrm, i;
506 1.122 bouyer vaddr_t va, batch_vastart;
507 1.122 bouyer
508 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
509 1.24 thorpej
510 1.102 ad KASSERT(VM_MAP_IS_KERNEL(map));
511 1.128 matt KASSERTMSG(vm_map_min(map) <= start,
512 1.128 matt "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
513 1.128 matt " (size=%#"PRIxVSIZE")",
514 1.128 matt vm_map_min(map), start, end - start);
515 1.78 yamt KASSERT(start < end);
516 1.102 ad KASSERT(end <= vm_map_max(map));
517 1.78 yamt
518 1.122 bouyer for (va = start; va < end;) {
519 1.122 bouyer batch_vastart = va;
520 1.122 bouyer /* create a batch of at most __PGRM_BATCH pages to free */
521 1.122 bouyer for (i = 0;
522 1.122 bouyer i < __PGRM_BATCH && va < end;
523 1.122 bouyer va += PAGE_SIZE) {
524 1.122 bouyer if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
525 1.122 bouyer continue;
526 1.122 bouyer }
527 1.122 bouyer i++;
528 1.122 bouyer }
529 1.122 bouyer npgrm = i;
530 1.122 bouyer /* now remove the mappings */
531 1.124 bouyer pmap_kremove(batch_vastart, va - batch_vastart);
532 1.122 bouyer /* and free the pages */
533 1.122 bouyer for (i = 0; i < npgrm; i++) {
534 1.122 bouyer pg = PHYS_TO_VM_PAGE(pa[i]);
535 1.122 bouyer KASSERT(pg);
536 1.122 bouyer KASSERT(pg->uobject == NULL && pg->uanon == NULL);
537 1.122 bouyer KASSERT((pg->flags & PG_BUSY) == 0);
538 1.122 bouyer uvm_pagefree(pg);
539 1.40 chs }
540 1.24 thorpej }
541 1.122 bouyer #undef __PGRM_BATCH
542 1.1 mrg }
543 1.1 mrg
544 1.78 yamt #if defined(DEBUG)
545 1.78 yamt void
546 1.102 ad uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
547 1.78 yamt {
548 1.78 yamt vaddr_t va;
549 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
550 1.78 yamt
551 1.102 ad KDASSERT(VM_MAP_IS_KERNEL(map));
552 1.102 ad KDASSERT(vm_map_min(map) <= start);
553 1.78 yamt KDASSERT(start < end);
554 1.102 ad KDASSERT(end <= vm_map_max(map));
555 1.78 yamt
556 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
557 1.152 ad paddr_t pa;
558 1.152 ad
559 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
560 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
561 1.81 simonb (void *)va, (long long)pa);
562 1.78 yamt }
563 1.152 ad /*
564 1.152 ad * kernel_object should not have pages for the corresponding
565 1.152 ad * region. check it.
566 1.152 ad *
567 1.152 ad * why trylock? because:
568 1.152 ad * - caller might not want to block.
569 1.152 ad * - we can recurse when allocating radix_node for
570 1.152 ad * kernel_object.
571 1.152 ad */
572 1.155 ad if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_WRITER)) {
573 1.152 ad struct vm_page *pg;
574 1.152 ad
575 1.152 ad pg = uvm_pagelookup(uvm_kernel_object,
576 1.152 ad va - vm_map_min(kernel_map));
577 1.155 ad rw_exit(uvm_kernel_object->vmobjlock);
578 1.152 ad if (pg) {
579 1.152 ad panic("uvm_km_check_empty: "
580 1.152 ad "has page hashed at %p",
581 1.152 ad (const void *)va);
582 1.152 ad }
583 1.78 yamt }
584 1.78 yamt }
585 1.78 yamt }
586 1.78 yamt #endif /* defined(DEBUG) */
587 1.1 mrg
588 1.1 mrg /*
589 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
590 1.1 mrg *
591 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
592 1.1 mrg * free VM space in the map... caller should be prepared to handle
593 1.1 mrg * this case.
