Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.22.2.1.2.3
      1  1.22.2.1.2.3  thorpej /*	$NetBSD: uvm_km.c,v 1.22.2.1.2.3 1999/08/02 23:16:14 thorpej Exp $	*/
      2           1.1      mrg 
      3           1.1      mrg /*
      4           1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5           1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6           1.1      mrg  *
      7           1.1      mrg  * All rights reserved.
      8           1.1      mrg  *
      9           1.1      mrg  * This code is derived from software contributed to Berkeley by
     10           1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11           1.1      mrg  *
     12           1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13           1.1      mrg  * modification, are permitted provided that the following conditions
     14           1.1      mrg  * are met:
     15           1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16           1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17           1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18           1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19           1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20           1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21           1.1      mrg  *    must display the following acknowledgement:
     22           1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23           1.1      mrg  *      Washington University, the University of California, Berkeley and
     24           1.1      mrg  *      its contributors.
     25           1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26           1.1      mrg  *    may be used to endorse or promote products derived from this software
     27           1.1      mrg  *    without specific prior written permission.
     28           1.1      mrg  *
     29           1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30           1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31           1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32           1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33           1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34           1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35           1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36           1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37           1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38           1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39           1.1      mrg  * SUCH DAMAGE.
     40           1.1      mrg  *
     41           1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42           1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43           1.1      mrg  *
     44           1.1      mrg  *
     45           1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46           1.1      mrg  * All rights reserved.
     47           1.1      mrg  *
     48           1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49           1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50           1.1      mrg  * notice and this permission notice appear in all copies of the
     51           1.1      mrg  * software, derivative works or modified versions, and any portions
     52           1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53           1.1      mrg  *
     54           1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55           1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56           1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57           1.1      mrg  *
     58           1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59           1.1      mrg  *
     60           1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61           1.1      mrg  *  School of Computer Science
     62           1.1      mrg  *  Carnegie Mellon University
     63           1.1      mrg  *  Pittsburgh PA 15213-3890
     64           1.1      mrg  *
     65           1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66           1.1      mrg  * rights to redistribute these changes.
     67           1.1      mrg  */
     68           1.6      mrg 
     69           1.6      mrg #include "opt_uvmhist.h"
     70           1.6      mrg #include "opt_pmap_new.h"
     71           1.1      mrg 
     72           1.1      mrg /*
     73           1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     74           1.1      mrg  */
     75           1.1      mrg 
     76           1.7    chuck /*
     77           1.7    chuck  * overview of kernel memory management:
     78           1.7    chuck  *
     79           1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80           1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81           1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82           1.7    chuck  *
     83           1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     84           1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     85           1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     86           1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     87           1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     88           1.7    chuck  * submap's lock -- not the kernel_map's lock.
     89           1.7    chuck  *
     90           1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     91           1.7    chuck  * up the locking and protection of the kernel address space into smaller
     92           1.7    chuck  * chunks.
     93           1.7    chuck  *
     94           1.7    chuck  * the vm system has several standard kernel submaps, including:
     95           1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
     96           1.7    chuck  *		malloc.   *** access to kmem_map must be protected
     97           1.7    chuck  *		by splimp() because we are allowed to call malloc()
     98           1.7    chuck  *		at interrupt time ***
     99           1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100           1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    101           1.7    chuck  *   exec_map => used during exec to handle exec args
    102           1.7    chuck  *   etc...
    103           1.7    chuck  *
    104           1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    105           1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106           1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    107           1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108           1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    109           1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110           1.7    chuck  *
    111           1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    112           1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    113           1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    114           1.7    chuck  * object (e.g. kmem_object, mb_object).
    115           1.7    chuck  *
    116           1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    117           1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    118           1.7    chuck  * large chunks of a kernel object's space go unused either because
    119           1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    120           1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121           1.7    chuck  * objects, the only part of the object that can ever be populated is the
    122           1.7    chuck  * offsets that are managed by the submap.
    123           1.7    chuck  *
    124           1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    125           1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126           1.7    chuck  * example:
    127           1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128           1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129           1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130           1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    131           1.7    chuck  *   mapped at 0xf8235000.
    132           1.7    chuck  *
    133           1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    134           1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    135           1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136           1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137           1.7    chuck  * in those objects will typically not start at zero.
    138           1.7    chuck  *
    139           1.7    chuck  * kernel object have one other special property: when the kernel virtual
    140           1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    141           1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    142           1.7    chuck  * this has to be done because there is no backing store for kernel pages
    143           1.7    chuck  * and no need to save them after they are no longer referenced.
