Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.22.2.1
      1  1.22.2.1      chs /*	$NetBSD: uvm_km.c,v 1.22.2.1 1999/04/16 16:28:45 chs Exp $	*/
      2       1.1      mrg 
      3       1.1      mrg /*
      4       1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5       1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1      mrg  *
      7       1.1      mrg  * All rights reserved.
      8       1.1      mrg  *
      9       1.1      mrg  * This code is derived from software contributed to Berkeley by
     10       1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1      mrg  *
     12       1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1      mrg  * modification, are permitted provided that the following conditions
     14       1.1      mrg  * are met:
     15       1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1      mrg  *    must display the following acknowledgement:
     22       1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23       1.1      mrg  *      Washington University, the University of California, Berkeley and
     24       1.1      mrg  *      its contributors.
     25       1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1      mrg  *    may be used to endorse or promote products derived from this software
     27       1.1      mrg  *    without specific prior written permission.
     28       1.1      mrg  *
     29       1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1      mrg  * SUCH DAMAGE.
     40       1.1      mrg  *
     41       1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42       1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43       1.1      mrg  *
     44       1.1      mrg  *
     45       1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1      mrg  * All rights reserved.
     47       1.1      mrg  *
     48       1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1      mrg  * notice and this permission notice appear in all copies of the
     51       1.1      mrg  * software, derivative works or modified versions, and any portions
     52       1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53       1.1      mrg  *
     54       1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55       1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57       1.1      mrg  *
     58       1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1      mrg  *
     60       1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1      mrg  *  School of Computer Science
     62       1.1      mrg  *  Carnegie Mellon University
     63       1.1      mrg  *  Pittsburgh PA 15213-3890
     64       1.1      mrg  *
     65       1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1      mrg  * rights to redistribute these changes.
     67       1.1      mrg  */
     68       1.6      mrg 
     69       1.6      mrg #include "opt_uvmhist.h"
     70       1.6      mrg #include "opt_pmap_new.h"
     71       1.1      mrg 
     72       1.1      mrg /*
     73       1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     74       1.1      mrg  */
     75       1.1      mrg 
     76       1.7    chuck /*
     77       1.7    chuck  * overview of kernel memory management:
     78       1.7    chuck  *
     79       1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80       1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81       1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82       1.7    chuck  *
     83       1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     84       1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     85       1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     86       1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     87       1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     88       1.7    chuck  * submap's lock -- not the kernel_map's lock.
     89       1.7    chuck  *
     90       1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     91       1.7    chuck  * up the locking and protection of the kernel address space into smaller
     92       1.7    chuck  * chunks.
     93       1.7    chuck  *
     94       1.7    chuck  * the vm system has several standard kernel submaps, including:
     95       1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
     96       1.7    chuck  *		malloc.   *** access to kmem_map must be protected
     97       1.7    chuck  *		by splimp() because we are allowed to call malloc()
     98       1.7    chuck  *		at interrupt time ***
     99       1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100       1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    101       1.7    chuck  *   exec_map => used during exec to handle exec args
    102       1.7    chuck  *   etc...
    103       1.7    chuck  *
    104       1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    105       1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106       1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    107       1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108       1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    109       1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110       1.7    chuck  *
    111       1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    112       1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    113       1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    114       1.7    chuck  * object (e.g. kmem_object, mb_object).
    115       1.7    chuck  *
    116       1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    117       1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    118       1.7    chuck  * large chunks of a kernel object's space go unused either because
    119       1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    120       1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121       1.7    chuck  * objects, the only part of the object that can ever be populated is the
    122       1.7    chuck  * offsets that are managed by the submap.
    123       1.7    chuck  *
    124       1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    125       1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126       1.7    chuck  * example:
    127       1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128       1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129       1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130       1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    131       1.7    chuck  *   mapped at 0xf8235000.
    132       1.7    chuck  *
    133       1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    134       1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    135       1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136       1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137       1.7    chuck  * in those objects will typically not start at zero.
    138       1.7    chuck  *
    139       1.7    chuck  * kernel object have one other special property: when the kernel virtual
    140       1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    141       1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    142       1.7    chuck  * this has to be done because there is no backing store for kernel pages
    143       1.7    chuck  * and no need to save them after they are no longer referenced.
