Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.29
      1  1.29      chs /*	$NetBSD: uvm_km.c,v 1.29 1999/07/18 22:55:30 chs Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1      mrg  *
      7   1.1      mrg  * All rights reserved.
      8   1.1      mrg  *
      9   1.1      mrg  * This code is derived from software contributed to Berkeley by
     10   1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1      mrg  *
     12   1.1      mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1      mrg  * modification, are permitted provided that the following conditions
     14   1.1      mrg  * are met:
     15   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1      mrg  *    must display the following acknowledgement:
     22   1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.1      mrg  *      Washington University, the University of California, Berkeley and
     24   1.1      mrg  *      its contributors.
     25   1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1      mrg  *    may be used to endorse or promote products derived from this software
     27   1.1      mrg  *    without specific prior written permission.
     28   1.1      mrg  *
     29   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1      mrg  * SUCH DAMAGE.
     40   1.1      mrg  *
     41   1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1      mrg  *
     44   1.1      mrg  *
     45   1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1      mrg  * All rights reserved.
     47   1.1      mrg  *
     48   1.1      mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1      mrg  * notice and this permission notice appear in all copies of the
     51   1.1      mrg  * software, derivative works or modified versions, and any portions
     52   1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.1      mrg  *
     54   1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.1      mrg  *
     58   1.1      mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1      mrg  *
     60   1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1      mrg  *  School of Computer Science
     62   1.1      mrg  *  Carnegie Mellon University
     63   1.1      mrg  *  Pittsburgh PA 15213-3890
     64   1.1      mrg  *
     65   1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1      mrg  * rights to redistribute these changes.
     67   1.1      mrg  */
     68   1.6      mrg 
     69   1.6      mrg #include "opt_uvmhist.h"
     70   1.6      mrg #include "opt_pmap_new.h"
     71   1.1      mrg 
     72   1.1      mrg /*
     73   1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     74   1.1      mrg  */
     75   1.1      mrg 
     76   1.7    chuck /*
     77   1.7    chuck  * overview of kernel memory management:
     78   1.7    chuck  *
     79   1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     80   1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     81   1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     82   1.7    chuck  *
     83   1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     84   1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     85   1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     86   1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     87   1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     88   1.7    chuck  * submap's lock -- not the kernel_map's lock.
     89   1.7    chuck  *
     90   1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     91   1.7    chuck  * up the locking and protection of the kernel address space into smaller
     92   1.7    chuck  * chunks.
     93   1.7    chuck  *
     94   1.7    chuck  * the vm system has several standard kernel submaps, including:
     95   1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
     96   1.7    chuck  *		malloc.   *** access to kmem_map must be protected
     97   1.7    chuck  *		by splimp() because we are allowed to call malloc()
     98   1.7    chuck  *		at interrupt time ***
     99   1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    100   1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    101   1.7    chuck  *   exec_map => used during exec to handle exec args
    102   1.7    chuck  *   etc...
    103   1.7    chuck  *
    104   1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    105   1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    106   1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    107   1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    108   1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    109   1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    110   1.7    chuck  *
    111   1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    112   1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    113   1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    114   1.7    chuck  * object (e.g. kmem_object, mb_object).
    115   1.7    chuck  *
    116   1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    117   1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    118   1.7    chuck  * large chunks of a kernel object's space go unused either because
    119   1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    120   1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    121   1.7    chuck  * objects, the only part of the object that can ever be populated is the
    122   1.7    chuck  * offsets that are managed by the submap.
    123   1.7    chuck  *
    124   1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    125   1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    126   1.7    chuck  * example:
    127   1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    128   1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    129   1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    130   1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    131   1.7    chuck  *   mapped at 0xf8235000.
    132   1.7    chuck  *
    133   1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    134   1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    135   1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    136   1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    137   1.7    chuck  * in those objects will typically not start at zero.
    138   1.7    chuck  *
    139   1.7    chuck  * kernel object have one other special property: when the kernel virtual
    140   1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    141   1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    142   1.7    chuck  * this has to be done because there is no backing store for kernel pages
    143   1.7    chuck  * and no need to save them after they are no longer referenced.
