Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.32.8.1
      1  1.32.8.1  wrstuden /*	$NetBSD: uvm_km.c,v 1.32.8.1 1999/12/27 18:36:43 wrstuden Exp $	*/
      2       1.1       mrg 
      3       1.1       mrg /*
      4       1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5       1.1       mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1       mrg  *
      7       1.1       mrg  * All rights reserved.
      8       1.1       mrg  *
      9       1.1       mrg  * This code is derived from software contributed to Berkeley by
     10       1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1       mrg  *
     12       1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1       mrg  * modification, are permitted provided that the following conditions
     14       1.1       mrg  * are met:
     15       1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1       mrg  *    must display the following acknowledgement:
     22       1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23       1.1       mrg  *      Washington University, the University of California, Berkeley and
     24       1.1       mrg  *      its contributors.
     25       1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1       mrg  *    may be used to endorse or promote products derived from this software
     27       1.1       mrg  *    without specific prior written permission.
     28       1.1       mrg  *
     29       1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1       mrg  * SUCH DAMAGE.
     40       1.1       mrg  *
     41       1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42       1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43       1.1       mrg  *
     44       1.1       mrg  *
     45       1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1       mrg  * All rights reserved.
     47       1.1       mrg  *
     48       1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1       mrg  * notice and this permission notice appear in all copies of the
     51       1.1       mrg  * software, derivative works or modified versions, and any portions
     52       1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53       1.1       mrg  *
     54       1.1       mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55       1.1       mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57       1.1       mrg  *
     58       1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1       mrg  *
     60       1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1       mrg  *  School of Computer Science
     62       1.1       mrg  *  Carnegie Mellon University
     63       1.1       mrg  *  Pittsburgh PA 15213-3890
     64       1.1       mrg  *
     65       1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1       mrg  * rights to redistribute these changes.
     67       1.1       mrg  */
     68       1.6       mrg 
     69       1.6       mrg #include "opt_uvmhist.h"
     70       1.1       mrg 
     71       1.1       mrg /*
     72       1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     73       1.1       mrg  */
     74       1.1       mrg 
     75       1.7     chuck /*
     76       1.7     chuck  * overview of kernel memory management:
     77       1.7     chuck  *
     78       1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79       1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80       1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81       1.7     chuck  *
     82       1.7     chuck  * the kernel_map has several "submaps."   submaps can only appear in
     83       1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     84       1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     85       1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     86       1.7     chuck  * virtual address space that is mapped by a submap is locked by the
     87       1.7     chuck  * submap's lock -- not the kernel_map's lock.
     88       1.7     chuck  *
     89       1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     90       1.7     chuck  * up the locking and protection of the kernel address space into smaller
     91       1.7     chuck  * chunks.
     92       1.7     chuck  *
     93       1.7     chuck  * the vm system has several standard kernel submaps, including:
     94       1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     95       1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     96       1.7     chuck  *		by splimp() because we are allowed to call malloc()
     97       1.7     chuck  *		at interrupt time ***
     98       1.7     chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
     99       1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
    100       1.7     chuck  *   exec_map => used during exec to handle exec args
    101       1.7     chuck  *   etc...
    102       1.7     chuck  *
    103       1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    104       1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105       1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    106       1.7     chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107       1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    108       1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109       1.7     chuck  *
    110       1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    111       1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    112       1.7     chuck  * by splimp().    each of these submaps has their own private kernel
    113       1.7     chuck  * object (e.g. kmem_object, mb_object).
    114       1.7     chuck  *
    115       1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    116       1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    117       1.7     chuck  * large chunks of a kernel object's space go unused either because
    118       1.7     chuck  * that area of kernel VM is unmapped, or there is some other type of
    119       1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120       1.7     chuck  * objects, the only part of the object that can ever be populated is the
    121       1.7     chuck  * offsets that are managed by the submap.
    122       1.7     chuck  *
    123       1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    124       1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125       1.7     chuck  * example:
    126       1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127       1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128       1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129       1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    130       1.7     chuck  *   mapped at 0xf8235000.
    131       1.7     chuck  *
    132       1.7     chuck  * note that the offsets in kmem_object and mb_object also follow this
    133       1.7     chuck  * rule.   this means that the offsets for kmem_object must fall in the
    134       1.7     chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135       1.7     chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136       1.7     chuck  * in those objects will typically not start at zero.