    144       1.7    chuck  */
    145       1.7    chuck 
    146       1.1      mrg #include <sys/param.h>
    147       1.1      mrg #include <sys/systm.h>
    148       1.1      mrg #include <sys/proc.h>
    149       1.1      mrg 
    150       1.1      mrg #include <vm/vm.h>
    151       1.1      mrg #include <vm/vm_page.h>
    152       1.1      mrg #include <vm/vm_kern.h>
    153       1.1      mrg 
    154       1.1      mrg #include <uvm/uvm.h>
    155       1.1      mrg 
    156       1.1      mrg /*
    157       1.1      mrg  * global data structures
    158       1.1      mrg  */
    159       1.1      mrg 
    160       1.1      mrg vm_map_t kernel_map = NULL;
    161       1.1      mrg 
    162       1.1      mrg /*
    163       1.1      mrg  * local functions
    164       1.1      mrg  */
    165       1.1      mrg 
    166      1.14      eeh static int uvm_km_get __P((struct uvm_object *, vaddr_t,
    167       1.8      mrg 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    168       1.1      mrg /*
    169       1.1      mrg  * local data structues
    170       1.1      mrg  */
    171       1.1      mrg 
    172       1.1      mrg static struct vm_map		kernel_map_store;
    173       1.1      mrg static struct uvm_object	kmem_object_store;
    174       1.1      mrg static struct uvm_object	mb_object_store;
    175       1.1      mrg 
    176       1.1      mrg static struct uvm_pagerops km_pager = {
    177       1.8      mrg 	NULL,	/* init */
    178       1.8      mrg 	NULL, /* reference */
    179       1.8      mrg 	NULL, /* detach */
    180       1.8      mrg 	NULL, /* fault */
    181       1.8      mrg 	NULL, /* flush */
    182       1.8      mrg 	uvm_km_get, /* get */
    183       1.8      mrg 	/* ... rest are NULL */
    184       1.1      mrg };
    185       1.1      mrg 
    186       1.1      mrg /*
    187       1.1      mrg  * uvm_km_get: pager get function for kernel objects
    188       1.1      mrg  *
    189       1.1      mrg  * => currently we do not support pageout to the swap area, so this
    190       1.1      mrg  *    pager is very simple.    eventually we may want an anonymous
    191       1.1      mrg  *    object pager which will do paging.
    192       1.7    chuck  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    193       1.1      mrg  */
    194       1.1      mrg 
    195       1.1      mrg 
    196       1.8      mrg static int
    197       1.8      mrg uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    198       1.8      mrg 	struct uvm_object *uobj;
    199      1.14      eeh 	vaddr_t offset;
    200       1.8      mrg 	struct vm_page **pps;
    201       1.8      mrg 	int *npagesp;
    202       1.8      mrg 	int centeridx, advice, flags;
    203       1.8      mrg 	vm_prot_t access_type;
    204       1.8      mrg {
    205      1.14      eeh 	vaddr_t current_offset;
    206       1.8      mrg 	vm_page_t ptmp;
    207       1.8      mrg 	int lcv, gotpages, maxpages;
    208       1.8      mrg 	boolean_t done;
    209       1.8      mrg 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    210       1.8      mrg 
    211       1.8      mrg 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    212       1.8      mrg 
    213       1.8      mrg 	/*
    214       1.8      mrg 	 * get number of pages
    215       1.8      mrg 	 */
    216       1.8      mrg 
    217       1.8      mrg 	maxpages = *npagesp;
    218       1.8      mrg 
    219       1.8      mrg 	/*
    220       1.8      mrg 	 * step 1: handled the case where fault data structures are locked.
    221       1.8      mrg 	 */
    222       1.8      mrg 
    223       1.8      mrg 	if (flags & PGO_LOCKED) {
    224       1.8      mrg 
    225       1.8      mrg 		/*
    226       1.8      mrg 		 * step 1a: get pages that are already resident.   only do
    227       1.8      mrg 		 * this if the data structures are locked (i.e. the first time
    228       1.8      mrg 		 * through).
    229       1.8      mrg 		 */
    230       1.8      mrg 
    231       1.8      mrg 		done = TRUE;	/* be optimistic */
    232       1.8      mrg 		gotpages = 0;	/* # of pages we got so far */
    233       1.8      mrg 
    234       1.8      mrg 		for (lcv = 0, current_offset = offset ;
    235       1.8      mrg 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    236       1.8      mrg 
    237       1.8      mrg 			/* do we care about this page?  if not, skip it */
    238       1.8      mrg 			if (pps[lcv] == PGO_DONTCARE)
    239       1.8      mrg 				continue;
    240       1.8      mrg 
    241       1.8      mrg 			/* lookup page */
    242       1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    243       1.8      mrg 
    244       1.8      mrg 			/* null?  attempt to allocate the page */
    245       1.8      mrg 			if (ptmp == NULL) {
    246       1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    247  1.22.2.1      chs 				    NULL, 0);
    248       1.8      mrg 				if (ptmp) {
    249       1.8      mrg 					/* new page */
    250       1.8      mrg 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    251       1.8      mrg 					UVM_PAGE_OWN(ptmp, NULL);
    252       1.8      mrg 					uvm_pagezero(ptmp);
    253       1.8      mrg 				}
    254       1.8      mrg 			}
    255       1.8      mrg 
    256       1.8      mrg 			/*
    257       1.8      mrg 			 * to be useful must get a non-busy, non-released page
    258       1.8      mrg 			 */
    259       1.8      mrg 			if (ptmp == NULL ||
    260       1.8      mrg 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    261       1.8      mrg 				if (lcv == centeridx ||
    262       1.8      mrg 				    (flags & PGO_ALLPAGES) != 0)
    263       1.8      mrg 					/* need to do a wait or I/O! */
    264       1.8      mrg 					done = FALSE;
    265       1.8      mrg 				continue;
    266       1.8      mrg 			}
    267       1.8      mrg 
    268       1.8      mrg 			/*
    269       1.8      mrg 			 * useful page: busy/lock it and plug it in our
    270       1.8      mrg 			 * result array
    271       1.8      mrg 			 */
    272       1.8      mrg 
    273       1.8      mrg 			/* caller must un-busy this page */
    274       1.8      mrg 			ptmp->flags |= PG_BUSY;
    275       1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    276       1.8      mrg 			pps[lcv] = ptmp;
    277       1.8      mrg 			gotpages++;
    278       1.8      mrg 
    279       1.8      mrg 		}	/* "for" lcv loop */
    280       1.8      mrg 
    281       1.8      mrg 		/*
    282       1.8      mrg 		 * step 1b: now we've either done everything needed or we
    283       1.8      mrg 		 * to unlock and do some waiting or I/O.