    144           1.7    chuck  */
    145           1.7    chuck 
    146           1.1      mrg #include <sys/param.h>
    147           1.1      mrg #include <sys/systm.h>
    148           1.1      mrg #include <sys/proc.h>
    149           1.1      mrg 
    150           1.1      mrg #include <vm/vm.h>
    151           1.1      mrg #include <vm/vm_page.h>
    152           1.1      mrg #include <vm/vm_kern.h>
    153           1.1      mrg 
    154           1.1      mrg #include <uvm/uvm.h>
    155           1.1      mrg 
    156           1.1      mrg /*
    157           1.1      mrg  * global data structures
    158           1.1      mrg  */
    159           1.1      mrg 
    160           1.1      mrg vm_map_t kernel_map = NULL;
    161           1.1      mrg 
    162  1.22.2.1.2.2  thorpej struct vmi_list vmi_list;
    163  1.22.2.1.2.2  thorpej simple_lock_data_t vmi_list_slock;
    164  1.22.2.1.2.2  thorpej 
    165           1.1      mrg /*
    166           1.1      mrg  * local data structues
    167           1.1      mrg  */
    168           1.1      mrg 
    169           1.1      mrg static struct vm_map		kernel_map_store;
    170           1.1      mrg static struct uvm_object	kmem_object_store;
    171           1.1      mrg static struct uvm_object	mb_object_store;
    172           1.1      mrg 
    173           1.1      mrg /*
    174  1.22.2.1.2.3  thorpej  * All pager operations here are NULL, but the object must have
    175  1.22.2.1.2.3  thorpej  * a pager ops vector associated with it; various places assume
    176  1.22.2.1.2.3  thorpej  * it to be so.
    177           1.1      mrg  */
    178  1.22.2.1.2.3  thorpej static struct uvm_pagerops	km_pager;
    179           1.1      mrg 
    180           1.1      mrg /*
    181           1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    182           1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    183           1.1      mrg  *
    184           1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    185           1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    186           1.1      mrg  *    "end" is the end.
    187           1.1      mrg  */
    188           1.1      mrg 
    189           1.8      mrg void
    190           1.8      mrg uvm_km_init(start, end)
    191          1.14      eeh 	vaddr_t start, end;
    192           1.1      mrg {
    193          1.14      eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    194           1.1      mrg 
    195           1.8      mrg 	/*
    196  1.22.2.1.2.2  thorpej 	 * first, initialize the interrupt-safe map list.
    197  1.22.2.1.2.2  thorpej 	 */
    198  1.22.2.1.2.2  thorpej 	LIST_INIT(&vmi_list);
    199  1.22.2.1.2.2  thorpej 	simple_lock_init(&vmi_list_slock);
    200  1.22.2.1.2.2  thorpej 
    201  1.22.2.1.2.2  thorpej 	/*
    202  1.22.2.1.2.2  thorpej 	 * next, init kernel memory objects.
    203           1.8      mrg 	 */
    204           1.1      mrg 
    205           1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    206  1.22.2.1.2.1      chs 	uao_init();
    207           1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    208           1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    209           1.1      mrg 
    210  1.22.2.1.2.2  thorpej 	/*
    211  1.22.2.1.2.2  thorpej 	 * kmem_object: for use by the kernel malloc().  Memory is always
    212  1.22.2.1.2.2  thorpej 	 * wired, and this object (and the kmem_map) can be accessed at
    213  1.22.2.1.2.2  thorpej 	 * interrupt time.
    214  1.22.2.1.2.2  thorpej 	 */
    215           1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    216           1.8      mrg 	kmem_object_store.pgops = &km_pager;
    217           1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    218           1.8      mrg 	kmem_object_store.uo_npages = 0;
    219           1.8      mrg 	/* we are special.  we never die */
    220  1.22.2.1.2.2  thorpej 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    221           1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    222           1.8      mrg 
    223  1.22.2.1.2.2  thorpej 	/*
    224  1.22.2.1.2.2  thorpej 	 * mb_object: for mbuf cluster pages on platforms which use the
    225  1.22.2.1.2.2  thorpej 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    226  1.22.2.1.2.2  thorpej 	 * can be accessed at interrupt time.
    227  1.22.2.1.2.2  thorpej 	 */
    228           1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    229           1.8      mrg 	mb_object_store.pgops = &km_pager;
    230           1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    231           1.8      mrg 	mb_object_store.uo_npages = 0;
    232           1.8      mrg 	/* we are special.  we never die */
    233  1.22.2.1.2.2  thorpej 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    234           1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    235           1.8      mrg 
    236           1.8      mrg 	/*
    237           1.8      mrg 	 * init the map and reserve allready allocated kernel space
    238           1.8      mrg 	 * before installing.
    239           1.8      mrg 	 */
    240           1.1      mrg 
    241  1.22.2.1.2.2  thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    242           1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    243           1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    244           1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    245           1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    246           1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    247           1.8      mrg 
    248           1.8      mrg 	/*
    249           1.8      mrg 	 * install!
