uvm_km.c revision 1.29 1 1.29 chs /* $NetBSD: uvm_km.c,v 1.29 1999/07/18 22:55:30 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.6 mrg #include "opt_uvmhist.h"
70 1.6 mrg #include "opt_pmap_new.h"
71 1.1 mrg
72 1.1 mrg /*
73 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
74 1.1 mrg */
75 1.1 mrg
76 1.7 chuck /*
77 1.7 chuck * overview of kernel memory management:
78 1.7 chuck *
79 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
80 1.7 chuck * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
81 1.7 chuck * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
82 1.7 chuck *
83 1.7 chuck * the kernel_map has several "submaps." submaps can only appear in
84 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
85 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
86 1.7 chuck * are typically allocated at boot time and are never released. kernel
87 1.7 chuck * virtual address space that is mapped by a submap is locked by the
88 1.7 chuck * submap's lock -- not the kernel_map's lock.
89 1.7 chuck *
90 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
91 1.7 chuck * up the locking and protection of the kernel address space into smaller
92 1.7 chuck * chunks.
93 1.7 chuck *
94 1.7 chuck * the vm system has several standard kernel submaps, including:
95 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
96 1.7 chuck * malloc. *** access to kmem_map must be protected
97 1.7 chuck * by splimp() because we are allowed to call malloc()
98 1.7 chuck * at interrupt time ***
99 1.7 chuck * mb_map => memory for large mbufs, *** protected by splimp ***
100 1.7 chuck * pager_map => used to map "buf" structures into kernel space
101 1.7 chuck * exec_map => used during exec to handle exec args
102 1.7 chuck * etc...
103 1.7 chuck *
104 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
105 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
106 1.7 chuck * are "special" and never die). all kernel objects should be thought of
107 1.7 chuck * as large, fixed-sized, sparsely populated uvm_objects. each kernel
108 1.7 chuck * object is equal to the size of kernel virtual address space (i.e. the
109 1.7 chuck * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
110 1.7 chuck *
111 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
112 1.7 chuck * to this is for memory that belongs to submaps that must be protected
113 1.7 chuck * by splimp(). each of these submaps has their own private kernel
114 1.7 chuck * object (e.g. kmem_object, mb_object).
115 1.7 chuck *
116 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
117 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
118 1.7 chuck * large chunks of a kernel object's space go unused either because
119 1.7 chuck * that area of kernel VM is unmapped, or there is some other type of
120 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
121 1.7 chuck * objects, the only part of the object that can ever be populated is the
122 1.7 chuck * offsets that are managed by the submap.
123 1.7 chuck *
124 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
125 1.7 chuck * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
126 1.7 chuck * example:
127 1.7 chuck * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
128 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
129 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
130 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
131 1.7 chuck * mapped at 0xf8235000.
132 1.7 chuck *
133 1.7 chuck * note that the offsets in kmem_object and mb_object also follow this
134 1.7 chuck * rule. this means that the offsets for kmem_object must fall in the
135 1.7 chuck * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
136 1.7 chuck * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
137 1.7 chuck * in those objects will typically not start at zero.
138 1.7 chuck *
139 1.7 chuck * kernel object have one other special property: when the kernel virtual
140 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
141 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
142 1.7 chuck * this has to be done because there is no backing store for kernel pages
143 1.7 chuck * and no need to save them after they are no longer referenced.
144 1.7 chuck */
145 1.7 chuck
146 1.1 mrg #include <sys/param.h>
147 1.1 mrg #include <sys/systm.h>
148 1.1 mrg #include <sys/proc.h>
149 1.1 mrg
150 1.1 mrg #include <vm/vm.h>
151 1.1 mrg #include <vm/vm_page.h>
152 1.1 mrg #include <vm/vm_kern.h>
153 1.1 mrg
154 1.1 mrg #include <uvm/uvm.h>
155 1.1 mrg
156 1.1 mrg /*
157 1.1 mrg * global data structures
158 1.1 mrg */
159 1.1 mrg
160 1.1 mrg vm_map_t kernel_map = NULL;
161 1.1 mrg
162 1.27 thorpej struct vmi_list vmi_list;
163 1.27 thorpej simple_lock_data_t vmi_list_slock;
164 1.27 thorpej
165 1.1 mrg /*
166 1.1 mrg * local data structues
167 1.1 mrg */
168 1.1 mrg
169 1.1 mrg static struct vm_map kernel_map_store;
170 1.1 mrg static struct uvm_object kmem_object_store;
171 1.1 mrg static struct uvm_object mb_object_store;
172 1.1 mrg
173 1.1 mrg /*
174 1.28 thorpej * All pager operations here are NULL, but the object must have
175 1.28 thorpej * a pager ops vector associated with it; various places assume
176 1.28 thorpej * it to be so.