    284       1.8      mrg 		 */
    285       1.8      mrg 
    286       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    287       1.8      mrg 
    288       1.8      mrg 		*npagesp = gotpages;
    289       1.8      mrg 		if (done)
    290       1.8      mrg 			return(VM_PAGER_OK);		/* bingo! */
    291       1.8      mrg 		else
    292       1.8      mrg 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    293       1.8      mrg 							 * unlock and I/O */
    294       1.8      mrg 	}
    295       1.8      mrg 
    296       1.8      mrg 	/*
    297       1.8      mrg 	 * step 2: get non-resident or busy pages.
    298       1.8      mrg 	 * object is locked.   data structures are unlocked.
    299       1.8      mrg 	 */
    300       1.8      mrg 
    301       1.8      mrg 	for (lcv = 0, current_offset = offset ;
    302       1.8      mrg 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    303       1.8      mrg 
    304       1.8      mrg 		/* skip over pages we've already gotten or don't want */
    305       1.8      mrg 		/* skip over pages we don't _have_ to get */
    306       1.8      mrg 		if (pps[lcv] != NULL ||
    307       1.8      mrg 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    308       1.8      mrg 			continue;
    309       1.8      mrg 
    310       1.8      mrg 		/*
    311       1.8      mrg 		 * we have yet to locate the current page (pps[lcv]).   we
    312       1.8      mrg 		 * first look for a page that is already at the current offset.
    313       1.8      mrg 		 * if we find a page, we check to see if it is busy or
    314       1.8      mrg 		 * released.  if that is the case, then we sleep on the page
    315       1.8      mrg 		 * until it is no longer busy or released and repeat the
    316       1.8      mrg 		 * lookup.    if the page we found is neither busy nor
    317       1.8      mrg 		 * released, then we busy it (so we own it) and plug it into
    318       1.8      mrg 		 * pps[lcv].   this 'break's the following while loop and
    319       1.8      mrg 		 * indicates we are ready to move on to the next page in the
    320       1.8      mrg 		 * "lcv" loop above.
    321       1.8      mrg 		 *
    322       1.8      mrg 		 * if we exit the while loop with pps[lcv] still set to NULL,
    323       1.8      mrg 		 * then it means that we allocated a new busy/fake/clean page
    324       1.8      mrg 		 * ptmp in the object and we need to do I/O to fill in the
    325       1.8      mrg 		 * data.
    326       1.8      mrg 		 */
    327       1.8      mrg 
    328       1.8      mrg 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    329       1.8      mrg 
    330       1.8      mrg 			/* look for a current page */
    331       1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    332       1.8      mrg 
    333       1.8      mrg 			/* nope?   allocate one now (if we can) */
    334       1.8      mrg 			if (ptmp == NULL) {
    335       1.8      mrg 
    336       1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    337  1.22.2.1      chs 				    NULL, 0);
    338       1.8      mrg 
    339       1.8      mrg 				/* out of RAM? */
    340       1.8      mrg 				if (ptmp == NULL) {
    341       1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    342       1.8      mrg 					uvm_wait("kmgetwait1");
    343       1.8      mrg 					simple_lock(&uobj->vmobjlock);
    344       1.8      mrg 					/* goto top of pps while loop */
    345       1.8      mrg 					continue;
    346       1.8      mrg 				}
    347       1.8      mrg 
    348       1.8      mrg 				/*
    349       1.8      mrg 				 * got new page ready for I/O.  break pps
    350       1.8      mrg 				 * while loop.  pps[lcv] is still NULL.
    351       1.8      mrg 				 */
    352       1.8      mrg 				break;
    353       1.8      mrg 			}
    354       1.8      mrg 
    355       1.8      mrg 			/* page is there, see if we need to wait on it */
    356       1.8      mrg 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    357       1.8      mrg 				ptmp->flags |= PG_WANTED;
    358       1.8      mrg 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    359       1.8      mrg 				    "uvn_get",0);
    360       1.8      mrg 				simple_lock(&uobj->vmobjlock);
    361       1.8      mrg 				continue;	/* goto top of pps while loop */
    362       1.8      mrg 			}
    363       1.8      mrg 
    364       1.8      mrg 			/*
    365       1.8      mrg 			 * if we get here then the page has become resident
    366       1.8      mrg 			 * and unbusy between steps 1 and 2.  we busy it now
    367       1.8      mrg 			 * (so we own it) and set pps[lcv] (so that we exit
    368       1.8      mrg 			 * the while loop).  caller must un-busy.
    369       1.8      mrg 			 */
    370       1.8      mrg 			ptmp->flags |= PG_BUSY;
    371       1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    372       1.8      mrg 			pps[lcv] = ptmp;
    373       1.8      mrg 		}
    374       1.8      mrg 
    375       1.8      mrg 		/*
    376       1.8      mrg 		 * if we own the a valid page at the correct offset, pps[lcv]
    377       1.8      mrg 		 * will point to it.   nothing more to do except go to the
    378       1.8      mrg 		 * next page.