    250           1.8      mrg 	 */
    251           1.8      mrg 
    252           1.8      mrg 	kernel_map = &kernel_map_store;
    253           1.1      mrg }
    254           1.1      mrg 
    255           1.1      mrg /*
    256           1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    257           1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    258           1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    259           1.1      mrg  *
    260           1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    261           1.5  thorpej  *      by the submap must start
    262           1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    263           1.1      mrg  *	alloc a new map
    264           1.1      mrg  */
    265           1.8      mrg struct vm_map *
    266  1.22.2.1.2.2  thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    267           1.8      mrg 	struct vm_map *map;
    268          1.14      eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    269          1.14      eeh 	vsize_t size;
    270  1.22.2.1.2.2  thorpej 	int flags;
    271           1.8      mrg 	boolean_t fixed;
    272           1.8      mrg 	struct vm_map *submap;
    273           1.8      mrg {
    274           1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    275           1.1      mrg 
    276           1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    277           1.1      mrg 
    278           1.8      mrg 	/*
    279           1.8      mrg 	 * first allocate a blank spot in the parent map
    280           1.8      mrg 	 */
    281           1.8      mrg 
    282           1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    283           1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    284           1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    285           1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    286           1.8      mrg 	}
    287           1.8      mrg 
    288           1.8      mrg 	/*
    289           1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    290           1.8      mrg 	 */
    291           1.1      mrg 
    292           1.8      mrg 	*max = *min + size;
    293           1.5  thorpej 
    294           1.8      mrg 	/*
    295           1.8      mrg 	 * add references to pmap and create or init the submap
    296           1.8      mrg 	 */
    297           1.1      mrg 
    298           1.8      mrg 	pmap_reference(vm_map_pmap(map));
    299           1.8      mrg 	if (submap == NULL) {
    300  1.22.2.1.2.2  thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    301           1.8      mrg 		if (submap == NULL)
    302           1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    303           1.8      mrg 	} else {
    304  1.22.2.1.2.2  thorpej 		uvm_map_setup(submap, *min, *max, flags);
    305           1.8      mrg 		submap->pmap = vm_map_pmap(map);
    306           1.8      mrg 	}
    307           1.1      mrg 
    308           1.8      mrg 	/*
    309           1.8      mrg 	 * now let uvm_map_submap plug in it...
    310           1.8      mrg 	 */
    311           1.1      mrg 
    312           1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    313           1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    314           1.1      mrg 
    315           1.8      mrg 	return(submap);
    316           1.1      mrg }
    317           1.1      mrg 
    318           1.1      mrg /*
    319           1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    320           1.1      mrg  *
    321           1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    322           1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    323           1.1      mrg  */
    324           1.1      mrg 
    325           1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    326           1.1      mrg 
    327           1.8      mrg void
    328           1.8      mrg uvm_km_pgremove(uobj, start, end)
    329           1.8      mrg 	struct uvm_object *uobj;
    330          1.14      eeh 	vaddr_t start, end;
    331           1.1      mrg {
    332  1.22.2.1.2.2  thorpej 	boolean_t by_list;
    333           1.8      mrg 	struct vm_page *pp, *ppnext;
    334          1.14      eeh 	vaddr_t curoff;
    335           1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    336           1.1      mrg 
    337           1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    338           1.1      mrg 
    339  1.22.2.1.2.2  thorpej #ifdef DIAGNOSTIC
    340  1.22.2.1.2.2  thorpej 	if (uobj->pgops != &aobj_pager)
    341  1.22.2.1.2.2  thorpej 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    342  1.22.2.1.2.2  thorpej #endif
    343           1.3      chs 
    344           1.8      mrg 	/* choose cheapest traversal */
    345           1.8      mrg 	by_list = (uobj->uo_npages <=
    346          1.18      chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    347           1.1      mrg 
    348           1.8      mrg 	if (by_list)
    349           1.8      mrg 		goto loop_by_list;
    350           1.1      mrg 
    351           1.8      mrg 	/* by hash */
    352           1.1      mrg 
    353           1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    354           1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    355           1.8      mrg 		if (pp == NULL)
    356           1.8      mrg 			continue;
    357           1.8      mrg 
    358           1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    359           1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    360  1.22.2.1.2.2  thorpej 
    361           1.8      mrg 		/* now do the actual work */
    362  1.22.2.1.2.2  thorpej 		if (pp->flags & PG_BUSY) {
    363           1.8      mrg 			/* owner must check for this when done */
    364           1.8      mrg 			pp->flags |= PG_RELEASED;
    365  1.22.2.1.2.2  thorpej 		} else {
    366  1.22.2.1.2.2  thorpej 			/* free the swap slot... */
    367  1.22.2.1.2.2  thorpej 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    368           1.8      mrg 
    369           1.8      mrg 			/*
    370  1.22.2.1.2.2  thorpej 			 * ...and free the page; note it may be on the
    371  1.22.2.1.2.2  thorpej 			 * active or inactive queues.