177 1.1 mrg */
178 1.28 thorpej static struct uvm_pagerops km_pager;
179 1.1 mrg
180 1.1 mrg /*
181 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
182 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
183 1.1 mrg *
184 1.1 mrg * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
185 1.1 mrg * we assume that [min -> start] has already been allocated and that
186 1.1 mrg * "end" is the end.
187 1.1 mrg */
188 1.1 mrg
189 1.8 mrg void
190 1.8 mrg uvm_km_init(start, end)
191 1.14 eeh vaddr_t start, end;
192 1.1 mrg {
193 1.14 eeh vaddr_t base = VM_MIN_KERNEL_ADDRESS;
194 1.1 mrg
195 1.8 mrg /*
196 1.27 thorpej * first, initialize the interrupt-safe map list.
197 1.27 thorpej */
198 1.27 thorpej LIST_INIT(&vmi_list);
199 1.27 thorpej simple_lock_init(&vmi_list_slock);
200 1.27 thorpej
201 1.27 thorpej /*
202 1.27 thorpej * next, init kernel memory objects.
203 1.8 mrg */
204 1.1 mrg
205 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
206 1.8 mrg uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
207 1.3 chs VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
208 1.1 mrg
209 1.24 thorpej /*
210 1.24 thorpej * kmem_object: for use by the kernel malloc(). Memory is always
211 1.24 thorpej * wired, and this object (and the kmem_map) can be accessed at
212 1.24 thorpej * interrupt time.
213 1.24 thorpej */
214 1.8 mrg simple_lock_init(&kmem_object_store.vmobjlock);
215 1.8 mrg kmem_object_store.pgops = &km_pager;
216 1.8 mrg TAILQ_INIT(&kmem_object_store.memq);
217 1.8 mrg kmem_object_store.uo_npages = 0;
218 1.8 mrg /* we are special. we never die */
219 1.24 thorpej kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220 1.8 mrg uvmexp.kmem_object = &kmem_object_store;
221 1.8 mrg
222 1.24 thorpej /*
223 1.24 thorpej * mb_object: for mbuf cluster pages on platforms which use the
224 1.24 thorpej * mb_map. Memory is always wired, and this object (and the mb_map)
225 1.24 thorpej * can be accessed at interrupt time.
226 1.24 thorpej */
227 1.8 mrg simple_lock_init(&mb_object_store.vmobjlock);
228 1.8 mrg mb_object_store.pgops = &km_pager;
229 1.8 mrg TAILQ_INIT(&mb_object_store.memq);
230 1.8 mrg mb_object_store.uo_npages = 0;
231 1.8 mrg /* we are special. we never die */
232 1.24 thorpej mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
233 1.8 mrg uvmexp.mb_object = &mb_object_store;
234 1.8 mrg
235 1.8 mrg /*
236 1.8 mrg * init the map and reserve allready allocated kernel space
237 1.8 mrg * before installing.
238 1.8 mrg */
239 1.1 mrg
240 1.25 thorpej uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
241 1.8 mrg kernel_map_store.pmap = pmap_kernel();
242 1.8 mrg if (uvm_map(&kernel_map_store, &base, start - base, NULL,
243 1.8 mrg UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
244 1.8 mrg UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
245 1.8 mrg panic("uvm_km_init: could not reserve space for kernel");
246 1.8 mrg
247 1.8 mrg /*
248 1.8 mrg * install!