    144   1.7    chuck  */
    145   1.7    chuck 
    146   1.1      mrg #include <sys/param.h>
    147   1.1      mrg #include <sys/systm.h>
    148   1.1      mrg #include <sys/proc.h>
    149   1.1      mrg 
    150   1.1      mrg #include <vm/vm.h>
    151   1.1      mrg #include <vm/vm_page.h>
    152   1.1      mrg #include <vm/vm_kern.h>
    153   1.1      mrg 
    154   1.1      mrg #include <uvm/uvm.h>
    155   1.1      mrg 
    156   1.1      mrg /*
    157   1.1      mrg  * global data structures
    158   1.1      mrg  */
    159   1.1      mrg 
    160   1.1      mrg vm_map_t kernel_map = NULL;
    161   1.1      mrg 
    162  1.27  thorpej struct vmi_list vmi_list;
    163  1.27  thorpej simple_lock_data_t vmi_list_slock;
    164  1.27  thorpej 
    165   1.1      mrg /*
    166   1.1      mrg  * local data structues
    167   1.1      mrg  */
    168   1.1      mrg 
    169   1.1      mrg static struct vm_map		kernel_map_store;
    170   1.1      mrg static struct uvm_object	kmem_object_store;
    171   1.1      mrg static struct uvm_object	mb_object_store;
    172   1.1      mrg 
    173   1.1      mrg /*
    174  1.28  thorpej  * All pager operations here are NULL, but the object must have
    175  1.28  thorpej  * a pager ops vector associated with it; various places assume
    176  1.28  thorpej  * it to be so.
    177   1.1      mrg  */
    178  1.28  thorpej static struct uvm_pagerops	km_pager;
    179   1.1      mrg 
    180   1.1      mrg /*
    181   1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    182   1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    183   1.1      mrg  *
    184   1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    185   1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    186   1.1      mrg  *    "end" is the end.
    187   1.1      mrg  */
    188   1.1      mrg 
    189   1.8      mrg void
    190   1.8      mrg uvm_km_init(start, end)
    191  1.14      eeh 	vaddr_t start, end;
    192   1.1      mrg {
    193  1.14      eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    194   1.1      mrg 
    195   1.8      mrg 	/*
    196  1.27  thorpej 	 * first, initialize the interrupt-safe map list.
    197  1.27  thorpej 	 */
    198  1.27  thorpej 	LIST_INIT(&vmi_list);
    199  1.27  thorpej 	simple_lock_init(&vmi_list_slock);
    200  1.27  thorpej 
    201  1.27  thorpej 	/*
    202  1.27  thorpej 	 * next, init kernel memory objects.
    203   1.8      mrg 	 */
    204   1.1      mrg 
    205   1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    206   1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    207   1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    208   1.1      mrg 
    209  1.24  thorpej 	/*
    210  1.24  thorpej 	 * kmem_object: for use by the kernel malloc().  Memory is always
    211  1.24  thorpej 	 * wired, and this object (and the kmem_map) can be accessed at
    212  1.24  thorpej 	 * interrupt time.
    213  1.24  thorpej 	 */
    214   1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    215   1.8      mrg 	kmem_object_store.pgops = &km_pager;
    216   1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    217   1.8      mrg 	kmem_object_store.uo_npages = 0;
    218   1.8      mrg 	/* we are special.  we never die */
    219  1.24  thorpej 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    220   1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    221   1.8      mrg 
    222  1.24  thorpej 	/*
    223  1.24  thorpej 	 * mb_object: for mbuf cluster pages on platforms which use the
    224  1.24  thorpej 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    225  1.24  thorpej 	 * can be accessed at interrupt time.
    226  1.24  thorpej 	 */
    227   1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    228   1.8      mrg 	mb_object_store.pgops = &km_pager;
    229   1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    230   1.8      mrg 	mb_object_store.uo_npages = 0;
    231   1.8      mrg 	/* we are special.  we never die */
    232  1.24  thorpej 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    233   1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    234   1.8      mrg 
    235   1.8      mrg 	/*
    236   1.8      mrg 	 * init the map and reserve allready allocated kernel space
    237   1.8      mrg 	 * before installing.
    238   1.8      mrg 	 */
    239   1.1      mrg 
    240  1.25  thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    241   1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    242   1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    243   1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    244   1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    245   1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    246   1.8      mrg 
    247   1.8      mrg 	/*
    248   1.8      mrg 	 * install!