594 1.1 mrg * => we return KVA of memory allocated
595 1.1 mrg */
596 1.1 mrg
597 1.14 eeh vaddr_t
598 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
599 1.1 mrg {
600 1.14 eeh vaddr_t kva, loopva;
601 1.14 eeh vaddr_t offset;
602 1.44 thorpej vsize_t loopsize;
603 1.8 mrg struct vm_page *pg;
604 1.78 yamt struct uvm_object *obj;
605 1.78 yamt int pgaflags;
606 1.141 maxv vm_prot_t prot, vaprot;
607 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
608 1.1 mrg
609 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
610 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
611 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
612 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
613 1.111 matt KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
614 1.111 matt KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
615 1.1 mrg
616 1.8 mrg /*
617 1.8 mrg * setup for call
618 1.8 mrg */
619 1.8 mrg
620 1.78 yamt kva = vm_map_min(map); /* hint */
621 1.8 mrg size = round_page(size);
622 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
623 1.144 pgoyette UVMHIST_LOG(maphist," (map=0x%#jx, obj=0x%#jx, size=0x%jx, flags=%jd)",
624 1.144 pgoyette (uintptr_t)map, (uintptr_t)obj, size, flags);
625 1.1 mrg
626 1.8 mrg /*
627 1.8 mrg * allocate some virtual space
628 1.8 mrg */
629 1.8 mrg
630 1.141 maxv vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
631 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
632 1.141 maxv align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
633 1.78 yamt UVM_ADV_RANDOM,
634 1.111 matt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
635 1.112 para | UVM_KMF_COLORMATCH)))) != 0)) {
636 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
637 1.8 mrg return(0);
638 1.8 mrg }
639 1.8 mrg
640 1.8 mrg /*
641 1.8 mrg * if all we wanted was VA, return now
642 1.8 mrg */
643 1.8 mrg
644 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
645 1.144 pgoyette UVMHIST_LOG(maphist,"<- done valloc (kva=0x%jx)", kva,0,0,0);
646 1.8 mrg return(kva);
647 1.8 mrg }
648 1.40 chs
649 1.8 mrg /*
650 1.8 mrg * recover object offset from virtual address
651 1.8 mrg */
652 1.8 mrg
653 1.8 mrg offset = kva - vm_map_min(kernel_map);
654 1.144 pgoyette UVMHIST_LOG(maphist, " kva=0x%jx, offset=0x%jx", kva, offset,0,0);
655 1.8 mrg
656 1.8 mrg /*
657 1.8 mrg * now allocate and map in the memory... note that we are the only ones
658 1.8 mrg * whom should ever get a handle on this area of VM.
659 1.8 mrg */
660 1.8 mrg
661 1.8 mrg loopva = kva;
662 1.44 thorpej loopsize = size;
663 1.78 yamt
664 1.107 matt pgaflags = UVM_FLAG_COLORMATCH;
665 1.103 ad if (flags & UVM_KMF_NOWAIT)
666 1.103 ad pgaflags |= UVM_PGA_USERESERVE;
667 1.78 yamt if (flags & UVM_KMF_ZERO)
668 1.78 yamt pgaflags |= UVM_PGA_ZERO;
669 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
670 1.89 drochner if (flags & UVM_KMF_EXEC)
671 1.89 drochner prot |= VM_PROT_EXECUTE;
672 1.44 thorpej while (loopsize) {
673 1.114 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
674 1.114 matt "loopva=%#"PRIxVADDR, loopva);
675 1.78 yamt
676 1.107 matt pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
677 1.107 matt #ifdef UVM_KM_VMFREELIST
678 1.107 matt UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
679 1.107 matt #else
680 1.107 matt UVM_PGA_STRAT_NORMAL, 0
681 1.107 matt #endif
682 1.107 matt );
683 1.47 chs
684 1.8 mrg /*
685 1.8 mrg * out of memory?