    372           1.8      mrg 			 */
    373           1.8      mrg 			uvm_lock_pageq();
    374           1.8      mrg 			uvm_pagefree(pp);
    375           1.8      mrg 			uvm_unlock_pageq();
    376           1.8      mrg 		}
    377           1.8      mrg 		/* done */
    378           1.8      mrg 	}
    379           1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    380           1.8      mrg 	return;
    381           1.1      mrg 
    382           1.1      mrg loop_by_list:
    383           1.1      mrg 
    384           1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    385           1.8      mrg 		ppnext = pp->listq.tqe_next;
    386           1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    387           1.8      mrg 			continue;
    388           1.8      mrg 		}
    389           1.8      mrg 
    390           1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    391           1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    392  1.22.2.1.2.2  thorpej 
    393           1.8      mrg 		/* now do the actual work */
    394  1.22.2.1.2.2  thorpej 		if (pp->flags & PG_BUSY) {
    395           1.8      mrg 			/* owner must check for this when done */
    396           1.8      mrg 			pp->flags |= PG_RELEASED;
    397  1.22.2.1.2.2  thorpej 		} else {
    398  1.22.2.1.2.2  thorpej 			/* free the swap slot... */
    399  1.22.2.1.2.2  thorpej 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    400           1.8      mrg 
    401           1.8      mrg 			/*
    402  1.22.2.1.2.2  thorpej 			 * ...and free the page; note it may be on the
    403  1.22.2.1.2.2  thorpej 			 * active or inactive queues.
    404           1.8      mrg 			 */
    405           1.8      mrg 			uvm_lock_pageq();
    406           1.8      mrg 			uvm_pagefree(pp);
    407           1.8      mrg 			uvm_unlock_pageq();
    408           1.8      mrg 		}
    409           1.8      mrg 		/* done */
    410  1.22.2.1.2.2  thorpej 	}
    411  1.22.2.1.2.2  thorpej 	simple_unlock(&uobj->vmobjlock);
    412  1.22.2.1.2.2  thorpej 	return;
    413  1.22.2.1.2.2  thorpej }
    414  1.22.2.1.2.2  thorpej 
    415  1.22.2.1.2.2  thorpej 
    416  1.22.2.1.2.2  thorpej /*
    417  1.22.2.1.2.2  thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    418  1.22.2.1.2.2  thorpej  *    objects
    419  1.22.2.1.2.2  thorpej  *
    420  1.22.2.1.2.2  thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    421  1.22.2.1.2.2  thorpej  *    the pages right away.    (this gets called from uvm_unmap_...).
    422  1.22.2.1.2.2  thorpej  * => none of the pages will ever be busy, and none of them will ever
    423  1.22.2.1.2.2  thorpej  *    be on the active or inactive queues (because these objects are
    424  1.22.2.1.2.2  thorpej  *    never allowed to "page").
    425  1.22.2.1.2.2  thorpej  */
    426  1.22.2.1.2.2  thorpej 
    427  1.22.2.1.2.2  thorpej void
    428  1.22.2.1.2.2  thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
    429  1.22.2.1.2.2  thorpej 	struct uvm_object *uobj;
    430  1.22.2.1.2.2  thorpej 	vaddr_t start, end;
    431  1.22.2.1.2.2  thorpej {
    432  1.22.2.1.2.2  thorpej 	boolean_t by_list;
    433  1.22.2.1.2.2  thorpej 	struct vm_page *pp, *ppnext;
    434  1.22.2.1.2.2  thorpej 	vaddr_t curoff;
    435  1.22.2.1.2.2  thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    436  1.22.2.1.2.2  thorpej 
    437  1.22.2.1.2.2  thorpej 	simple_lock(&uobj->vmobjlock);		/* lock object */
    438  1.22.2.1.2.2  thorpej 
    439  1.22.2.1.2.2  thorpej #ifdef DIAGNOSTIC
    440  1.22.2.1.2.2  thorpej 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    441  1.22.2.1.2.2  thorpej 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    442  1.22.2.1.2.2  thorpej #endif
    443  1.22.2.1.2.2  thorpej 
    444  1.22.2.1.2.2  thorpej 	/* choose cheapest traversal */
    445  1.22.2.1.2.2  thorpej 	by_list = (uobj->uo_npages <=
    446  1.22.2.1.2.2  thorpej 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    447  1.22.2.1.2.2  thorpej 
    448  1.22.2.1.2.2  thorpej 	if (by_list)
    449  1.22.2.1.2.2  thorpej 		goto loop_by_list;
    450  1.22.2.1.2.2  thorpej 
    451  1.22.2.1.2.2  thorpej 	/* by hash */
    452  1.22.2.1.2.2  thorpej 
    453  1.22.2.1.2.2  thorpej 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    454  1.22.2.1.2.2  thorpej 		pp = uvm_pagelookup(uobj, curoff);
    455  1.22.2.1.2.2  thorpej 		if (pp == NULL)
    456  1.22.2.1.2.2  thorpej 			continue;
    457  1.22.2.1.2.2  thorpej 
    458  1.22.2.1.2.2  thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    459  1.22.2.1.2.2  thorpej 		    pp->flags & PG_BUSY, 0, 0);
    460  1.22.2.1.2.2  thorpej #ifdef DIAGNOSTIC
    461  1.22.2.1.2.2  thorpej 		if (pp->flags & PG_BUSY)
    462  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    463  1.22.2.1.2.2  thorpej 		if (pp->pqflags & PQ_ACTIVE)
    464  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    465  1.22.2.1.2.2  thorpej 		if (pp->pqflags & PQ_INACTIVE)
    466  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    467  1.22.2.1.2.2  thorpej #endif
    468  1.22.2.1.2.2  thorpej 
    469  1.22.2.1.2.2  thorpej 		/* free the page */
    470  1.22.2.1.2.2  thorpej 		uvm_pagefree(pp);