    379       1.8      mrg 		 */
    380       1.8      mrg 
    381       1.8      mrg 		if (pps[lcv])
    382       1.8      mrg 			continue;			/* next lcv */
    383       1.8      mrg 
    384       1.8      mrg 		/*
    385       1.8      mrg 		 * we have a "fake/busy/clean" page that we just allocated.
    386       1.8      mrg 		 * do the needed "i/o" (in this case that means zero it).
    387       1.8      mrg 		 */
    388       1.8      mrg 
    389       1.8      mrg 		uvm_pagezero(ptmp);
    390       1.8      mrg 		ptmp->flags &= ~(PG_FAKE);
    391       1.8      mrg 		pps[lcv] = ptmp;
    392       1.1      mrg 
    393       1.8      mrg 	}	/* lcv loop */
    394       1.1      mrg 
    395       1.8      mrg 	/*
    396       1.8      mrg 	 * finally, unlock object and return.
    397       1.8      mrg 	 */
    398       1.8      mrg 
    399       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    400       1.8      mrg 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    401       1.8      mrg 	return(VM_PAGER_OK);
    402       1.1      mrg }
    403       1.1      mrg 
    404       1.1      mrg /*
    405       1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    406       1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    407       1.1      mrg  *
    408       1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    409       1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    410       1.1      mrg  *    "end" is the end.
    411       1.1      mrg  */
    412       1.1      mrg 
    413       1.8      mrg void
    414       1.8      mrg uvm_km_init(start, end)
    415      1.14      eeh 	vaddr_t start, end;
    416       1.1      mrg {
    417      1.14      eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    418       1.1      mrg 
    419       1.8      mrg 	/*
    420       1.8      mrg 	 * first, init kernel memory objects.
    421       1.8      mrg 	 */
    422       1.1      mrg 
    423       1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    424       1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    425       1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    426       1.1      mrg 
    427       1.8      mrg 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    428       1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    429       1.8      mrg 	kmem_object_store.pgops = &km_pager;
    430       1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    431       1.8      mrg 	kmem_object_store.uo_npages = 0;
    432       1.8      mrg 	/* we are special.  we never die */
    433       1.8      mrg 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    434       1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    435       1.8      mrg 
    436       1.8      mrg 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    437       1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    438       1.8      mrg 	mb_object_store.pgops = &km_pager;
    439       1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    440       1.8      mrg 	mb_object_store.uo_npages = 0;
    441       1.8      mrg 	/* we are special.  we never die */
    442       1.8      mrg 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    443       1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    444       1.8      mrg 
    445       1.8      mrg 	/*
    446       1.8      mrg 	 * init the map and reserve allready allocated kernel space
    447       1.8      mrg 	 * before installing.
    448       1.8      mrg 	 */
    449       1.1      mrg 
    450       1.8      mrg 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    451       1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    452       1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    453       1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    454       1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    455       1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    456       1.8      mrg 
    457       1.8      mrg 	/*
    458       1.8      mrg 	 * install!
    459       1.8      mrg 	 */
    460       1.8      mrg 
    461       1.8      mrg 	kernel_map = &kernel_map_store;
    462       1.1      mrg }
    463       1.1      mrg 
    464       1.1      mrg /*
    465       1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    466       1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    467       1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    468       1.1      mrg  *
    469       1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    470       1.5  thorpej  *      by the submap must start
    471       1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    472       1.1      mrg  *	alloc a new map
    473       1.1      mrg  */
    474       1.8      mrg struct vm_map *
    475       1.8      mrg uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    476       1.8      mrg 	struct vm_map *map;
    477      1.14      eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    478      1.14      eeh 	vsize_t size;
    479       1.8      mrg 	boolean_t pageable;
    480       1.8      mrg 	boolean_t fixed;
    481       1.8      mrg 	struct vm_map *submap;
    482       1.8      mrg {
    483       1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    484       1.1      mrg 
    485       1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    486       1.1      mrg 
    487       1.8      mrg 	/*
    488       1.8      mrg 	 * first allocate a blank spot in the parent map
    489       1.8      mrg 	 */
    490       1.8      mrg 
    491       1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    492       1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    493       1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    494       1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    495       1.8      mrg 	}
    496       1.8      mrg 
    497       1.8      mrg 	/*
    498       1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    499       1.8      mrg 	 */
    500       1.1      mrg 
    501       1.8      mrg 	*max = *min + size;
    502       1.5  thorpej 
    503       1.8      mrg 	/*
    504       1.8      mrg 	 * add references to pmap and create or init the submap
    505       1.8      mrg 	 */
    506       1.1      mrg 
    507       1.8      mrg 	pmap_reference(vm_map_pmap(map));
    508       1.8      mrg 	if (submap == NULL) {
    509       1.8      mrg 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    510       1.8      mrg 		if (submap == NULL)
    511       1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    512       1.8      mrg 	} else {
    513       1.8      mrg 		uvm_map_setup(submap, *min, *max, pageable);
    514       1.8      mrg 		submap->pmap = vm_map_pmap(map);
    515       1.8      mrg 	}
    516       1.1      mrg 
    517       1.8      mrg 	/*
    518       1.8      mrg 	 * now let uvm_map_submap plug in it...