    137       1.7     chuck  *
    138       1.7     chuck  * kernel object have one other special property: when the kernel virtual
    139       1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    140       1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    141       1.7     chuck  * this has to be done because there is no backing store for kernel pages
    142       1.7     chuck  * and no need to save them after they are no longer referenced.
    143       1.7     chuck  */
    144       1.7     chuck 
    145       1.1       mrg #include <sys/param.h>
    146       1.1       mrg #include <sys/systm.h>
    147       1.1       mrg #include <sys/proc.h>
    148       1.1       mrg 
    149       1.1       mrg #include <vm/vm.h>
    150       1.1       mrg #include <vm/vm_page.h>
    151       1.1       mrg #include <vm/vm_kern.h>
    152       1.1       mrg 
    153       1.1       mrg #include <uvm/uvm.h>
    154       1.1       mrg 
    155       1.1       mrg /*
    156       1.1       mrg  * global data structures
    157       1.1       mrg  */
    158       1.1       mrg 
    159       1.1       mrg vm_map_t kernel_map = NULL;
    160       1.1       mrg 
    161      1.27   thorpej struct vmi_list vmi_list;
    162      1.27   thorpej simple_lock_data_t vmi_list_slock;
    163      1.27   thorpej 
    164       1.1       mrg /*
    165       1.1       mrg  * local data structues
    166       1.1       mrg  */
    167       1.1       mrg 
    168       1.1       mrg static struct vm_map		kernel_map_store;
    169       1.1       mrg static struct uvm_object	kmem_object_store;
    170       1.1       mrg static struct uvm_object	mb_object_store;
    171       1.1       mrg 
    172       1.1       mrg /*
    173      1.28   thorpej  * All pager operations here are NULL, but the object must have
    174      1.28   thorpej  * a pager ops vector associated with it; various places assume
    175      1.28   thorpej  * it to be so.
    176       1.1       mrg  */
    177      1.28   thorpej static struct uvm_pagerops	km_pager;
    178       1.1       mrg 
    179       1.1       mrg /*
    180       1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    181       1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    182       1.1       mrg  *
    183       1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    184       1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    185       1.1       mrg  *    "end" is the end.
    186       1.1       mrg  */
    187       1.1       mrg 
    188       1.8       mrg void
    189       1.8       mrg uvm_km_init(start, end)
    190      1.14       eeh 	vaddr_t start, end;
    191       1.1       mrg {
    192      1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    193       1.1       mrg 
    194       1.8       mrg 	/*
    195      1.27   thorpej 	 * first, initialize the interrupt-safe map list.
    196      1.27   thorpej 	 */
    197      1.27   thorpej 	LIST_INIT(&vmi_list);
    198      1.27   thorpej 	simple_lock_init(&vmi_list_slock);
    199      1.27   thorpej 
    200      1.27   thorpej 	/*
    201      1.27   thorpej 	 * next, init kernel memory objects.
    202       1.8       mrg 	 */
    203       1.1       mrg 
    204       1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    205       1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    206       1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    207       1.1       mrg 
    208      1.24   thorpej 	/*
    209      1.24   thorpej 	 * kmem_object: for use by the kernel malloc().  Memory is always
    210      1.24   thorpej 	 * wired, and this object (and the kmem_map) can be accessed at
    211      1.24   thorpej 	 * interrupt time.
    212      1.24   thorpej 	 */
    213       1.8       mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    214       1.8       mrg 	kmem_object_store.pgops = &km_pager;
    215       1.8       mrg 	TAILQ_INIT(&kmem_object_store.memq);
    216       1.8       mrg 	kmem_object_store.uo_npages = 0;
    217       1.8       mrg 	/* we are special.  we never die */
    218      1.24   thorpej 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    219       1.8       mrg 	uvmexp.kmem_object = &kmem_object_store;
    220       1.8       mrg 
    221      1.24   thorpej 	/*
    222      1.24   thorpej 	 * mb_object: for mbuf cluster pages on platforms which use the
    223      1.24   thorpej 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    224      1.24   thorpej 	 * can be accessed at interrupt time.