249 1.8 mrg */
250 1.8 mrg
251 1.8 mrg kernel_map = &kernel_map_store;
252 1.1 mrg }
253 1.1 mrg
254 1.1 mrg /*
255 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
256 1.1 mrg * is allocated all references to that area of VM must go through it. this
257 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
258 1.1 mrg *
259 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
260 1.5 thorpej * by the submap must start
261 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
262 1.1 mrg * alloc a new map
263 1.1 mrg */
264 1.8 mrg struct vm_map *
265 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
266 1.8 mrg struct vm_map *map;
267 1.14 eeh vaddr_t *min, *max; /* OUT, OUT */
268 1.14 eeh vsize_t size;
269 1.25 thorpej int flags;
270 1.8 mrg boolean_t fixed;
271 1.8 mrg struct vm_map *submap;
272 1.8 mrg {
273 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
274 1.1 mrg
275 1.8 mrg size = round_page(size); /* round up to pagesize */
276 1.1 mrg
277 1.8 mrg /*
278 1.8 mrg * first allocate a blank spot in the parent map
279 1.8 mrg */
280 1.8 mrg
281 1.8 mrg if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
282 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
283 1.8 mrg UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
284 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
285 1.8 mrg }
286 1.8 mrg
287 1.8 mrg /*
288 1.8 mrg * set VM bounds (min is filled in by uvm_map)
289 1.8 mrg */
290 1.1 mrg
291 1.8 mrg *max = *min + size;
292 1.5 thorpej
293 1.8 mrg /*
294 1.8 mrg * add references to pmap and create or init the submap
295 1.8 mrg */
296 1.1 mrg
297 1.8 mrg pmap_reference(vm_map_pmap(map));
298 1.8 mrg if (submap == NULL) {
299 1.25 thorpej submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
300 1.8 mrg if (submap == NULL)
301 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
302 1.8 mrg } else {
303 1.25 thorpej uvm_map_setup(submap, *min, *max, flags);
304 1.8 mrg submap->pmap = vm_map_pmap(map);
305 1.8 mrg }
306 1.1 mrg
307 1.8 mrg /*
308 1.8 mrg * now let uvm_map_submap plug in it...
309 1.8 mrg */
310 1.1 mrg
311 1.8 mrg if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
312 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
313 1.1 mrg
314 1.8 mrg return(submap);
315 1.1 mrg }
316 1.1 mrg
317 1.1 mrg /*
318 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
319 1.1 mrg *
320 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
321 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
322 1.1 mrg */
323 1.1 mrg
324 1.1 mrg #define UKM_HASH_PENALTY 4 /* a guess */
325 1.1 mrg
326 1.8 mrg void
327 1.8 mrg uvm_km_pgremove(uobj, start, end)
328 1.8 mrg struct uvm_object *uobj;
329 1.14 eeh vaddr_t start, end;
330 1.1 mrg {
331 1.24 thorpej boolean_t by_list;
332 1.8 mrg struct vm_page *pp, *ppnext;
333 1.14 eeh vaddr_t curoff;
334 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
335 1.1 mrg
336 1.8 mrg simple_lock(&uobj->vmobjlock); /* lock object */
337 1.1 mrg
338 1.24 thorpej #ifdef DIAGNOSTIC
339 1.24 thorpej if (uobj->pgops != &aobj_pager)
340 1.24 thorpej panic("uvm_km_pgremove: object %p not an aobj", uobj);
341 1.24 thorpej #endif
342 1.3 chs
343 1.8 mrg /* choose cheapest traversal */
344 1.8 mrg by_list = (uobj->uo_npages <=
345 1.18 chs ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
346 1.1 mrg
347 1.8 mrg if (by_list)
348 1.8 mrg goto loop_by_list;
349 1.1 mrg
350 1.8 mrg /* by hash */
351 1.1 mrg
352 1.8 mrg for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
353 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
354 1.8 mrg if (pp == NULL)
355 1.8 mrg continue;
356 1.8 mrg
357 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
358 1.8 mrg pp->flags & PG_BUSY, 0, 0);
359 1.24 thorpej
360 1.8 mrg /* now do the actual work */
361 1.24 thorpej if (pp->flags & PG_BUSY) {
362 1.8 mrg /* owner must check for this when done */
363 1.8 mrg pp->flags |= PG_RELEASED;
364 1.24 thorpej } else {
365 1.24 thorpej /* free the swap slot... */
366 1.24 thorpej uao_dropswap(uobj, curoff >> PAGE_SHIFT);
367 1.8 mrg
368 1.8 mrg /*
369 1.24 thorpej * ...and free the page; note it may be on the
370 1.24 thorpej * active or inactive queues.