    471  1.22.2.1.2.2  thorpej 	}
    472  1.22.2.1.2.2  thorpej 	simple_unlock(&uobj->vmobjlock);
    473  1.22.2.1.2.2  thorpej 	return;
    474           1.1      mrg 
    475  1.22.2.1.2.2  thorpej loop_by_list:
    476  1.22.2.1.2.2  thorpej 
    477  1.22.2.1.2.2  thorpej 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    478  1.22.2.1.2.2  thorpej 		ppnext = pp->listq.tqe_next;
    479  1.22.2.1.2.2  thorpej 		if (pp->offset < start || pp->offset >= end) {
    480  1.22.2.1.2.2  thorpej 			continue;
    481  1.22.2.1.2.2  thorpej 		}
    482  1.22.2.1.2.2  thorpej 
    483  1.22.2.1.2.2  thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    484  1.22.2.1.2.2  thorpej 		    pp->flags & PG_BUSY, 0, 0);
    485  1.22.2.1.2.2  thorpej 
    486  1.22.2.1.2.2  thorpej #ifdef DIAGNOSTIC
    487  1.22.2.1.2.2  thorpej 		if (pp->flags & PG_BUSY)
    488  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    489  1.22.2.1.2.2  thorpej 		if (pp->pqflags & PQ_ACTIVE)
    490  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    491  1.22.2.1.2.2  thorpej 		if (pp->pqflags & PQ_INACTIVE)
    492  1.22.2.1.2.2  thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    493  1.22.2.1.2.2  thorpej #endif
    494  1.22.2.1.2.2  thorpej 
    495  1.22.2.1.2.2  thorpej 		/* free the page */
    496  1.22.2.1.2.2  thorpej 		uvm_pagefree(pp);
    497           1.8      mrg 	}
    498           1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    499           1.8      mrg 	return;
    500           1.1      mrg }
    501           1.1      mrg 
    502           1.1      mrg 
    503           1.1      mrg /*
    504           1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    505           1.1      mrg  *
    506           1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    507           1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    508           1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    509           1.1      mrg  *	this case.
    510           1.1      mrg  * => we return KVA of memory allocated
    511           1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    512           1.1      mrg  *	lock the map
    513           1.1      mrg  */
    514           1.1      mrg 
    515          1.14      eeh vaddr_t
    516           1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    517           1.8      mrg 	vm_map_t map;
    518           1.8      mrg 	struct uvm_object *obj;
    519          1.14      eeh 	vsize_t size;
    520           1.8      mrg 	int flags;
    521           1.1      mrg {
    522          1.14      eeh 	vaddr_t kva, loopva;
    523          1.14      eeh 	vaddr_t offset;
    524           1.8      mrg 	struct vm_page *pg;
    525           1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    526           1.1      mrg 
    527           1.1      mrg 
    528           1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    529           1.1      mrg 	map, obj, size, flags);
    530           1.1      mrg #ifdef DIAGNOSTIC
    531           1.8      mrg 	/* sanity check */
    532           1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    533           1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    534           1.1      mrg #endif
    535           1.1      mrg 
    536           1.8      mrg 	/*
    537           1.8      mrg 	 * setup for call
    538           1.8      mrg 	 */
    539           1.8      mrg 
    540           1.8      mrg 	size = round_page(size);
    541           1.8      mrg 	kva = vm_map_min(map);	/* hint */
    542           1.1      mrg 
    543           1.8      mrg 	/*
    544           1.8      mrg 	 * allocate some virtual space
    545           1.8      mrg 	 */
    546           1.8      mrg 
    547           1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    548           1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    549  1.22.2.1.2.1      chs 			  UVM_ADV_RANDOM,
    550  1.22.2.1.2.1      chs 			  (flags & UVM_KMF_TRYLOCK)))
    551           1.8      mrg 			!= KERN_SUCCESS) {
    552           1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    553           1.8      mrg 		return(0);
    554           1.8      mrg 	}
    555           1.8      mrg 
    556           1.8      mrg 	/*
    557           1.8      mrg 	 * if all we wanted was VA, return now
    558           1.8      mrg 	 */
    559           1.8      mrg 
    560           1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    561           1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    562           1.8      mrg 		return(kva);
    563           1.8      mrg 	}
    564           1.8      mrg 	/*
    565           1.8      mrg 	 * recover object offset from virtual address
    566           1.8      mrg 	 */
    567           1.8      mrg 
    568           1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    569           1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    570           1.8      mrg 
    571           1.8      mrg 	/*
    572           1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    573           1.8      mrg 	 * whom should ever get a handle on this area of VM.