    225      1.24   thorpej 	 */
    226       1.8       mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    227       1.8       mrg 	mb_object_store.pgops = &km_pager;
    228       1.8       mrg 	TAILQ_INIT(&mb_object_store.memq);
    229       1.8       mrg 	mb_object_store.uo_npages = 0;
    230       1.8       mrg 	/* we are special.  we never die */
    231      1.24   thorpej 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    232       1.8       mrg 	uvmexp.mb_object = &mb_object_store;
    233       1.8       mrg 
    234       1.8       mrg 	/*
    235       1.8       mrg 	 * init the map and reserve allready allocated kernel space
    236       1.8       mrg 	 * before installing.
    237       1.8       mrg 	 */
    238       1.1       mrg 
    239      1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    240       1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    241       1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    242       1.8       mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    243       1.8       mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    244       1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    245       1.8       mrg 
    246       1.8       mrg 	/*
    247       1.8       mrg 	 * install!
    248       1.8       mrg 	 */
    249       1.8       mrg 
    250       1.8       mrg 	kernel_map = &kernel_map_store;
    251       1.1       mrg }
    252       1.1       mrg 
    253       1.1       mrg /*
    254       1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    255       1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    256       1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    257       1.1       mrg  *
    258       1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    259       1.5   thorpej  *      by the submap must start
    260       1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    261       1.1       mrg  *	alloc a new map
    262       1.1       mrg  */
    263       1.8       mrg struct vm_map *
    264      1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    265       1.8       mrg 	struct vm_map *map;
    266      1.14       eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    267      1.14       eeh 	vsize_t size;
    268      1.25   thorpej 	int flags;
    269       1.8       mrg 	boolean_t fixed;
    270       1.8       mrg 	struct vm_map *submap;
    271       1.8       mrg {
    272       1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    273       1.1       mrg 
    274       1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    275       1.1       mrg 
    276       1.8       mrg 	/*
    277       1.8       mrg 	 * first allocate a blank spot in the parent map
    278       1.8       mrg 	 */
    279       1.8       mrg 
    280       1.8       mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    281       1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    282       1.8       mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    283       1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    284       1.8       mrg 	}
    285       1.8       mrg 
    286       1.8       mrg 	/*
    287       1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    288       1.8       mrg 	 */
    289       1.1       mrg 
    290       1.8       mrg 	*max = *min + size;
    291       1.5   thorpej 
    292       1.8       mrg 	/*
    293       1.8       mrg 	 * add references to pmap and create or init the submap
    294       1.8       mrg 	 */
    295       1.1       mrg 
    296       1.8       mrg 	pmap_reference(vm_map_pmap(map));
    297       1.8       mrg 	if (submap == NULL) {
    298      1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    299       1.8       mrg 		if (submap == NULL)
    300       1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    301       1.8       mrg 	} else {
    302      1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    303       1.8       mrg 		submap->pmap = vm_map_pmap(map);
    304       1.8       mrg 	}
    305       1.1       mrg 
    306       1.8       mrg 	/*
    307       1.8       mrg 	 * now let uvm_map_submap plug in it...