    519       1.8      mrg 	 */
    520       1.1      mrg 
    521       1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    522       1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    523       1.1      mrg 
    524       1.8      mrg 	return(submap);
    525       1.1      mrg }
    526       1.1      mrg 
    527       1.1      mrg /*
    528       1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    529       1.1      mrg  *
    530       1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    531       1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    532       1.1      mrg  */
    533       1.1      mrg 
    534       1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    535       1.1      mrg 
    536       1.8      mrg void
    537       1.8      mrg uvm_km_pgremove(uobj, start, end)
    538       1.8      mrg 	struct uvm_object *uobj;
    539      1.14      eeh 	vaddr_t start, end;
    540       1.1      mrg {
    541       1.8      mrg 	boolean_t by_list, is_aobj;
    542       1.8      mrg 	struct vm_page *pp, *ppnext;
    543      1.14      eeh 	vaddr_t curoff;
    544       1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    545       1.1      mrg 
    546       1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    547       1.1      mrg 
    548       1.8      mrg 	/* is uobj an aobj? */
    549       1.8      mrg 	is_aobj = uobj->pgops == &aobj_pager;
    550       1.3      chs 
    551       1.8      mrg 	/* choose cheapest traversal */
    552       1.8      mrg 	by_list = (uobj->uo_npages <=
    553      1.18      chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    554       1.1      mrg 
    555       1.8      mrg 	if (by_list)
    556       1.8      mrg 		goto loop_by_list;
    557       1.1      mrg 
    558       1.8      mrg 	/* by hash */
    559       1.1      mrg 
    560       1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    561       1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    562       1.8      mrg 		if (pp == NULL)
    563       1.8      mrg 			continue;
    564       1.8      mrg 
    565       1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    566       1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    567       1.8      mrg 		/* now do the actual work */
    568       1.8      mrg 		if (pp->flags & PG_BUSY)
    569       1.8      mrg 			/* owner must check for this when done */
    570       1.8      mrg 			pp->flags |= PG_RELEASED;
    571       1.8      mrg 		else {
    572       1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    573       1.8      mrg 
    574       1.8      mrg 			/*
    575       1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    576       1.8      mrg 			 */
    577       1.8      mrg 			if (is_aobj) {
    578      1.21      chs 				uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    579       1.8      mrg 			}
    580       1.8      mrg 
    581       1.8      mrg 			uvm_lock_pageq();
    582       1.8      mrg 			uvm_pagefree(pp);
    583       1.8      mrg 			uvm_unlock_pageq();
    584       1.8      mrg 		}
    585       1.8      mrg 		/* done */
    586       1.8      mrg 
    587       1.8      mrg 	}
    588       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    589       1.8      mrg 	return;
    590       1.1      mrg 
    591       1.1      mrg loop_by_list:
    592       1.1      mrg 
    593       1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    594       1.8      mrg 
    595       1.8      mrg 		ppnext = pp->listq.tqe_next;
    596       1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    597       1.8      mrg 			continue;
    598       1.8      mrg 		}
    599       1.8      mrg 
    600       1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    601       1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    602       1.8      mrg 		/* now do the actual work */
    603       1.8      mrg 		if (pp->flags & PG_BUSY)
    604       1.8      mrg 			/* owner must check for this when done */
    605       1.8      mrg 			pp->flags |= PG_RELEASED;
    606       1.8      mrg 		else {
    607       1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    608       1.8      mrg 
    609       1.8      mrg 			/*
    610       1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    611       1.8      mrg 			 */
    612       1.8      mrg 			if (is_aobj) {
    613      1.21      chs 				uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    614       1.8      mrg 			}
    615       1.8      mrg 
    616       1.8      mrg 			uvm_lock_pageq();
    617       1.8      mrg 			uvm_pagefree(pp);
    618       1.8      mrg 			uvm_unlock_pageq();
    619       1.8      mrg 		}
    620       1.8      mrg 		/* done */
    621       1.1      mrg 
    622       1.8      mrg 	}
    623       1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    624       1.8      mrg 	return;
    625       1.1      mrg }
    626       1.1      mrg 
    627       1.1      mrg 
    628       1.1      mrg /*
    629       1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    630       1.1      mrg  *
    631       1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    632       1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    633       1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    634       1.1      mrg  *	this case.
    635       1.1      mrg  * => we return KVA of memory allocated
    636       1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    637       1.1      mrg  *	lock the map
    638       1.1      mrg  */
    639       1.1      mrg 
    640      1.14      eeh vaddr_t
    641       1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    642       1.8      mrg 	vm_map_t map;
    643       1.8      mrg 	struct uvm_object *obj;
    644      1.14      eeh 	vsize_t size;
    645       1.8      mrg 	int flags;
    646       1.1      mrg {
    647      1.14      eeh 	vaddr_t kva, loopva;
    648      1.14      eeh 	vaddr_t offset;
    649       1.8      mrg 	struct vm_page *pg;
    650       1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    651       1.1      mrg 
    652       1.1      mrg 
    653       1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    654       1.1      mrg 	map, obj, size, flags);
    655       1.1      mrg #ifdef DIAGNOSTIC
    656       1.8      mrg 	/* sanity check */
    657       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    658       1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    659       1.1      mrg #endif
    660       1.1      mrg 
    661       1.8      mrg 	/*
    662       1.8      mrg 	 * setup for call
    663       1.8      mrg 	 */
    664       1.8      mrg 
    665       1.8      mrg 	size = round_page(size);
    666       1.8      mrg 	kva = vm_map_min(map);	/* hint */
    667       1.1      mrg 
    668       1.8      mrg 	/*
    669       1.8      mrg 	 * allocate some virtual space
    670       1.8      mrg 	 */
    671       1.8      mrg 
    672       1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    673       1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    674       1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    675       1.8      mrg 			!= KERN_SUCCESS) {
    676       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    677       1.8      mrg 		return(0);
    678       1.8      mrg 	}
    679       1.8      mrg 
    680       1.8      mrg 	/*
    681       1.8      mrg 	 * if all we wanted was VA, return now
    682       1.8      mrg 	 */
    683       1.8      mrg 
    684       1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    685       1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    686       1.8      mrg 		return(kva);
    687       1.8      mrg 	}
    688       1.8      mrg 	/*
    689       1.8      mrg 	 * recover object offset from virtual address
    690       1.8      mrg 	 */
    691       1.8      mrg 
    692       1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    693       1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    694       1.8      mrg 
    695       1.8      mrg 	/*
    696       1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    697       1.8      mrg 	 * whom should ever get a handle on this area of VM.