    574           1.8      mrg 	 */
    575           1.8      mrg 
    576           1.8      mrg 	loopva = kva;
    577           1.8      mrg 	while (size) {
    578           1.8      mrg 		simple_lock(&obj->vmobjlock);
    579      1.22.2.1      chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    580           1.8      mrg 		if (pg) {
    581           1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    582           1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    583           1.8      mrg 		}
    584           1.8      mrg 		simple_unlock(&obj->vmobjlock);
    585           1.8      mrg 
    586           1.8      mrg 		/*
    587           1.8      mrg 		 * out of memory?
    588           1.8      mrg 		 */
    589           1.8      mrg 
    590           1.8      mrg 		if (pg == NULL) {
    591           1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    592           1.8      mrg 				/* free everything! */
    593          1.17    chuck 				uvm_unmap(map, kva, kva + size);
    594           1.8      mrg 				return(0);
    595           1.8      mrg 			} else {
    596           1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    597           1.8      mrg 				continue;
    598           1.8      mrg 			}
    599           1.8      mrg 		}
    600           1.8      mrg 
    601           1.8      mrg 		/*
    602           1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    603           1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    604           1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    605           1.8      mrg 		 * it will need to lock it itself!)
    606           1.8      mrg 		 */
    607  1.22.2.1.2.2  thorpej 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    608           1.1      mrg #if defined(PMAP_NEW)
    609  1.22.2.1.2.2  thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    610  1.22.2.1.2.2  thorpej 			    VM_PROT_ALL);
    611           1.1      mrg #else
    612  1.22.2.1.2.2  thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    613  1.22.2.1.2.2  thorpej 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    614           1.1      mrg #endif
    615  1.22.2.1.2.2  thorpej 		} else {
    616  1.22.2.1.2.2  thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    617  1.22.2.1.2.2  thorpej 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    618  1.22.2.1.2.2  thorpej 		}
    619           1.8      mrg 		loopva += PAGE_SIZE;
    620           1.8      mrg 		offset += PAGE_SIZE;
    621           1.8      mrg 		size -= PAGE_SIZE;
    622           1.8      mrg 	}
    623           1.1      mrg 
    624           1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    625           1.8      mrg 	return(kva);
    626           1.1      mrg }
    627           1.1      mrg 
    628           1.1      mrg /*
    629           1.1      mrg  * uvm_km_free: free an area of kernel memory
    630           1.1      mrg  */
    631           1.1      mrg 
    632           1.8      mrg void
    633           1.8      mrg uvm_km_free(map, addr, size)
    634           1.8      mrg 	vm_map_t map;
    635          1.14      eeh 	vaddr_t addr;
    636          1.14      eeh 	vsize_t size;
    637           1.8      mrg {
    638           1.1      mrg 
    639          1.17    chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    640           1.1      mrg }
    641           1.1      mrg 
    642           1.1      mrg /*
    643           1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    644           1.1      mrg  * anyone waiting for vm space.
    645           1.1      mrg  *
    646           1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    647           1.1      mrg  */
    648           1.1      mrg 
    649           1.8      mrg void
    650           1.8      mrg uvm_km_free_wakeup(map, addr, size)
    651           1.8      mrg 	vm_map_t map;
    652          1.14      eeh 	vaddr_t addr;
    653          1.14      eeh 	vsize_t size;
    654           1.1      mrg {
    655           1.8      mrg 	vm_map_entry_t dead_entries;
    656           1.1      mrg 
    657           1.8      mrg 	vm_map_lock(map);
    658          1.17    chuck 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    659           1.1      mrg 			 &dead_entries);
    660  1.22.2.1.2.1      chs 	wakeup(map);
    661           1.8      mrg 	vm_map_unlock(map);
    662           1.1      mrg 
    663           1.8      mrg 	if (dead_entries != NULL)
    664           1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    665           1.1      mrg }
    666           1.1      mrg 
    667           1.1      mrg /*
    668           1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    669           1.1      mrg  *
    670           1.1      mrg  * => we can sleep if needed
    671           1.1      mrg  */
    672           1.1      mrg 
    673          1.14      eeh vaddr_t
    674           1.8      mrg uvm_km_alloc1(map, size, zeroit)
    675           1.8      mrg 	vm_map_t map;
    676          1.14      eeh 	vsize_t size;
    677           1.8      mrg 	boolean_t zeroit;
    678           1.1      mrg {
    679          1.14      eeh 	vaddr_t kva, loopva, offset;
    680           1.8      mrg 	struct vm_page *pg;
    681           1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    682           1.1      mrg 
    683           1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    684           1.1      mrg 
    685           1.1      mrg #ifdef DIAGNOSTIC
    686           1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    687           1.8      mrg 		panic("uvm_km_alloc1");
    688           1.1      mrg #endif
    689           1.1      mrg 
    690           1.8      mrg 	size = round_page(size);
    691           1.8      mrg 	kva = vm_map_min(map);		/* hint */
    692           1.1      mrg 
    693           1.8      mrg 	/*
    694           1.8      mrg 	 * allocate some virtual space
    695           1.8      mrg 	 */
    696           1.1      mrg 
    697           1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    698           1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    699           1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    700           1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    701           1.8      mrg 		return(0);
    702           1.8      mrg 	}
    703           1.8      mrg 
    704           1.8      mrg 	/*
    705           1.8      mrg 	 * recover object offset from virtual address
    706           1.8      mrg 	 */
    707           1.8      mrg 