686 1.8 mrg */
687 1.8 mrg
688 1.35 thorpej if (__predict_false(pg == NULL)) {
689 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
690 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
691 1.8 mrg /* free everything! */
692 1.78 yamt uvm_km_free(map, kva, size,
693 1.78 yamt flags & UVM_KMF_TYPEMASK);
694 1.58 chs return (0);
695 1.8 mrg } else {
696 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
697 1.8 mrg continue;
698 1.8 mrg }
699 1.8 mrg }
700 1.47 chs
701 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
702 1.78 yamt UVM_PAGE_OWN(pg, NULL);
703 1.78 yamt
704 1.8 mrg /*
705 1.52 chs * map it in
706 1.8 mrg */
707 1.40 chs
708 1.104 cegger pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
709 1.106 cegger prot, PMAP_KMPAGE);
710 1.8 mrg loopva += PAGE_SIZE;
711 1.8 mrg offset += PAGE_SIZE;
712 1.44 thorpej loopsize -= PAGE_SIZE;
713 1.8 mrg }
714 1.69 junyoung
715 1.112 para pmap_update(pmap_kernel());
716 1.69 junyoung
717 1.146 maxv if ((flags & UVM_KMF_ZERO) == 0) {
718 1.147 maxv kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
719 1.147 maxv kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
720 1.146 maxv }
721 1.146 maxv
722 1.144 pgoyette UVMHIST_LOG(maphist,"<- done (kva=0x%jx)", kva,0,0,0);
723 1.8 mrg return(kva);
724 1.1 mrg }
725 1.1 mrg
726 1.1 mrg /*
727 1.140 maxv * uvm_km_protect: change the protection of an allocated area
728 1.140 maxv */
729 1.140 maxv
730 1.140 maxv int
731 1.140 maxv uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
732 1.140 maxv {
733 1.140 maxv return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
734 1.140 maxv }
735 1.140 maxv
736 1.140 maxv /*
737 1.1 mrg * uvm_km_free: free an area of kernel memory
738 1.1 mrg */
739 1.1 mrg
740 1.8 mrg void
741 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
742 1.8 mrg {
743 1.118 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
744 1.1 mrg
745 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
746 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
747 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
748 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
749 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
750 1.1 mrg
751 1.8 mrg size = round_page(size);
752 1.1 mrg
753 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
754 1.78 yamt uvm_km_pgremove(addr, addr + size);
755 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
756 1.109 rmind /*
757 1.109 rmind * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
758 1.109 rmind * remove it after. See comment below about KVA visibility.
759 1.109 rmind */
760 1.102 ad uvm_km_pgremove_intrsafe(map, addr, addr + size);
761 1.8 mrg }
762 1.99 yamt
763 1.99 yamt /*
764 1.109 rmind * Note: uvm_unmap_remove() calls pmap_update() for us, before
765 1.109 rmind * KVA becomes globally available.
766 1.99 yamt */
767 1.8 mrg
768 1.112 para uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
769 1.66 pk }
770 1.66 pk
771 1.10 thorpej /* Sanity; must specify both or none. */
772 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
773 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
774 1.10 thorpej #error Must specify MAP and UNMAP together.
775 1.10 thorpej #endif
776 1.10 thorpej
777 1.153 skrll #if defined(PMAP_ALLOC_POOLPAGE) && \
778 1.153 skrll !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
779 1.153 skrll #error Must specify ALLOC with MAP and UNMAP
780 1.153 skrll #endif
781 1.153 skrll
782 1.112 para int
783 1.112 para uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
784 1.112 para vmem_addr_t *addr)
785 1.72 yamt {
786 1.72 yamt struct vm_page *pg;
787 1.112 para vmem_addr_t va;
788 1.112 para int rc;
789 1.112 para vaddr_t loopva;
790 1.112 para vsize_t loopsize;
791 1.72 yamt
792 1.112 para size = round_page(size);
793 1.72 yamt
794 1.112 para #if defined(PMAP_MAP_POOLPAGE)
795 1.112 para if (size == PAGE_SIZE) {
796 1.72 yamt again:
797 1.112 para #ifdef PMAP_ALLOC_POOLPAGE
798 1.112 para pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
799 1.112 para 0 : UVM_PGA_USERESERVE);
800 1.112 para #else
801 1.112 para pg = uvm_pagealloc(NULL, 0, NULL,
802 1.112 para (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
803 1.112 para #endif /* PMAP_ALLOC_POOLPAGE */
804 1.112 para if (__predict_false(pg == NULL)) {
805 1.112 para if (flags & VM_SLEEP) {
806 1.112 para uvm_wait("plpg");
807 1.112 para goto again;
808 1.112 para }
809 1.123 rmind return ENOMEM;
810 1.112 para }
811 1.112 para va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
812 1.145 mlelstv KASSERT(va != 0);
813 1.112 para *addr = va;
814 1.112 para return 0;
815 1.72 yamt }
816 1.112 para #endif /* PMAP_MAP_POOLPAGE */
817 1.112 para
818 1.112 para rc = vmem_alloc(vm, size, flags, &va);
819 1.112 para if (rc != 0)
820 1.112 para return rc;
821 1.72 yamt
822 1.130 matt #ifdef PMAP_GROWKERNEL
823 1.130 matt /*
824 1.135 para * These VA allocations happen independently of uvm_map
825 1.135 para * so this allocation must not extend beyond the current limit.