    249   1.8      mrg 	 */
    250   1.8      mrg 
    251   1.8      mrg 	kernel_map = &kernel_map_store;
    252   1.1      mrg }
    253   1.1      mrg 
    254   1.1      mrg /*
    255   1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    256   1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    257   1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    258   1.1      mrg  *
    259   1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    260   1.5  thorpej  *      by the submap must start
    261   1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    262   1.1      mrg  *	alloc a new map
    263   1.1      mrg  */
    264   1.8      mrg struct vm_map *
    265  1.25  thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    266   1.8      mrg 	struct vm_map *map;
    267  1.14      eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    268  1.14      eeh 	vsize_t size;
    269  1.25  thorpej 	int flags;
    270   1.8      mrg 	boolean_t fixed;
    271   1.8      mrg 	struct vm_map *submap;
    272   1.8      mrg {
    273   1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    274   1.1      mrg 
    275   1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    276   1.1      mrg 
    277   1.8      mrg 	/*
    278   1.8      mrg 	 * first allocate a blank spot in the parent map
    279   1.8      mrg 	 */
    280   1.8      mrg 
    281   1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    282   1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    283   1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    284   1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    285   1.8      mrg 	}
    286   1.8      mrg 
    287   1.8      mrg 	/*
    288   1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    289   1.8      mrg 	 */
    290   1.1      mrg 
    291   1.8      mrg 	*max = *min + size;
    292   1.5  thorpej 
    293   1.8      mrg 	/*
    294   1.8      mrg 	 * add references to pmap and create or init the submap
    295   1.8      mrg 	 */
    296   1.1      mrg 
    297   1.8      mrg 	pmap_reference(vm_map_pmap(map));
    298   1.8      mrg 	if (submap == NULL) {
    299  1.25  thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    300   1.8      mrg 		if (submap == NULL)
    301   1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    302   1.8      mrg 	} else {
    303  1.25  thorpej 		uvm_map_setup(submap, *min, *max, flags);
    304   1.8      mrg 		submap->pmap = vm_map_pmap(map);
    305   1.8      mrg 	}
    306   1.1      mrg 
    307   1.8      mrg 	/*
    308   1.8      mrg 	 * now let uvm_map_submap plug in it...
    309   1.8      mrg 	 */
    310   1.1      mrg 
    311   1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    312   1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    313   1.1      mrg 
    314   1.8      mrg 	return(submap);
    315   1.1      mrg }
    316   1.1      mrg 
    317   1.1      mrg /*
    318   1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    319   1.1      mrg  *
    320   1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    321   1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    322   1.1      mrg  */
    323   1.1      mrg 
    324   1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    325   1.1      mrg 
    326   1.8      mrg void
    327   1.8      mrg uvm_km_pgremove(uobj, start, end)
    328   1.8      mrg 	struct uvm_object *uobj;
    329  1.14      eeh 	vaddr_t start, end;
    330   1.1      mrg {
    331  1.24  thorpej 	boolean_t by_list;
    332   1.8      mrg 	struct vm_page *pp, *ppnext;
    333  1.14      eeh 	vaddr_t curoff;
    334   1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    335   1.1      mrg 
    336   1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    337   1.1      mrg 
    338  1.24  thorpej #ifdef DIAGNOSTIC
    339  1.24  thorpej 	if (uobj->pgops != &aobj_pager)
    340  1.24  thorpej 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    341  1.24  thorpej #endif
    342   1.3      chs 
    343   1.8      mrg 	/* choose cheapest traversal */
    344   1.8      mrg 	by_list = (uobj->uo_npages <=
    345  1.18      chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    346   1.1      mrg 
    347   1.8      mrg 	if (by_list)
    348   1.8      mrg 		goto loop_by_list;
    349   1.1      mrg 
    350   1.8      mrg 	/* by hash */
    351   1.1      mrg 
    352   1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    353   1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    354   1.8      mrg 		if (pp == NULL)
    355   1.8      mrg 			continue;
    356   1.8      mrg 
    357   1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    358   1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    359  1.24  thorpej 
    360   1.8      mrg 		/* now do the actual work */
    361  1.24  thorpej 		if (pp->flags & PG_BUSY) {
    362   1.8      mrg 			/* owner must check for this when done */
    363   1.8      mrg 			pp->flags |= PG_RELEASED;
    364  1.24  thorpej 		} else {
    365  1.24  thorpej 			/* free the swap slot... */
    366  1.24  thorpej 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    367   1.8      mrg 
    368   1.8      mrg 			/*
    369  1.24  thorpej 			 * ...and free the page; note it may be on the
    370  1.24  thorpej 			 * active or inactive queues.