371 1.8 mrg */
372 1.8 mrg uvm_lock_pageq();
373 1.8 mrg uvm_pagefree(pp);
374 1.8 mrg uvm_unlock_pageq();
375 1.8 mrg }
376 1.8 mrg /* done */
377 1.8 mrg }
378 1.8 mrg simple_unlock(&uobj->vmobjlock);
379 1.8 mrg return;
380 1.1 mrg
381 1.1 mrg loop_by_list:
382 1.1 mrg
383 1.8 mrg for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
384 1.8 mrg ppnext = pp->listq.tqe_next;
385 1.8 mrg if (pp->offset < start || pp->offset >= end) {
386 1.8 mrg continue;
387 1.8 mrg }
388 1.8 mrg
389 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
390 1.8 mrg pp->flags & PG_BUSY, 0, 0);
391 1.24 thorpej
392 1.8 mrg /* now do the actual work */
393 1.24 thorpej if (pp->flags & PG_BUSY) {
394 1.8 mrg /* owner must check for this when done */
395 1.8 mrg pp->flags |= PG_RELEASED;
396 1.24 thorpej } else {
397 1.24 thorpej /* free the swap slot... */
398 1.24 thorpej uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
399 1.8 mrg
400 1.8 mrg /*
401 1.24 thorpej * ...and free the page; note it may be on the
402 1.24 thorpej * active or inactive queues.
403 1.8 mrg */
404 1.8 mrg uvm_lock_pageq();
405 1.8 mrg uvm_pagefree(pp);
406 1.8 mrg uvm_unlock_pageq();
407 1.8 mrg }
408 1.8 mrg /* done */
409 1.24 thorpej }
410 1.24 thorpej simple_unlock(&uobj->vmobjlock);
411 1.24 thorpej return;
412 1.24 thorpej }
413 1.24 thorpej
414 1.24 thorpej
415 1.24 thorpej /*
416 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
417 1.24 thorpej * objects
418 1.24 thorpej *
419 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
420 1.24 thorpej * the pages right away. (this gets called from uvm_unmap_...).
421 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
422 1.24 thorpej * be on the active or inactive queues (because these objects are
423 1.24 thorpej * never allowed to "page").
424 1.24 thorpej */
425 1.24 thorpej
426 1.24 thorpej void
427 1.24 thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
428 1.24 thorpej struct uvm_object *uobj;
429 1.24 thorpej vaddr_t start, end;
430 1.24 thorpej {
431 1.24 thorpej boolean_t by_list;
432 1.24 thorpej struct vm_page *pp, *ppnext;
433 1.24 thorpej vaddr_t curoff;
434 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
435 1.24 thorpej
436 1.24 thorpej simple_lock(&uobj->vmobjlock); /* lock object */
437 1.24 thorpej
438 1.24 thorpej #ifdef DIAGNOSTIC
439 1.24 thorpej if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
440 1.24 thorpej panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
441 1.24 thorpej #endif
442 1.24 thorpej
443 1.24 thorpej /* choose cheapest traversal */
444 1.24 thorpej by_list = (uobj->uo_npages <=
445 1.24 thorpej ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
446 1.24 thorpej
447 1.24 thorpej if (by_list)
448 1.24 thorpej goto loop_by_list;
449 1.24 thorpej
450 1.24 thorpej /* by hash */
451 1.24 thorpej
452 1.24 thorpej for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
453 1.24 thorpej pp = uvm_pagelookup(uobj, curoff);
454 1.24 thorpej if (pp == NULL)
455 1.24 thorpej continue;
456 1.24 thorpej
457 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
458 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
459 1.24 thorpej #ifdef DIAGNOSTIC
460 1.24 thorpej if (pp->flags & PG_BUSY)
461 1.24 thorpej panic("uvm_km_pgremove_intrsafe: busy page");
462 1.24 thorpej if (pp->pqflags & PQ_ACTIVE)
463 1.24 thorpej panic("uvm_km_pgremove_intrsafe: active page");
464 1.24 thorpej if (pp->pqflags & PQ_INACTIVE)
465 1.24 thorpej panic("uvm_km_pgremove_intrsafe: inactive page");
466 1.24 thorpej #endif
467 1.24 thorpej
468 1.24 thorpej /* free the page */
469 1.24 thorpej uvm_pagefree(pp);
470 1.24 thorpej }
471 1.24 thorpej simple_unlock(&uobj->vmobjlock);
472 1.24 thorpej return;
473 1.24 thorpej
474 1.24 thorpej loop_by_list:
475 1.1 mrg
476 1.24 thorpej for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
477 1.24 thorpej ppnext = pp->listq.tqe_next;
478 1.24 thorpej if (pp->offset < start || pp->offset >= end) {
479 1.24 thorpej continue;
480 1.24 thorpej }
481 1.24 thorpej
482 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
483 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
484 1.24 thorpej
485 1.24 thorpej #ifdef DIAGNOSTIC
486 1.24 thorpej if (pp->flags & PG_BUSY)
487 1.24 thorpej panic("uvm_km_pgremove_intrsafe: busy page");
488 1.24 thorpej if (pp->pqflags & PQ_ACTIVE)
489 1.24 thorpej panic("uvm_km_pgremove_intrsafe: active page");
490 1.24 thorpej if (pp->pqflags & PQ_INACTIVE)
491 1.24 thorpej panic("uvm_km_pgremove_intrsafe: inactive page");
492 1.24 thorpej #endif
493 1.24 thorpej
494 1.24 thorpej /* free the page */
495 1.24 thorpej uvm_pagefree(pp);
496 1.8 mrg }
497 1.8 mrg simple_unlock(&uobj->vmobjlock);
498 1.8 mrg return;
499 1.1 mrg }
500 1.1 mrg
501 1.1 mrg
502 1.1 mrg /*
503 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
504 1.1 mrg *
505 1.1 mrg * => we map wired memory into the specified map using the obj passed in
506 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
507 1.1 mrg * free VM space in the map... caller should be prepared to handle
508 1.1 mrg * this case.