    698       1.8      mrg 	 */
    699       1.8      mrg 
    700       1.8      mrg 	loopva = kva;
    701       1.8      mrg 	while (size) {
    702       1.8      mrg 		simple_lock(&obj->vmobjlock);
    703  1.22.2.1      chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    704       1.8      mrg 		if (pg) {
    705       1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    706       1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    707       1.8      mrg 		}
    708       1.8      mrg 		simple_unlock(&obj->vmobjlock);
    709       1.8      mrg 
    710       1.8      mrg 		/*
    711       1.8      mrg 		 * out of memory?
    712       1.8      mrg 		 */
    713       1.8      mrg 
    714       1.8      mrg 		if (pg == NULL) {
    715       1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    716       1.8      mrg 				/* free everything! */
    717      1.17    chuck 				uvm_unmap(map, kva, kva + size);
    718       1.8      mrg 				return(0);
    719       1.8      mrg 			} else {
    720       1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    721       1.8      mrg 				continue;
    722       1.8      mrg 			}
    723       1.8      mrg 		}
    724       1.8      mrg 
    725       1.8      mrg 		/*
    726       1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    727       1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    728       1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    729       1.8      mrg 		 * it will need to lock it itself!)
    730       1.8      mrg 		 */
    731       1.1      mrg #if defined(PMAP_NEW)
    732       1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    733       1.1      mrg #else
    734       1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    735      1.22  mycroft 		    UVM_PROT_ALL, TRUE, 0);
    736       1.1      mrg #endif
    737       1.8      mrg 		loopva += PAGE_SIZE;
    738       1.8      mrg 		offset += PAGE_SIZE;
    739       1.8      mrg 		size -= PAGE_SIZE;
    740       1.8      mrg 	}
    741       1.1      mrg 
    742       1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    743       1.8      mrg 	return(kva);
    744       1.1      mrg }
    745       1.1      mrg 
    746       1.1      mrg /*
    747       1.1      mrg  * uvm_km_free: free an area of kernel memory
    748       1.1      mrg  */
    749       1.1      mrg 
    750       1.8      mrg void
    751       1.8      mrg uvm_km_free(map, addr, size)
    752       1.8      mrg 	vm_map_t map;
    753      1.14      eeh 	vaddr_t addr;
    754      1.14      eeh 	vsize_t size;
    755       1.8      mrg {
    756       1.1      mrg 
    757      1.17    chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    758       1.1      mrg }
    759       1.1      mrg 
    760       1.1      mrg /*
    761       1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    762       1.1      mrg  * anyone waiting for vm space.
    763       1.1      mrg  *
    764       1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    765       1.1      mrg  */
    766       1.1      mrg 
    767       1.8      mrg void
    768       1.8      mrg uvm_km_free_wakeup(map, addr, size)
    769       1.8      mrg 	vm_map_t map;
    770      1.14      eeh 	vaddr_t addr;
    771      1.14      eeh 	vsize_t size;
    772       1.1      mrg {
    773       1.8      mrg 	vm_map_entry_t dead_entries;
    774       1.1      mrg 
    775       1.8      mrg 	vm_map_lock(map);
    776      1.17    chuck 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    777       1.1      mrg 			 &dead_entries);
    778       1.8      mrg 	thread_wakeup(map);
    779       1.8      mrg 	vm_map_unlock(map);
    780       1.1      mrg 
    781       1.8      mrg 	if (dead_entries != NULL)
    782       1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    783       1.1      mrg }
    784       1.1      mrg 
    785       1.1      mrg /*
    786       1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    787       1.1      mrg  *
    788       1.1      mrg  * => we can sleep if needed
    789       1.1      mrg  */
    790       1.1      mrg 
    791      1.14      eeh vaddr_t
    792       1.8      mrg uvm_km_alloc1(map, size, zeroit)
    793       1.8      mrg 	vm_map_t map;
    794      1.14      eeh 	vsize_t size;
    795       1.8      mrg 	boolean_t zeroit;
    796       1.1      mrg {
    797      1.14      eeh 	vaddr_t kva, loopva, offset;
    798       1.8      mrg 	struct vm_page *pg;
    799       1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    800       1.1      mrg 
    801       1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    802       1.1      mrg 
    803       1.1      mrg #ifdef DIAGNOSTIC
    804       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    805       1.8      mrg 		panic("uvm_km_alloc1");
    806       1.1      mrg #endif
    807       1.1      mrg 
    808       1.8      mrg 	size = round_page(size);
    809       1.8      mrg 	kva = vm_map_min(map);		/* hint */
    810       1.1      mrg 
    811       1.8      mrg 	/*
    812       1.8      mrg 	 * allocate some virtual space
    813       1.8      mrg 	 */
    814       1.1      mrg 
    815       1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    816       1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    817       1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    818       1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    819       1.8      mrg 		return(0);
    820       1.8      mrg 	}
    821       1.8      mrg 
    822       1.8      mrg 	/*
    823       1.8      mrg 	 * recover object offset from virtual address
    824       1.8      mrg 	 */
    825       1.8      mrg 
    826       1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    827       1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    828       1.8      mrg 
    829       1.8      mrg 	/*