    371   1.8      mrg 			 */
    372   1.8      mrg 			uvm_lock_pageq();
    373   1.8      mrg 			uvm_pagefree(pp);
    374   1.8      mrg 			uvm_unlock_pageq();
    375   1.8      mrg 		}
    376   1.8      mrg 		/* done */
    377   1.8      mrg 	}
    378   1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    379   1.8      mrg 	return;
    380   1.1      mrg 
    381   1.1      mrg loop_by_list:
    382   1.1      mrg 
    383   1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    384   1.8      mrg 		ppnext = pp->listq.tqe_next;
    385   1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    386   1.8      mrg 			continue;
    387   1.8      mrg 		}
    388   1.8      mrg 
    389   1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    390   1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    391  1.24  thorpej 
    392   1.8      mrg 		/* now do the actual work */
    393  1.24  thorpej 		if (pp->flags & PG_BUSY) {
    394   1.8      mrg 			/* owner must check for this when done */
    395   1.8      mrg 			pp->flags |= PG_RELEASED;
    396  1.24  thorpej 		} else {
    397  1.24  thorpej 			/* free the swap slot... */
    398  1.24  thorpej 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    399   1.8      mrg 
    400   1.8      mrg 			/*
    401  1.24  thorpej 			 * ...and free the page; note it may be on the
    402  1.24  thorpej 			 * active or inactive queues.
    403   1.8      mrg 			 */
    404   1.8      mrg 			uvm_lock_pageq();
    405   1.8      mrg 			uvm_pagefree(pp);
    406   1.8      mrg 			uvm_unlock_pageq();
    407   1.8      mrg 		}
    408   1.8      mrg 		/* done */
    409  1.24  thorpej 	}
    410  1.24  thorpej 	simple_unlock(&uobj->vmobjlock);
    411  1.24  thorpej 	return;
    412  1.24  thorpej }
    413  1.24  thorpej 
    414  1.24  thorpej 
    415  1.24  thorpej /*
    416  1.24  thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    417  1.24  thorpej  *    objects
    418  1.24  thorpej  *
    419  1.24  thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    420  1.24  thorpej  *    the pages right away.    (this gets called from uvm_unmap_...).
    421  1.24  thorpej  * => none of the pages will ever be busy, and none of them will ever
    422  1.24  thorpej  *    be on the active or inactive queues (because these objects are
    423  1.24  thorpej  *    never allowed to "page").
    424  1.24  thorpej  */
    425  1.24  thorpej 
    426  1.24  thorpej void
    427  1.24  thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
    428  1.24  thorpej 	struct uvm_object *uobj;
    429  1.24  thorpej 	vaddr_t start, end;
    430  1.24  thorpej {
    431  1.24  thorpej 	boolean_t by_list;
    432  1.24  thorpej 	struct vm_page *pp, *ppnext;
    433  1.24  thorpej 	vaddr_t curoff;
    434  1.24  thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    435  1.24  thorpej 
    436  1.24  thorpej 	simple_lock(&uobj->vmobjlock);		/* lock object */
    437  1.24  thorpej 
    438  1.24  thorpej #ifdef DIAGNOSTIC
    439  1.24  thorpej 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    440  1.24  thorpej 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    441  1.24  thorpej #endif
    442  1.24  thorpej 
    443  1.24  thorpej 	/* choose cheapest traversal */
    444  1.24  thorpej 	by_list = (uobj->uo_npages <=
    445  1.24  thorpej 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    446  1.24  thorpej 
    447  1.24  thorpej 	if (by_list)
    448  1.24  thorpej 		goto loop_by_list;
    449  1.24  thorpej 
    450  1.24  thorpej 	/* by hash */
    451  1.24  thorpej 
    452  1.24  thorpej 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    453  1.24  thorpej 		pp = uvm_pagelookup(uobj, curoff);
    454  1.24  thorpej 		if (pp == NULL)
    455  1.24  thorpej 			continue;
    456  1.24  thorpej 
    457  1.24  thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    458  1.24  thorpej 		    pp->flags & PG_BUSY, 0, 0);
    459  1.24  thorpej #ifdef DIAGNOSTIC
    460  1.24  thorpej 		if (pp->flags & PG_BUSY)
    461  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    462  1.24  thorpej 		if (pp->pqflags & PQ_ACTIVE)
    463  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    464  1.24  thorpej 		if (pp->pqflags & PQ_INACTIVE)
    465  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    466  1.24  thorpej #endif
    467  1.24  thorpej 
    468  1.24  thorpej 		/* free the page */
    469  1.24  thorpej 		uvm_pagefree(pp);
    470  1.24  thorpej 	}
    471  1.24  thorpej 	simple_unlock(&uobj->vmobjlock);
    472  1.24  thorpej 	return;
    473  1.24  thorpej 
    474  1.24  thorpej loop_by_list:
    475   1.1      mrg 
    476  1.24  thorpej 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    477  1.24  thorpej 		ppnext = pp->listq.tqe_next;
    478  1.24  thorpej 		if (pp->offset < start || pp->offset >= end) {
    479  1.24  thorpej 			continue;
    480  1.24  thorpej 		}
    481  1.24  thorpej 
    482  1.24  thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    483  1.24  thorpej 		    pp->flags & PG_BUSY, 0, 0);
    484  1.24  thorpej 
    485  1.24  thorpej #ifdef DIAGNOSTIC
    486  1.24  thorpej 		if (pp->flags & PG_BUSY)
    487  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    488  1.24  thorpej 		if (pp->pqflags & PQ_ACTIVE)
    489  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    490  1.24  thorpej 		if (pp->pqflags & PQ_INACTIVE)
    491  1.24  thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    492  1.24  thorpej #endif
    493  1.24  thorpej 
    494  1.24  thorpej 		/* free the page */
    495  1.24  thorpej 		uvm_pagefree(pp);
    496   1.8      mrg 	}
    497   1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    498   1.8      mrg 	return;
    499   1.1      mrg }
    500   1.1      mrg 
    501   1.1      mrg 
    502   1.1      mrg /*
    503   1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    504   1.1      mrg  *
    505   1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    506   1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    507   1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    508   1.1      mrg  *	this case.