509 1.1 mrg * => we return KVA of memory allocated
510 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
511 1.1 mrg * lock the map
512 1.1 mrg */
513 1.1 mrg
514 1.14 eeh vaddr_t
515 1.8 mrg uvm_km_kmemalloc(map, obj, size, flags)
516 1.8 mrg vm_map_t map;
517 1.8 mrg struct uvm_object *obj;
518 1.14 eeh vsize_t size;
519 1.8 mrg int flags;
520 1.1 mrg {
521 1.14 eeh vaddr_t kva, loopva;
522 1.14 eeh vaddr_t offset;
523 1.8 mrg struct vm_page *pg;
524 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
525 1.1 mrg
526 1.1 mrg
527 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
528 1.1 mrg map, obj, size, flags);
529 1.1 mrg #ifdef DIAGNOSTIC
530 1.8 mrg /* sanity check */
531 1.8 mrg if (vm_map_pmap(map) != pmap_kernel())
532 1.8 mrg panic("uvm_km_kmemalloc: invalid map");
533 1.1 mrg #endif
534 1.1 mrg
535 1.8 mrg /*
536 1.8 mrg * setup for call
537 1.8 mrg */
538 1.8 mrg
539 1.8 mrg size = round_page(size);
540 1.8 mrg kva = vm_map_min(map); /* hint */
541 1.1 mrg
542 1.8 mrg /*
543 1.8 mrg * allocate some virtual space
544 1.8 mrg */
545 1.8 mrg
546 1.8 mrg if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
547 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
548 1.1 mrg UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
549 1.8 mrg != KERN_SUCCESS) {
550 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
551 1.8 mrg return(0);
552 1.8 mrg }
553 1.8 mrg
554 1.8 mrg /*
555 1.8 mrg * if all we wanted was VA, return now
556 1.8 mrg */
557 1.8 mrg
558 1.8 mrg if (flags & UVM_KMF_VALLOC) {
559 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
560 1.8 mrg return(kva);
561 1.8 mrg }
562 1.8 mrg /*
563 1.8 mrg * recover object offset from virtual address
564 1.8 mrg */
565 1.8 mrg
566 1.8 mrg offset = kva - vm_map_min(kernel_map);
567 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
568 1.8 mrg
569 1.8 mrg /*
570 1.8 mrg * now allocate and map in the memory... note that we are the only ones
571 1.8 mrg * whom should ever get a handle on this area of VM.
572 1.8 mrg */
573 1.8 mrg
574 1.8 mrg loopva = kva;
575 1.8 mrg while (size) {
576 1.8 mrg simple_lock(&obj->vmobjlock);
577 1.23 chs pg = uvm_pagealloc(obj, offset, NULL, 0);
578 1.8 mrg if (pg) {
579 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
580 1.8 mrg UVM_PAGE_OWN(pg, NULL);
581 1.8 mrg }
582 1.8 mrg simple_unlock(&obj->vmobjlock);
583 1.8 mrg
584 1.8 mrg /*
585 1.8 mrg * out of memory?