    308       1.8       mrg 	 */
    309       1.1       mrg 
    310       1.8       mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    311       1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    312       1.1       mrg 
    313       1.8       mrg 	return(submap);
    314       1.1       mrg }
    315       1.1       mrg 
    316       1.1       mrg /*
    317       1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    318       1.1       mrg  *
    319       1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    320       1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    321       1.1       mrg  */
    322       1.1       mrg 
    323       1.1       mrg #define UKM_HASH_PENALTY 4      /* a guess */
    324       1.1       mrg 
    325       1.8       mrg void
    326       1.8       mrg uvm_km_pgremove(uobj, start, end)
    327       1.8       mrg 	struct uvm_object *uobj;
    328      1.14       eeh 	vaddr_t start, end;
    329       1.1       mrg {
    330      1.24   thorpej 	boolean_t by_list;
    331       1.8       mrg 	struct vm_page *pp, *ppnext;
    332      1.14       eeh 	vaddr_t curoff;
    333       1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    334       1.1       mrg 
    335       1.8       mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    336       1.1       mrg 
    337      1.24   thorpej #ifdef DIAGNOSTIC
    338      1.24   thorpej 	if (uobj->pgops != &aobj_pager)
    339      1.24   thorpej 		panic("uvm_km_pgremove: object %p not an aobj", uobj);
    340      1.24   thorpej #endif
    341       1.3       chs 
    342       1.8       mrg 	/* choose cheapest traversal */
    343       1.8       mrg 	by_list = (uobj->uo_npages <=
    344      1.18       chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    345       1.1       mrg 
    346       1.8       mrg 	if (by_list)
    347       1.8       mrg 		goto loop_by_list;
    348       1.1       mrg 
    349       1.8       mrg 	/* by hash */
    350       1.1       mrg 
    351       1.8       mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    352       1.8       mrg 		pp = uvm_pagelookup(uobj, curoff);
    353       1.8       mrg 		if (pp == NULL)
    354       1.8       mrg 			continue;
    355       1.8       mrg 
    356       1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    357       1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    358      1.24   thorpej 
    359       1.8       mrg 		/* now do the actual work */
    360      1.24   thorpej 		if (pp->flags & PG_BUSY) {
    361       1.8       mrg 			/* owner must check for this when done */
    362       1.8       mrg 			pp->flags |= PG_RELEASED;
    363      1.24   thorpej 		} else {
    364      1.24   thorpej 			/* free the swap slot... */
    365      1.24   thorpej 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    366       1.8       mrg 
    367       1.8       mrg 			/*
    368      1.24   thorpej 			 * ...and free the page; note it may be on the
    369      1.24   thorpej 			 * active or inactive queues.
    370       1.8       mrg 			 */
    371       1.8       mrg 			uvm_lock_pageq();
    372       1.8       mrg 			uvm_pagefree(pp);
    373       1.8       mrg 			uvm_unlock_pageq();
    374       1.8       mrg 		}
    375       1.8       mrg 		/* done */
    376       1.8       mrg 	}
    377       1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    378       1.8       mrg 	return;
    379       1.1       mrg 
    380       1.1       mrg loop_by_list:
    381       1.1       mrg 
    382       1.8       mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    383       1.8       mrg 		ppnext = pp->listq.tqe_next;
    384       1.8       mrg 		if (pp->offset < start || pp->offset >= end) {
    385       1.8       mrg 			continue;
    386       1.8       mrg 		}
    387       1.8       mrg 
    388       1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    389       1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    390      1.24   thorpej 
    391       1.8       mrg 		/* now do the actual work */
    392      1.24   thorpej 		if (pp->flags & PG_BUSY) {
    393       1.8       mrg 			/* owner must check for this when done */
    394       1.8       mrg 			pp->flags |= PG_RELEASED;
    395      1.24   thorpej 		} else {
    396      1.24   thorpej 			/* free the swap slot... */
    397      1.24   thorpej 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    398       1.8       mrg 
    399       1.8       mrg 			/*
    400      1.24   thorpej 			 * ...and free the page; note it may be on the
    401      1.24   thorpej 			 * active or inactive queues.
    402       1.8       mrg 			 */
    403       1.8       mrg 			uvm_lock_pageq();
    404       1.8       mrg 			uvm_pagefree(pp);
    405       1.8       mrg 			uvm_unlock_pageq();
    406       1.8       mrg 		}
    407       1.8       mrg 		/* done */
    408      1.24   thorpej 	}
    409      1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    410      1.24   thorpej 	return;
    411      1.24   thorpej }
    412      1.24   thorpej 
    413      1.24   thorpej 
    414      1.24   thorpej /*
    415      1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    416      1.24   thorpej  *    objects
    417      1.24   thorpej  *
    418      1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    419      1.24   thorpej  *    the pages right away.    (this gets called from uvm_unmap_...).
    420      1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    421      1.24   thorpej  *    be on the active or inactive queues (because these objects are
    422      1.24   thorpej  *    never allowed to "page").