    509   1.1      mrg  * => we return KVA of memory allocated
    510   1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    511   1.1      mrg  *	lock the map
    512   1.1      mrg  */
    513   1.1      mrg 
    514  1.14      eeh vaddr_t
    515   1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    516   1.8      mrg 	vm_map_t map;
    517   1.8      mrg 	struct uvm_object *obj;
    518  1.14      eeh 	vsize_t size;
    519   1.8      mrg 	int flags;
    520   1.1      mrg {
    521  1.14      eeh 	vaddr_t kva, loopva;
    522  1.14      eeh 	vaddr_t offset;
    523   1.8      mrg 	struct vm_page *pg;
    524   1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    525   1.1      mrg 
    526   1.1      mrg 
    527   1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    528   1.1      mrg 	map, obj, size, flags);
    529   1.1      mrg #ifdef DIAGNOSTIC
    530   1.8      mrg 	/* sanity check */
    531   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    532   1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    533   1.1      mrg #endif
    534   1.1      mrg 
    535   1.8      mrg 	/*
    536   1.8      mrg 	 * setup for call
    537   1.8      mrg 	 */
    538   1.8      mrg 
    539   1.8      mrg 	size = round_page(size);
    540   1.8      mrg 	kva = vm_map_min(map);	/* hint */
    541   1.1      mrg 
    542   1.8      mrg 	/*
    543   1.8      mrg 	 * allocate some virtual space
    544   1.8      mrg 	 */
    545   1.8      mrg 
    546   1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    547   1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    548   1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    549   1.8      mrg 			!= KERN_SUCCESS) {
    550   1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    551   1.8      mrg 		return(0);
    552   1.8      mrg 	}
    553   1.8      mrg 
    554   1.8      mrg 	/*
    555   1.8      mrg 	 * if all we wanted was VA, return now
    556   1.8      mrg 	 */
    557   1.8      mrg 
    558   1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    559   1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    560   1.8      mrg 		return(kva);
    561   1.8      mrg 	}
    562   1.8      mrg 	/*
    563   1.8      mrg 	 * recover object offset from virtual address
    564   1.8      mrg 	 */
    565   1.8      mrg 
    566   1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    567   1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    568   1.8      mrg 
    569   1.8      mrg 	/*
    570   1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    571   1.8      mrg 	 * whom should ever get a handle on this area of VM.
    572   1.8      mrg 	 */
    573   1.8      mrg 
    574   1.8      mrg 	loopva = kva;
    575   1.8      mrg 	while (size) {
    576   1.8      mrg 		simple_lock(&obj->vmobjlock);
    577  1.23      chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    578   1.8      mrg 		if (pg) {
    579   1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    580   1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    581   1.8      mrg 		}
    582   1.8      mrg 		simple_unlock(&obj->vmobjlock);
    583   1.8      mrg 
    584   1.8      mrg 		/*
    585   1.8      mrg 		 * out of memory?
    586   1.8      mrg 		 */
    587   1.8      mrg 
    588   1.8      mrg 		if (pg == NULL) {
    589   1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    590   1.8      mrg 				/* free everything! */
    591  1.17    chuck 				uvm_unmap(map, kva, kva + size);
    592   1.8      mrg 				return(0);
    593   1.8      mrg 			} else {
    594   1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    595   1.8      mrg 				continue;
    596   1.8      mrg 			}
    597   1.8      mrg 		}
    598   1.8      mrg 
    599   1.8      mrg 		/*
    600   1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    601   1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    602   1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    603   1.8      mrg 		 * it will need to lock it itself!)