    708           1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    709           1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    710           1.8      mrg 
    711           1.8      mrg 	/*
    712           1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    713           1.8      mrg 	 */
    714           1.8      mrg 
    715           1.8      mrg 	loopva = kva;
    716           1.8      mrg 	while (size) {
    717           1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    718           1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    719           1.8      mrg 
    720           1.8      mrg 		/*
    721           1.8      mrg 		 * if we found a page in an unallocated region, it must be
    722           1.8      mrg 		 * released
    723           1.8      mrg 		 */
    724           1.8      mrg 		if (pg) {
    725           1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    726           1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    727           1.8      mrg 			pg->flags |= PG_WANTED;
    728           1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    729  1.22.2.1.2.3  thorpej 			    FALSE, "km_alloc", 0);
    730           1.8      mrg 			continue;   /* retry */
    731           1.8      mrg 		}
    732           1.8      mrg 
    733           1.8      mrg 		/* allocate ram */
    734      1.22.2.1      chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    735           1.8      mrg 		if (pg) {
    736           1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    737           1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    738           1.8      mrg 		}
    739           1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    740           1.8      mrg 		if (pg == NULL) {
    741           1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    742           1.8      mrg 			continue;
    743           1.8      mrg 		}
    744           1.8      mrg 
    745  1.22.2.1.2.2  thorpej 		/*
    746  1.22.2.1.2.2  thorpej 		 * map it in; note we're never called with an intrsafe
    747  1.22.2.1.2.2  thorpej 		 * object, so we always use regular old pmap_enter().
    748  1.22.2.1.2.2  thorpej 		 */
    749           1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    750  1.22.2.1.2.2  thorpej 		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    751  1.22.2.1.2.2  thorpej 
    752           1.8      mrg 		loopva += PAGE_SIZE;
    753           1.8      mrg 		offset += PAGE_SIZE;
    754           1.8      mrg 		size -= PAGE_SIZE;
    755           1.8      mrg 	}
    756           1.8      mrg 
    757           1.8      mrg 	/*
    758           1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    759           1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    760           1.8      mrg 	 */
    761           1.1      mrg 
    762           1.8      mrg 	if (zeroit)
    763          1.13    perry 		memset((caddr_t)kva, 0, loopva - kva);
    764           1.1      mrg 
    765           1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    766           1.8      mrg 	return(kva);
    767           1.1      mrg }
    768           1.1      mrg 
    769           1.1      mrg /*
    770           1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    771           1.1      mrg  *
    772           1.1      mrg  * => memory is not allocated until fault time
    773           1.1      mrg  */
    774           1.1      mrg 
    775          1.14      eeh vaddr_t
    776           1.8      mrg uvm_km_valloc(map, size)
    777           1.8      mrg 	vm_map_t map;
    778          1.14      eeh 	vsize_t size;
    779           1.1      mrg {
    780          1.14      eeh 	vaddr_t kva;
    781           1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    782           1.1      mrg 
    783           1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    784           1.1      mrg 
    785           1.1      mrg #ifdef DIAGNOSTIC
    786           1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    787           1.8      mrg 		panic("uvm_km_valloc");
    788           1.1      mrg #endif
    789           1.1      mrg 
    790           1.8      mrg 	size = round_page(size);
    791           1.8      mrg 	kva = vm_map_min(map);		/* hint */
    792           1.1      mrg 
    793           1.8      mrg 	/*
    794           1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    795           1.8      mrg 	 */
    796           1.1      mrg 
    797           1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    798           1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    799           1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    800           1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    801           1.8      mrg 		return(0);
    802           1.8      mrg 	}
    803           1.1      mrg 
    804           1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    805           1.8      mrg 	return(kva);
    806           1.1      mrg }
    807           1.1      mrg 
    808           1.1      mrg /*
    809           1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    810           1.1      mrg  *
    811           1.1      mrg  * => memory is not allocated until fault time
    812           1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    813           1.1      mrg  *    is larger than map (in which case we return 0)
    814           1.1      mrg  */
    815           1.1      mrg 
    816          1.14      eeh vaddr_t
    817           1.8      mrg uvm_km_valloc_wait(map, size)
    818           1.8      mrg 	vm_map_t map;
    819          1.14      eeh 	vsize_t size;
    820           1.1      mrg {
    821          1.14      eeh 	vaddr_t kva;
    822           1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    823           1.1      mrg 
    824           1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    825           1.1      mrg 
    826           1.1      mrg #ifdef DIAGNOSTIC
    827           1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    828           1.8      mrg 		panic("uvm_km_valloc_wait");
    829           1.1      mrg #endif
    830           1.1      mrg 
    831           1.8      mrg 	size = round_page(size);
    832           1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    833           1.8      mrg 		return(0);
    834           1.8      mrg 
    835           1.8      mrg 	while (1) {
    836           1.8      mrg 		kva = vm_map_min(map);		/* hint */
    837           1.8      mrg 
    838           1.8      mrg 		/*
    839           1.8      mrg 		 * allocate some virtual space.   will be demand filled
    840           1.8      mrg 		 * by kernel_object.