    423      1.24   thorpej  */
    424      1.24   thorpej 
    425      1.24   thorpej void
    426      1.24   thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
    427      1.24   thorpej 	struct uvm_object *uobj;
    428      1.24   thorpej 	vaddr_t start, end;
    429      1.24   thorpej {
    430      1.24   thorpej 	boolean_t by_list;
    431      1.24   thorpej 	struct vm_page *pp, *ppnext;
    432      1.24   thorpej 	vaddr_t curoff;
    433      1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    434      1.24   thorpej 
    435      1.24   thorpej 	simple_lock(&uobj->vmobjlock);		/* lock object */
    436      1.24   thorpej 
    437      1.24   thorpej #ifdef DIAGNOSTIC
    438      1.24   thorpej 	if (UVM_OBJ_IS_INTRSAFE_OBJECT(uobj) == 0)
    439      1.24   thorpej 		panic("uvm_km_pgremove_intrsafe: object %p not intrsafe", uobj);
    440      1.24   thorpej #endif
    441      1.24   thorpej 
    442      1.24   thorpej 	/* choose cheapest traversal */
    443      1.24   thorpej 	by_list = (uobj->uo_npages <=
    444      1.24   thorpej 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    445      1.24   thorpej 
    446      1.24   thorpej 	if (by_list)
    447      1.24   thorpej 		goto loop_by_list;
    448      1.24   thorpej 
    449      1.24   thorpej 	/* by hash */
    450      1.24   thorpej 
    451      1.24   thorpej 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    452      1.24   thorpej 		pp = uvm_pagelookup(uobj, curoff);
    453      1.24   thorpej 		if (pp == NULL)
    454      1.24   thorpej 			continue;
    455      1.24   thorpej 
    456      1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    457      1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    458      1.24   thorpej #ifdef DIAGNOSTIC
    459      1.24   thorpej 		if (pp->flags & PG_BUSY)
    460      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    461      1.24   thorpej 		if (pp->pqflags & PQ_ACTIVE)
    462      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    463      1.24   thorpej 		if (pp->pqflags & PQ_INACTIVE)
    464      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    465      1.24   thorpej #endif
    466      1.24   thorpej 
    467      1.24   thorpej 		/* free the page */
    468      1.24   thorpej 		uvm_pagefree(pp);
    469      1.24   thorpej 	}
    470      1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    471      1.24   thorpej 	return;
    472      1.24   thorpej 
    473      1.24   thorpej loop_by_list:
    474       1.1       mrg 
    475      1.24   thorpej 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    476      1.24   thorpej 		ppnext = pp->listq.tqe_next;
    477      1.24   thorpej 		if (pp->offset < start || pp->offset >= end) {
    478      1.24   thorpej 			continue;
    479      1.24   thorpej 		}
    480      1.24   thorpej 
    481      1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    482      1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    483      1.24   thorpej 
    484      1.24   thorpej #ifdef DIAGNOSTIC
    485      1.24   thorpej 		if (pp->flags & PG_BUSY)
    486      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: busy page");
    487      1.24   thorpej 		if (pp->pqflags & PQ_ACTIVE)
    488      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: active page");
    489      1.24   thorpej 		if (pp->pqflags & PQ_INACTIVE)
    490      1.24   thorpej 			panic("uvm_km_pgremove_intrsafe: inactive page");
    491      1.24   thorpej #endif
    492      1.24   thorpej 
    493      1.24   thorpej 		/* free the page */
    494      1.24   thorpej 		uvm_pagefree(pp);
    495       1.8       mrg 	}
    496       1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    497       1.8       mrg 	return;
    498       1.1       mrg }
    499       1.1       mrg 
    500       1.1       mrg 
    501       1.1       mrg /*
    502       1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    503       1.1       mrg  *
    504       1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    505       1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    506       1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    507       1.1       mrg  *	this case.