    604   1.8      mrg 		 */
    605  1.24  thorpej 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    606   1.1      mrg #if defined(PMAP_NEW)
    607  1.24  thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    608  1.24  thorpej 			    VM_PROT_ALL);
    609   1.1      mrg #else
    610  1.24  thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    611  1.26  thorpej 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    612   1.1      mrg #endif
    613  1.24  thorpej 		} else {
    614  1.24  thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    615  1.26  thorpej 			    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    616  1.24  thorpej 		}
    617   1.8      mrg 		loopva += PAGE_SIZE;
    618   1.8      mrg 		offset += PAGE_SIZE;
    619   1.8      mrg 		size -= PAGE_SIZE;
    620   1.8      mrg 	}
    621   1.1      mrg 
    622   1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    623   1.8      mrg 	return(kva);
    624   1.1      mrg }
    625   1.1      mrg 
    626   1.1      mrg /*
    627   1.1      mrg  * uvm_km_free: free an area of kernel memory
    628   1.1      mrg  */
    629   1.1      mrg 
    630   1.8      mrg void
    631   1.8      mrg uvm_km_free(map, addr, size)
    632   1.8      mrg 	vm_map_t map;
    633  1.14      eeh 	vaddr_t addr;
    634  1.14      eeh 	vsize_t size;
    635   1.8      mrg {
    636   1.1      mrg 
    637  1.17    chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    638   1.1      mrg }
    639   1.1      mrg 
    640   1.1      mrg /*
    641   1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    642   1.1      mrg  * anyone waiting for vm space.
    643   1.1      mrg  *
    644   1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    645   1.1      mrg  */
    646   1.1      mrg 
    647   1.8      mrg void
    648   1.8      mrg uvm_km_free_wakeup(map, addr, size)
    649   1.8      mrg 	vm_map_t map;
    650  1.14      eeh 	vaddr_t addr;
    651  1.14      eeh 	vsize_t size;
    652   1.1      mrg {
    653   1.8      mrg 	vm_map_entry_t dead_entries;
    654   1.1      mrg 
    655   1.8      mrg 	vm_map_lock(map);
    656  1.17    chuck 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    657   1.1      mrg 			 &dead_entries);
    658   1.8      mrg 	thread_wakeup(map);
    659   1.8      mrg 	vm_map_unlock(map);
    660   1.1      mrg 
    661   1.8      mrg 	if (dead_entries != NULL)
    662   1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    663   1.1      mrg }
    664   1.1      mrg 
    665   1.1      mrg /*
    666   1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    667   1.1      mrg  *
    668   1.1      mrg  * => we can sleep if needed
    669   1.1      mrg  */
    670   1.1      mrg 
    671  1.14      eeh vaddr_t
    672   1.8      mrg uvm_km_alloc1(map, size, zeroit)
    673   1.8      mrg 	vm_map_t map;
    674  1.14      eeh 	vsize_t size;
    675   1.8      mrg 	boolean_t zeroit;
    676   1.1      mrg {
    677  1.14      eeh 	vaddr_t kva, loopva, offset;
    678   1.8      mrg 	struct vm_page *pg;
    679   1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    680   1.1      mrg 
    681   1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    682   1.1      mrg 
    683   1.1      mrg #ifdef DIAGNOSTIC
    684   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    685   1.8      mrg 		panic("uvm_km_alloc1");
    686   1.1      mrg #endif
    687   1.1      mrg 
    688   1.8      mrg 	size = round_page(size);
    689   1.8      mrg 	kva = vm_map_min(map);		/* hint */
    690   1.1      mrg 
    691   1.8      mrg 	/*
    692   1.8      mrg 	 * allocate some virtual space
    693   1.8      mrg 	 */
    694   1.1      mrg 
    695   1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    696   1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    697   1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    698   1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    699   1.8      mrg 		return(0);
    700   1.8      mrg 	}
    701   1.8      mrg 
    702   1.8      mrg 	/*
    703   1.8      mrg 	 * recover object offset from virtual address
    704   1.8      mrg 	 */
    705   1.8      mrg 
    706   1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    707   1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    708   1.8      mrg 
    709   1.8      mrg 	/*
    710   1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    711   1.8      mrg 	 */
    712   1.8      mrg 
    713   1.8      mrg 	loopva = kva;
    714   1.8      mrg 	while (size) {
    715   1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    716   1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    717   1.8      mrg 
    718   1.8      mrg 		/*
    719   1.8      mrg 		 * if we found a page in an unallocated region, it must be
    720   1.8      mrg 		 * released
    721   1.8      mrg 		 */
    722   1.8      mrg 		if (pg) {
    723   1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    724   1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    725   1.8      mrg 			pg->flags |= PG_WANTED;
    726   1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    727   1.8      mrg 			    0, "km_alloc", 0);
    728   1.8      mrg 			continue;   /* retry */
    729   1.8      mrg 		}
    730   1.8      mrg 
    731   1.8      mrg 		/* allocate ram */
    732  1.23      chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    733   1.8      mrg 		if (pg) {
    734   1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    735   1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    736   1.8      mrg 		}
    737   1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    738   1.8      mrg 		if (pg == NULL) {
    739   1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    740   1.8      mrg 			continue;
    741   1.8      mrg 		}
    742   1.8      mrg 
    743  1.24  thorpej 		/*
    744  1.24  thorpej 		 * map it in; note we're never called with an intrsafe
    745  1.24  thorpej 		 * object, so we always use regular old pmap_enter().