    830       1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    831       1.8      mrg 	 */
    832       1.8      mrg 
    833       1.8      mrg 	loopva = kva;
    834       1.8      mrg 	while (size) {
    835       1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    836       1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    837       1.8      mrg 
    838       1.8      mrg 		/*
    839       1.8      mrg 		 * if we found a page in an unallocated region, it must be
    840       1.8      mrg 		 * released
    841       1.8      mrg 		 */
    842       1.8      mrg 		if (pg) {
    843       1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    844       1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    845       1.8      mrg 			pg->flags |= PG_WANTED;
    846       1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    847       1.8      mrg 			    0, "km_alloc", 0);
    848       1.8      mrg 			continue;   /* retry */
    849       1.8      mrg 		}
    850       1.8      mrg 
    851       1.8      mrg 		/* allocate ram */
    852  1.22.2.1      chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    853       1.8      mrg 		if (pg) {
    854       1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    855       1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    856       1.8      mrg 		}
    857       1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    858       1.8      mrg 		if (pg == NULL) {
    859       1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    860       1.8      mrg 			continue;
    861       1.8      mrg 		}
    862       1.8      mrg 
    863       1.8      mrg 		/* map it in */
    864       1.1      mrg #if defined(PMAP_NEW)
    865       1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    866       1.1      mrg #else
    867       1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    868      1.22  mycroft 		    UVM_PROT_ALL, TRUE, 0);
    869       1.1      mrg #endif
    870       1.8      mrg 		loopva += PAGE_SIZE;
    871       1.8      mrg 		offset += PAGE_SIZE;
    872       1.8      mrg 		size -= PAGE_SIZE;
    873       1.8      mrg 	}
    874       1.8      mrg 
    875       1.8      mrg 	/*
    876       1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    877       1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    878       1.8      mrg 	 */
    879       1.1      mrg 
    880       1.8      mrg 	if (zeroit)
    881      1.13    perry 		memset((caddr_t)kva, 0, loopva - kva);
    882       1.1      mrg 
    883       1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    884       1.8      mrg 	return(kva);
    885       1.1      mrg }
    886       1.1      mrg 
    887       1.1      mrg /*
    888       1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    889       1.1      mrg  *
    890       1.1      mrg  * => memory is not allocated until fault time
    891       1.1      mrg  */
    892       1.1      mrg 
    893      1.14      eeh vaddr_t
    894       1.8      mrg uvm_km_valloc(map, size)
    895       1.8      mrg 	vm_map_t map;
    896      1.14      eeh 	vsize_t size;
    897       1.1      mrg {
    898      1.14      eeh 	vaddr_t kva;
    899       1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    900       1.1      mrg 
    901       1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    902       1.1      mrg 
    903       1.1      mrg #ifdef DIAGNOSTIC
    904       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    905       1.8      mrg 		panic("uvm_km_valloc");
    906       1.1      mrg #endif
    907       1.1      mrg 
    908       1.8      mrg 	size = round_page(size);
    909       1.8      mrg 	kva = vm_map_min(map);		/* hint */
    910       1.1      mrg 
    911       1.8      mrg 	/*
    912       1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    913       1.8      mrg 	 */
    914       1.1      mrg 
    915       1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    916       1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    917       1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    918       1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    919       1.8      mrg 		return(0);
    920       1.8      mrg 	}
    921       1.1      mrg 
    922       1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    923       1.8      mrg 	return(kva);
    924       1.1      mrg }
    925       1.1      mrg 
    926       1.1      mrg /*
    927       1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    928       1.1      mrg  *
    929       1.1      mrg  * => memory is not allocated until fault time
    930       1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    931       1.1      mrg  *    is larger than map (in which case we return 0)
    932       1.1      mrg  */
    933       1.1      mrg 
    934      1.14      eeh vaddr_t
    935       1.8      mrg uvm_km_valloc_wait(map, size)
    936       1.8      mrg 	vm_map_t map;
    937      1.14      eeh 	vsize_t size;
    938       1.1      mrg {
    939      1.14      eeh 	vaddr_t kva;
    940       1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    941       1.1      mrg 
    942       1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    943       1.1      mrg 
    944       1.1      mrg #ifdef DIAGNOSTIC
    945       1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    946       1.8      mrg 		panic("uvm_km_valloc_wait");
    947       1.1      mrg #endif
    948       1.1      mrg 
    949       1.8      mrg 	size = round_page(size);
    950       1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    951       1.8      mrg 		return(0);
    952       1.8      mrg 
    953       1.8      mrg 	while (1) {
    954       1.8      mrg 		kva = vm_map_min(map);		/* hint */
    955       1.8      mrg 
    956       1.8      mrg 		/*
    957       1.8      mrg 		 * allocate some virtual space.   will be demand filled
    958       1.8      mrg 		 * by kernel_object.