586 1.8 mrg */
587 1.8 mrg
588 1.8 mrg if (pg == NULL) {
589 1.8 mrg if (flags & UVM_KMF_NOWAIT) {
590 1.8 mrg /* free everything! */
591 1.17 chuck uvm_unmap(map, kva, kva + size);
592 1.8 mrg return(0);
593 1.8 mrg } else {
594 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
595 1.8 mrg continue;
596 1.8 mrg }
597 1.8 mrg }
598 1.8 mrg
599 1.8 mrg /*
600 1.8 mrg * map it in: note that we call pmap_enter with the map and
601 1.8 mrg * object unlocked in case we are kmem_map/kmem_object
602 1.8 mrg * (because if pmap_enter wants to allocate out of kmem_object
603 1.8 mrg * it will need to lock it itself!)
604 1.8 mrg */
605 1.24 thorpej if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
606 1.1 mrg #if defined(PMAP_NEW)
607 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
608 1.24 thorpej VM_PROT_ALL);
609 1.1 mrg #else
610 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
611 1.26 thorpej UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
612 1.1 mrg #endif
613 1.24 thorpej } else {
614 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
615 1.26 thorpej UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
616 1.24 thorpej }
617 1.8 mrg loopva += PAGE_SIZE;
618 1.8 mrg offset += PAGE_SIZE;
619 1.8 mrg size -= PAGE_SIZE;
620 1.8 mrg }
621 1.1 mrg
622 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
623 1.8 mrg return(kva);
624 1.1 mrg }
625 1.1 mrg
626 1.1 mrg /*
627 1.1 mrg * uvm_km_free: free an area of kernel memory
628 1.1 mrg */
629 1.1 mrg
630 1.8 mrg void
631 1.8 mrg uvm_km_free(map, addr, size)
632 1.8 mrg vm_map_t map;
633 1.14 eeh vaddr_t addr;
634 1.14 eeh vsize_t size;
635 1.8 mrg {
636 1.1 mrg
637 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
638 1.1 mrg }
639 1.1 mrg
640 1.1 mrg /*
641 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
642 1.1 mrg * anyone waiting for vm space.
643 1.1 mrg *
644 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
645 1.1 mrg */
646 1.1 mrg
647 1.8 mrg void
648 1.8 mrg uvm_km_free_wakeup(map, addr, size)
649 1.8 mrg vm_map_t map;
650 1.14 eeh vaddr_t addr;
651 1.14 eeh vsize_t size;
652 1.1 mrg {
653 1.8 mrg vm_map_entry_t dead_entries;
654 1.1 mrg
655 1.8 mrg vm_map_lock(map);
656 1.17 chuck (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
657 1.1 mrg &dead_entries);
658 1.8 mrg thread_wakeup(map);
659 1.8 mrg vm_map_unlock(map);
660 1.1 mrg
661 1.8 mrg if (dead_entries != NULL)
662 1.8 mrg uvm_unmap_detach(dead_entries, 0);
663 1.1 mrg }
664 1.1 mrg
665 1.1 mrg /*
666 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
667 1.1 mrg *
668 1.1 mrg * => we can sleep if needed
669 1.1 mrg */
670 1.1 mrg
671 1.14 eeh vaddr_t
672 1.8 mrg uvm_km_alloc1(map, size, zeroit)
673 1.8 mrg vm_map_t map;
674 1.14 eeh vsize_t size;
675 1.8 mrg boolean_t zeroit;
676 1.1 mrg {
677 1.14 eeh vaddr_t kva, loopva, offset;
678 1.8 mrg struct vm_page *pg;
679 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
680 1.1 mrg
681 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
682 1.1 mrg
683 1.1 mrg #ifdef DIAGNOSTIC
684 1.8 mrg if (vm_map_pmap(map) != pmap_kernel())
685 1.8 mrg panic("uvm_km_alloc1");
686 1.1 mrg #endif
687 1.1 mrg
688 1.8 mrg size = round_page(size);
689 1.8 mrg kva = vm_map_min(map); /* hint */
690 1.1 mrg
691 1.8 mrg /*
692 1.8 mrg * allocate some virtual space
693 1.8 mrg */
694 1.1 mrg
695 1.8 mrg if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
696 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
697 1.1 mrg UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
698 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
699 1.8 mrg return(0);
700 1.8 mrg }
701 1.8 mrg
702 1.8 mrg /*
703 1.8 mrg * recover object offset from virtual address
704 1.8 mrg */
705 1.8 mrg
706 1.8 mrg offset = kva - vm_map_min(kernel_map);
707 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
708 1.8 mrg
709 1.8 mrg /*
710 1.8 mrg * now allocate the memory. we must be careful about released pages.