826 1.135 para */
827 1.135 para KASSERTMSG(uvm_maxkaddr >= va + size,
828 1.135 para "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
829 1.135 para uvm_maxkaddr, va, size);
830 1.130 matt #endif
831 1.130 matt
832 1.112 para loopva = va;
833 1.112 para loopsize = size;
834 1.72 yamt
835 1.112 para while (loopsize) {
836 1.142 riastrad paddr_t pa __diagused;
837 1.128 matt KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
838 1.128 matt "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
839 1.128 matt " pa=%#"PRIxPADDR" vmem=%p",
840 1.128 matt loopva, loopsize, pa, vm);
841 1.114 matt
842 1.114 matt pg = uvm_pagealloc(NULL, loopva, NULL,
843 1.115 matt UVM_FLAG_COLORMATCH
844 1.114 matt | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
845 1.112 para if (__predict_false(pg == NULL)) {
846 1.112 para if (flags & VM_SLEEP) {
847 1.112 para uvm_wait("plpg");
848 1.112 para continue;
849 1.112 para } else {
850 1.112 para uvm_km_pgremove_intrsafe(kernel_map, va,
851 1.112 para va + size);
852 1.125 yamt vmem_free(vm, va, size);
853 1.112 para return ENOMEM;
854 1.112 para }
855 1.112 para }
856 1.123 rmind
857 1.112 para pg->flags &= ~PG_BUSY; /* new page */
858 1.112 para UVM_PAGE_OWN(pg, NULL);
859 1.112 para pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
860 1.112 para VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
861 1.107 matt
862 1.112 para loopva += PAGE_SIZE;
863 1.112 para loopsize -= PAGE_SIZE;
864 1.15 thorpej }
865 1.112 para pmap_update(pmap_kernel());
866 1.112 para
867 1.112 para *addr = va;
868 1.16 thorpej
869 1.112 para return 0;
870 1.10 thorpej }
871 1.10 thorpej
872 1.10 thorpej void
873 1.112 para uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
874 1.72 yamt {
875 1.112 para
876 1.112 para size = round_page(size);
877 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
878 1.112 para if (size == PAGE_SIZE) {
879 1.112 para paddr_t pa;
880 1.72 yamt
881 1.112 para pa = PMAP_UNMAP_POOLPAGE(addr);
882 1.112 para uvm_pagefree(PHYS_TO_VM_PAGE(pa));
883 1.72 yamt return;
884 1.72 yamt }
885 1.112 para #endif /* PMAP_UNMAP_POOLPAGE */
886 1.112 para uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
887 1.112 para pmap_update(pmap_kernel());
888 1.72 yamt
889 1.112 para vmem_free(vm, addr, size);
890 1.72 yamt }
891 1.72 yamt
892 1.112 para bool
893 1.112 para uvm_km_va_starved_p(void)
894 1.10 thorpej {
895 1.112 para vmem_size_t total;
896 1.112 para vmem_size_t free;
897 1.112 para
898 1.135 para if (kmem_arena == NULL)
899 1.135 para return false;
900 1.135 para
901 1.112 para total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
902 1.112 para free = vmem_size(kmem_arena, VMEM_FREE);
903 1.10 thorpej
904 1.112 para return (free < (total / 10));
905 1.1 mrg }
906