    959       1.8      mrg 		 */
    960       1.8      mrg 
    961       1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    962       1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    963       1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    964       1.8      mrg 		    == KERN_SUCCESS) {
    965       1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    966       1.8      mrg 			return(kva);
    967       1.8      mrg 		}
    968       1.8      mrg 
    969       1.8      mrg 		/*
    970       1.8      mrg 		 * failed.  sleep for a while (on map)
    971       1.8      mrg 		 */
    972       1.8      mrg 
    973       1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    974       1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    975       1.8      mrg 	}
    976       1.8      mrg 	/*NOTREACHED*/
    977      1.10  thorpej }
    978      1.10  thorpej 
    979      1.10  thorpej /* Sanity; must specify both or none. */
    980      1.10  thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    981      1.10  thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    982      1.10  thorpej #error Must specify MAP and UNMAP together.
    983      1.10  thorpej #endif
    984      1.10  thorpej 
    985      1.10  thorpej /*
    986      1.10  thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    987      1.10  thorpej  *
    988      1.10  thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    989      1.10  thorpej  */
    990      1.10  thorpej 
    991      1.11  thorpej /* ARGSUSED */
    992      1.14      eeh vaddr_t
    993      1.15  thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    994      1.11  thorpej 	vm_map_t map;
    995      1.12  thorpej 	struct uvm_object *obj;
    996      1.15  thorpej 	boolean_t waitok;
    997      1.10  thorpej {
    998      1.10  thorpej #if defined(PMAP_MAP_POOLPAGE)
    999      1.10  thorpej 	struct vm_page *pg;
   1000      1.14      eeh 	vaddr_t va;
   1001      1.10  thorpej 
   1002      1.15  thorpej  again:
   1003  1.22.2.1      chs 	pg = uvm_pagealloc(NULL, 0, NULL, 0);
   1004      1.15  thorpej 	if (pg == NULL) {
   1005      1.15  thorpej 		if (waitok) {
   1006      1.15  thorpej 			uvm_wait("plpg");
   1007      1.15  thorpej 			goto again;
   1008      1.15  thorpej 		} else
   1009      1.15  thorpej 			return (0);
   1010      1.15  thorpej 	}
   1011      1.10  thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
   1012      1.10  thorpej 	if (va == 0)
   1013      1.10  thorpej 		uvm_pagefree(pg);
   1014      1.10  thorpej 	return (va);
   1015      1.10  thorpej #else
   1016      1.14      eeh 	vaddr_t va;
   1017      1.10  thorpej 	int s;
   1018      1.10  thorpej 
   1019      1.16  thorpej 	/*
   1020      1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
   1021      1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1022      1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
   1023      1.16  thorpej 	 * accessed in interrupt context).
   1024      1.16  thorpej 	 *
   1025      1.16  thorpej 	 * XXX We may want to consider changing the interface to this
   1026      1.16  thorpej 	 * XXX function.
   1027      1.16  thorpej 	 */
   1028      1.16  thorpej 
   1029      1.10  thorpej 	s = splimp();
   1030      1.15  thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
   1031      1.10  thorpej 	splx(s);
   1032      1.10  thorpej 	return (va);
   1033      1.10  thorpej #endif /* PMAP_MAP_POOLPAGE */
   1034      1.10  thorpej }
   1035      1.10  thorpej 
   1036      1.10  thorpej /*
   1037      1.10  thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
   1038      1.10  thorpej  *
   1039      1.10  thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
   1040      1.10  thorpej  */
   1041      1.10  thorpej 
   1042      1.11  thorpej /* ARGSUSED */
   1043      1.10  thorpej void
   1044      1.11  thorpej uvm_km_free_poolpage1(map, addr)
   1045      1.11  thorpej 	vm_map_t map;
   1046      1.14      eeh 	vaddr_t addr;
   1047      1.10  thorpej {
   1048      1.10  thorpej #if defined(PMAP_UNMAP_POOLPAGE)
   1049      1.14      eeh 	paddr_t pa;
   1050      1.10  thorpej 
   1051      1.10  thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
   1052      1.10  thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
   1053      1.10  thorpej #else
   1054      1.10  thorpej 	int s;
   1055      1.16  thorpej 
   1056      1.16  thorpej 	/*
   1057      1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
   1058      1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
   1059      1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
   1060      1.16  thorpej 	 * accessed in interrupt context).
   1061      1.16  thorpej 	 *
   1062      1.16  thorpej 	 * XXX We may want to consider changing the interface to this
   1063      1.16  thorpej 	 * XXX function.
   1064      1.16  thorpej 	 */
   1065      1.10  thorpej 
   1066      1.10  thorpej 	s = splimp();
   1067      1.11  thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
   1068      1.10  thorpej 	splx(s);
   1069      1.10  thorpej #endif /* PMAP_UNMAP_POOLPAGE */
   1070       1.1      mrg }
   1071