711 1.8 mrg */
712 1.8 mrg
713 1.8 mrg loopva = kva;
714 1.8 mrg while (size) {
715 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
716 1.8 mrg pg = uvm_pagelookup(uvm.kernel_object, offset);
717 1.8 mrg
718 1.8 mrg /*
719 1.8 mrg * if we found a page in an unallocated region, it must be
720 1.8 mrg * released
721 1.8 mrg */
722 1.8 mrg if (pg) {
723 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
724 1.8 mrg panic("uvm_km_alloc1: non-released page");
725 1.8 mrg pg->flags |= PG_WANTED;
726 1.8 mrg UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
727 1.8 mrg 0, "km_alloc", 0);
728 1.8 mrg continue; /* retry */
729 1.8 mrg }
730 1.8 mrg
731 1.8 mrg /* allocate ram */
732 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
733 1.8 mrg if (pg) {
734 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
735 1.8 mrg UVM_PAGE_OWN(pg, NULL);
736 1.8 mrg }
737 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
738 1.8 mrg if (pg == NULL) {
739 1.8 mrg uvm_wait("km_alloc1w"); /* wait for memory */
740 1.8 mrg continue;
741 1.8 mrg }
742 1.8 mrg
743 1.24 thorpej /*
744 1.24 thorpej * map it in; note we're never called with an intrsafe
745 1.24 thorpej * object, so we always use regular old pmap_enter().
746 1.24 thorpej */
747 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
748 1.26 thorpej UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
749 1.24 thorpej
750 1.8 mrg loopva += PAGE_SIZE;
751 1.8 mrg offset += PAGE_SIZE;
752 1.8 mrg size -= PAGE_SIZE;
753 1.8 mrg }
754 1.8 mrg
755 1.8 mrg /*
756 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
757 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
758 1.8 mrg */
759 1.1 mrg
760 1.8 mrg if (zeroit)
761 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
762 1.1 mrg
763 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
764 1.8 mrg return(kva);
765 1.1 mrg }
766 1.1 mrg
767 1.1 mrg /*
768 1.1 mrg * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
769 1.1 mrg *
770 1.1 mrg * => memory is not allocated until fault time
771 1.1 mrg */
772 1.1 mrg
773 1.14 eeh vaddr_t
774 1.8 mrg uvm_km_valloc(map, size)
775 1.8 mrg vm_map_t map;
776 1.14 eeh vsize_t size;
777 1.1 mrg {
778 1.14 eeh vaddr_t kva;
779 1.8 mrg UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
780 1.1 mrg
781 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
782 1.1 mrg
783 1.1 mrg #ifdef DIAGNOSTIC
784 1.8 mrg if (vm_map_pmap(map) != pmap_kernel())
785 1.8 mrg panic("uvm_km_valloc");
786 1.1 mrg #endif
787 1.1 mrg
788 1.8 mrg size = round_page(size);
789 1.8 mrg kva = vm_map_min(map); /* hint */
790 1.1 mrg
791 1.8 mrg /*
792 1.8 mrg * allocate some virtual space. will be demand filled by kernel_object.
793 1.8 mrg */
794 1.1 mrg
795 1.8 mrg if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
796 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
797 1.8 mrg UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
798 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
799 1.8 mrg return(0);
800 1.8 mrg }
801 1.1 mrg
802 1.8 mrg UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
803 1.8 mrg return(kva);
804 1.1 mrg }
805 1.1 mrg
806 1.1 mrg /*
807 1.1 mrg * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
808 1.1 mrg *
809 1.1 mrg * => memory is not allocated until fault time
810 1.1 mrg * => if no room in map, wait for space to free, unless requested size
811 1.1 mrg * is larger than map (in which case we return 0)
812 1.1 mrg */
813 1.1 mrg
814 1.14 eeh vaddr_t
815 1.8 mrg uvm_km_valloc_wait(map, size)
816 1.8 mrg vm_map_t map;
817 1.14 eeh vsize_t size;
818 1.1 mrg {
819 1.14 eeh vaddr_t kva;
820 1.8 mrg UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
821 1.1 mrg
822 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
823 1.1 mrg
824 1.1 mrg #ifdef DIAGNOSTIC
825 1.8 mrg if (vm_map_pmap(map) != pmap_kernel())
826 1.8 mrg panic("uvm_km_valloc_wait");
827 1.1 mrg #endif
828 1.1 mrg
829 1.8 mrg size = round_page(size);
830 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
831 1.8 mrg return(0);
832 1.8 mrg
833 1.8 mrg while (1) {
834 1.8 mrg kva = vm_map_min(map); /* hint */
835 1.8 mrg
836 1.8 mrg /*
837 1.8 mrg * allocate some virtual space. will be demand filled
838 1.8 mrg * by kernel_object.