    746  1.24  thorpej 		 */
    747   1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    748  1.26  thorpej 		    UVM_PROT_ALL, TRUE, VM_PROT_READ|VM_PROT_WRITE);
    749  1.24  thorpej 
    750   1.8      mrg 		loopva += PAGE_SIZE;
    751   1.8      mrg 		offset += PAGE_SIZE;
    752   1.8      mrg 		size -= PAGE_SIZE;
    753   1.8      mrg 	}
    754   1.8      mrg 
    755   1.8      mrg 	/*
    756   1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    757   1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    758   1.8      mrg 	 */
    759   1.1      mrg 
    760   1.8      mrg 	if (zeroit)
    761  1.13    perry 		memset((caddr_t)kva, 0, loopva - kva);
    762   1.1      mrg 
    763   1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    764   1.8      mrg 	return(kva);
    765   1.1      mrg }
    766   1.1      mrg 
    767   1.1      mrg /*
    768   1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    769   1.1      mrg  *
    770   1.1      mrg  * => memory is not allocated until fault time
    771   1.1      mrg  */
    772   1.1      mrg 
    773  1.14      eeh vaddr_t
    774   1.8      mrg uvm_km_valloc(map, size)
    775   1.8      mrg 	vm_map_t map;
    776  1.14      eeh 	vsize_t size;
    777   1.1      mrg {
    778  1.14      eeh 	vaddr_t kva;
    779   1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    780   1.1      mrg 
    781   1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    782   1.1      mrg 
    783   1.1      mrg #ifdef DIAGNOSTIC
    784   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    785   1.8      mrg 		panic("uvm_km_valloc");
    786   1.1      mrg #endif
    787   1.1      mrg 
    788   1.8      mrg 	size = round_page(size);
    789   1.8      mrg 	kva = vm_map_min(map);		/* hint */
    790   1.1      mrg 
    791   1.8      mrg 	/*
    792   1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    793   1.8      mrg 	 */
    794   1.1      mrg 
    795   1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    796   1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    797   1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    798   1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    799   1.8      mrg 		return(0);
    800   1.8      mrg 	}
    801   1.1      mrg 
    802   1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    803   1.8      mrg 	return(kva);
    804   1.1      mrg }
    805   1.1      mrg 
    806   1.1      mrg /*
    807   1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    808   1.1      mrg  *
    809   1.1      mrg  * => memory is not allocated until fault time
    810   1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    811   1.1      mrg  *    is larger than map (in which case we return 0)
    812   1.1      mrg  */
    813   1.1      mrg 
    814  1.14      eeh vaddr_t
    815   1.8      mrg uvm_km_valloc_wait(map, size)
    816   1.8      mrg 	vm_map_t map;
    817  1.14      eeh 	vsize_t size;
    818   1.1      mrg {
    819  1.14      eeh 	vaddr_t kva;
    820   1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    821   1.1      mrg 
    822   1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    823   1.1      mrg 
    824   1.1      mrg #ifdef DIAGNOSTIC
    825   1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    826   1.8      mrg 		panic("uvm_km_valloc_wait");
    827   1.1      mrg #endif
    828   1.1      mrg 
    829   1.8      mrg 	size = round_page(size);
    830   1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    831   1.8      mrg 		return(0);
    832   1.8      mrg 
    833   1.8      mrg 	while (1) {
    834   1.8      mrg 		kva = vm_map_min(map);		/* hint */
    835   1.8      mrg 
    836   1.8      mrg 		/*
    837   1.8      mrg 		 * allocate some virtual space.   will be demand filled
    838   1.8      mrg 		 * by kernel_object.