    841           1.8      mrg 		 */
    842           1.8      mrg 
    843           1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    844           1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    845           1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    846           1.8      mrg 		    == KERN_SUCCESS) {
    847           1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    848           1.8      mrg 			return(kva);
    849           1.8      mrg 		}
    850           1.8      mrg 
    851           1.8      mrg 		/*
    852           1.8      mrg 		 * failed.  sleep for a while (on map)
    853           1.8      mrg 		 */
    854           1.8      mrg 
    855           1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    856           1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    857           1.8      mrg 	}
    858           1.8      mrg 	/*NOTREACHED*/
    859          1.10  thorpej }
    860          1.10  thorpej 
    861          1.10  thorpej /* Sanity; must specify both or none. */
    862          1.10  thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    863          1.10  thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    864          1.10  thorpej #error Must specify MAP and UNMAP together.
    865          1.10  thorpej #endif
    866          1.10  thorpej 
    867          1.10  thorpej /*
    868          1.10  thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    869          1.10  thorpej  *
    870          1.10  thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    871          1.10  thorpej  */
    872          1.10  thorpej 
    873          1.11  thorpej /* ARGSUSED */
    874          1.14      eeh vaddr_t
    875          1.15  thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    876          1.11  thorpej 	vm_map_t map;
    877          1.12  thorpej 	struct uvm_object *obj;
    878          1.15  thorpej 	boolean_t waitok;
    879          1.10  thorpej {
    880          1.10  thorpej #if defined(PMAP_MAP_POOLPAGE)
    881          1.10  thorpej 	struct vm_page *pg;
    882          1.14      eeh 	vaddr_t va;
    883          1.10  thorpej 
    884          1.15  thorpej  again:
    885  1.22.2.1.2.3  thorpej 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    886          1.15  thorpej 	if (pg == NULL) {
    887          1.15  thorpej 		if (waitok) {
    888          1.15  thorpej 			uvm_wait("plpg");
    889          1.15  thorpej 			goto again;
    890          1.15  thorpej 		} else
    891          1.15  thorpej 			return (0);
    892          1.15  thorpej 	}
    893          1.10  thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    894          1.10  thorpej 	if (va == 0)
    895          1.10  thorpej 		uvm_pagefree(pg);
    896          1.10  thorpej 	return (va);
    897          1.10  thorpej #else
    898          1.14      eeh 	vaddr_t va;
    899          1.10  thorpej 	int s;
    900          1.10  thorpej 
    901          1.16  thorpej 	/*
    902          1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    903          1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    904          1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
    905          1.16  thorpej 	 * accessed in interrupt context).
    906          1.16  thorpej 	 *
    907          1.16  thorpej 	 * XXX We may want to consider changing the interface to this
    908          1.16  thorpej 	 * XXX function.
    909          1.16  thorpej 	 */
    910          1.16  thorpej 
    911          1.10  thorpej 	s = splimp();
    912          1.15  thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    913          1.10  thorpej 	splx(s);
    914          1.10  thorpej 	return (va);
    915          1.10  thorpej #endif /* PMAP_MAP_POOLPAGE */
    916          1.10  thorpej }
    917          1.10  thorpej 
    918          1.10  thorpej /*
    919          1.10  thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    920          1.10  thorpej  *
    921          1.10  thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    922          1.10  thorpej  */
    923          1.10  thorpej 
    924          1.11  thorpej /* ARGSUSED */
    925          1.10  thorpej void
    926          1.11  thorpej uvm_km_free_poolpage1(map, addr)
    927          1.11  thorpej 	vm_map_t map;
    928          1.14      eeh 	vaddr_t addr;
    929          1.10  thorpej {
    930          1.10  thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    931          1.14      eeh 	paddr_t pa;
    932          1.10  thorpej 
    933          1.10  thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    934          1.10  thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    935          1.10  thorpej #else
    936          1.10  thorpej 	int s;
    937          1.16  thorpej 
    938          1.16  thorpej 	/*
    939          1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    940          1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    941          1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
    942          1.16  thorpej 	 * accessed in interrupt context).
    943          1.16  thorpej 	 *
    944          1.16  thorpej 	 * XXX We may want to consider changing the interface to this
    945          1.16  thorpej 	 * XXX function.
    946          1.16  thorpej 	 */
    947          1.10  thorpej 
    948          1.10  thorpej 	s = splimp();
    949          1.11  thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    950          1.10  thorpej 	splx(s);
    951          1.10  thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    952           1.1      mrg }
    953