839 1.8 mrg */
840 1.8 mrg
841 1.8 mrg if (uvm_map(map, &kva, size, uvm.kernel_object,
842 1.8 mrg UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
843 1.8 mrg UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
844 1.8 mrg == KERN_SUCCESS) {
845 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
846 1.8 mrg return(kva);
847 1.8 mrg }
848 1.8 mrg
849 1.8 mrg /*
850 1.8 mrg * failed. sleep for a while (on map)
851 1.8 mrg */
852 1.8 mrg
853 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
854 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
855 1.8 mrg }
856 1.8 mrg /*NOTREACHED*/
857 1.10 thorpej }
858 1.10 thorpej
859 1.10 thorpej /* Sanity; must specify both or none. */
860 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
861 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
862 1.10 thorpej #error Must specify MAP and UNMAP together.
863 1.10 thorpej #endif
864 1.10 thorpej
865 1.10 thorpej /*
866 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
867 1.10 thorpej *
868 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
869 1.10 thorpej */
870 1.10 thorpej
871 1.11 thorpej /* ARGSUSED */
872 1.14 eeh vaddr_t
873 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
874 1.11 thorpej vm_map_t map;
875 1.12 thorpej struct uvm_object *obj;
876 1.15 thorpej boolean_t waitok;
877 1.10 thorpej {
878 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
879 1.10 thorpej struct vm_page *pg;
880 1.14 eeh vaddr_t va;
881 1.10 thorpej
882 1.15 thorpej again:
883 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
884 1.15 thorpej if (pg == NULL) {
885 1.15 thorpej if (waitok) {
886 1.15 thorpej uvm_wait("plpg");
887 1.15 thorpej goto again;
888 1.15 thorpej } else
889 1.15 thorpej return (0);
890 1.15 thorpej }
891 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
892 1.10 thorpej if (va == 0)
893 1.10 thorpej uvm_pagefree(pg);
894 1.10 thorpej return (va);
895 1.10 thorpej #else
896 1.14 eeh vaddr_t va;
897 1.10 thorpej int s;
898 1.10 thorpej
899 1.16 thorpej /*
900 1.16 thorpej * NOTE: We may be called with a map that doens't require splimp
901 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
902 1.16 thorpej * go to splimp in this case (since unprocted maps will never be
903 1.16 thorpej * accessed in interrupt context).
904 1.16 thorpej *
905 1.16 thorpej * XXX We may want to consider changing the interface to this
906 1.16 thorpej * XXX function.
907 1.16 thorpej */
908 1.16 thorpej
909 1.10 thorpej s = splimp();
910 1.15 thorpej va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
911 1.10 thorpej splx(s);
912 1.10 thorpej return (va);
913 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
914 1.10 thorpej }
915 1.10 thorpej
916 1.10 thorpej /*
917 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
918 1.10 thorpej *
919 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
920 1.10 thorpej */
921 1.10 thorpej
922 1.11 thorpej /* ARGSUSED */
923 1.10 thorpej void
924 1.11 thorpej uvm_km_free_poolpage1(map, addr)
925 1.11 thorpej vm_map_t map;
926 1.14 eeh vaddr_t addr;
927 1.10 thorpej {
928 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
929 1.14 eeh paddr_t pa;
930 1.10 thorpej
931 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
932 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
933 1.10 thorpej #else
934 1.10 thorpej int s;
935 1.16 thorpej
936 1.16 thorpej /*
937 1.16 thorpej * NOTE: We may be called with a map that doens't require splimp
938 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
939 1.16 thorpej * go to splimp in this case (since unprocted maps will never be
940 1.16 thorpej * accessed in interrupt context).
941 1.16 thorpej *
942 1.16 thorpej * XXX We may want to consider changing the interface to this
943 1.16 thorpej * XXX function.
944 1.16 thorpej */
945 1.10 thorpej
946 1.10 thorpej s = splimp();
947 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
948 1.10 thorpej splx(s);
949 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
950 1.1 mrg }
951