    839   1.8      mrg 		 */
    840   1.8      mrg 
    841   1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    842   1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    843   1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    844   1.8      mrg 		    == KERN_SUCCESS) {
    845   1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    846   1.8      mrg 			return(kva);
    847   1.8      mrg 		}
    848   1.8      mrg 
    849   1.8      mrg 		/*
    850   1.8      mrg 		 * failed.  sleep for a while (on map)
    851   1.8      mrg 		 */
    852   1.8      mrg 
    853   1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    854   1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    855   1.8      mrg 	}
    856   1.8      mrg 	/*NOTREACHED*/
    857  1.10  thorpej }
    858  1.10  thorpej 
    859  1.10  thorpej /* Sanity; must specify both or none. */
    860  1.10  thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    861  1.10  thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    862  1.10  thorpej #error Must specify MAP and UNMAP together.
    863  1.10  thorpej #endif
    864  1.10  thorpej 
    865  1.10  thorpej /*
    866  1.10  thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    867  1.10  thorpej  *
    868  1.10  thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    869  1.10  thorpej  */
    870  1.10  thorpej 
    871  1.11  thorpej /* ARGSUSED */
    872  1.14      eeh vaddr_t
    873  1.15  thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    874  1.11  thorpej 	vm_map_t map;
    875  1.12  thorpej 	struct uvm_object *obj;
    876  1.15  thorpej 	boolean_t waitok;
    877  1.10  thorpej {
    878  1.10  thorpej #if defined(PMAP_MAP_POOLPAGE)
    879  1.10  thorpej 	struct vm_page *pg;
    880  1.14      eeh 	vaddr_t va;
    881  1.10  thorpej 
    882  1.15  thorpej  again:
    883  1.29      chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    884  1.15  thorpej 	if (pg == NULL) {
    885  1.15  thorpej 		if (waitok) {
    886  1.15  thorpej 			uvm_wait("plpg");
    887  1.15  thorpej 			goto again;
    888  1.15  thorpej 		} else
    889  1.15  thorpej 			return (0);
    890  1.15  thorpej 	}
    891  1.10  thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    892  1.10  thorpej 	if (va == 0)
    893  1.10  thorpej 		uvm_pagefree(pg);
    894  1.10  thorpej 	return (va);
    895  1.10  thorpej #else
    896  1.14      eeh 	vaddr_t va;
    897  1.10  thorpej 	int s;
    898  1.10  thorpej 
    899  1.16  thorpej 	/*
    900  1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    901  1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    902  1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
    903  1.16  thorpej 	 * accessed in interrupt context).
    904  1.16  thorpej 	 *
    905  1.16  thorpej 	 * XXX We may want to consider changing the interface to this
    906  1.16  thorpej 	 * XXX function.
    907  1.16  thorpej 	 */
    908  1.16  thorpej 
    909  1.10  thorpej 	s = splimp();
    910  1.15  thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    911  1.10  thorpej 	splx(s);
    912  1.10  thorpej 	return (va);
    913  1.10  thorpej #endif /* PMAP_MAP_POOLPAGE */
    914  1.10  thorpej }
    915  1.10  thorpej 
    916  1.10  thorpej /*
    917  1.10  thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    918  1.10  thorpej  *
    919  1.10  thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    920  1.10  thorpej  */
    921  1.10  thorpej 
    922  1.11  thorpej /* ARGSUSED */
    923  1.10  thorpej void
    924  1.11  thorpej uvm_km_free_poolpage1(map, addr)
    925  1.11  thorpej 	vm_map_t map;
    926  1.14      eeh 	vaddr_t addr;
    927  1.10  thorpej {
    928  1.10  thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    929  1.14      eeh 	paddr_t pa;
    930  1.10  thorpej 
    931  1.10  thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    932  1.10  thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    933  1.10  thorpej #else
    934  1.10  thorpej 	int s;
    935  1.16  thorpej 
    936  1.16  thorpej 	/*
    937  1.16  thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    938  1.16  thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    939  1.16  thorpej 	 * go to splimp in this case (since unprocted maps will never be
    940  1.16  thorpej 	 * accessed in interrupt context).
    941  1.16  thorpej 	 *
    942  1.16  thorpej 	 * XXX We may want to consider changing the interface to this
    943  1.16  thorpej 	 * XXX function.
    944  1.16  thorpej 	 */
    945  1.10  thorpej 
    946  1.10  thorpej 	s = splimp();
    947  1.11  thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    948  1.10  thorpej 	splx(s);
    949  1.10  thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    950   1.1      mrg }
    951