    508       1.1       mrg  * => we return KVA of memory allocated
    509       1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    510       1.1       mrg  *	lock the map
    511       1.1       mrg  */
    512       1.1       mrg 
    513      1.14       eeh vaddr_t
    514       1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    515       1.8       mrg 	vm_map_t map;
    516       1.8       mrg 	struct uvm_object *obj;
    517      1.14       eeh 	vsize_t size;
    518       1.8       mrg 	int flags;
    519       1.1       mrg {
    520      1.14       eeh 	vaddr_t kva, loopva;
    521      1.14       eeh 	vaddr_t offset;
    522       1.8       mrg 	struct vm_page *pg;
    523       1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    524       1.1       mrg 
    525       1.1       mrg 
    526       1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    527       1.1       mrg 	map, obj, size, flags);
    528       1.1       mrg #ifdef DIAGNOSTIC
    529       1.8       mrg 	/* sanity check */
    530       1.8       mrg 	if (vm_map_pmap(map) != pmap_kernel())
    531       1.8       mrg 		panic("uvm_km_kmemalloc: invalid map");
    532       1.1       mrg #endif
    533       1.1       mrg 
    534       1.8       mrg 	/*
    535       1.8       mrg 	 * setup for call
    536       1.8       mrg 	 */
    537       1.8       mrg 
    538       1.8       mrg 	size = round_page(size);
    539       1.8       mrg 	kva = vm_map_min(map);	/* hint */
    540       1.1       mrg 
    541       1.8       mrg 	/*
    542       1.8       mrg 	 * allocate some virtual space
    543       1.8       mrg 	 */
    544       1.8       mrg 
    545       1.8       mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    546       1.1       mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    547       1.1       mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    548       1.8       mrg 			!= KERN_SUCCESS) {
    549       1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    550       1.8       mrg 		return(0);
    551       1.8       mrg 	}
    552       1.8       mrg 
    553       1.8       mrg 	/*
    554       1.8       mrg 	 * if all we wanted was VA, return now
    555       1.8       mrg 	 */
    556       1.8       mrg 
    557       1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    558       1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    559       1.8       mrg 		return(kva);
    560       1.8       mrg 	}
    561       1.8       mrg 	/*
    562       1.8       mrg 	 * recover object offset from virtual address
    563       1.8       mrg 	 */
    564       1.8       mrg 
    565       1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    566       1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    567       1.8       mrg 
    568       1.8       mrg 	/*
    569       1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    570       1.8       mrg 	 * whom should ever get a handle on this area of VM.
    571       1.8       mrg 	 */
    572       1.8       mrg 
    573       1.8       mrg 	loopva = kva;
    574       1.8       mrg 	while (size) {
    575       1.8       mrg 		simple_lock(&obj->vmobjlock);
    576      1.23       chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    577       1.8       mrg 		if (pg) {
    578       1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    579       1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    580       1.8       mrg 		}
    581       1.8       mrg 		simple_unlock(&obj->vmobjlock);
    582       1.8       mrg 
    583       1.8       mrg 		/*
    584       1.8       mrg 		 * out of memory?
    585       1.8       mrg 		 */
    586       1.8       mrg 
    587       1.8       mrg 		if (pg == NULL) {
    588       1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    589       1.8       mrg 				/* free everything! */
    590      1.17     chuck 				uvm_unmap(map, kva, kva + size);
    591       1.8       mrg 				return(0);
    592       1.8       mrg 			} else {
    593       1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    594       1.8       mrg 				continue;
    595       1.8       mrg 			}
    596       1.8       mrg 		}
    597       1.8       mrg 
    598       1.8       mrg 		/*
    599       1.8       mrg 		 * map it in: note that we call pmap_enter with the map and
    600       1.8       mrg 		 * object unlocked in case we are kmem_map/kmem_object
    601       1.8       mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    602       1.8       mrg 		 * it will need to lock it itself!)
    603       1.8       mrg 		 */
    604      1.24   thorpej 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    605      1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    606      1.24   thorpej 			    VM_PROT_ALL);
    607      1.24   thorpej 		} else {
    608      1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    609  1.32.8.1  wrstuden 			    UVM_PROT_ALL,
    610  1.32.8.1  wrstuden 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    611      1.24   thorpej 		}
    612       1.8       mrg 		loopva += PAGE_SIZE;
    613       1.8       mrg 		offset += PAGE_SIZE;
    614       1.8       mrg 		size -= PAGE_SIZE;
    615       1.8       mrg 	}
    616       1.1       mrg 
    617       1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    618       1.8       mrg 	return(kva);
    619       1.1       mrg }
    620       1.1       mrg 
    621       1.1       mrg /*
    622       1.1       mrg  * uvm_km_free: free an area of kernel memory
    623       1.1       mrg  */
    624       1.1       mrg 
    625       1.8       mrg void
    626       1.8       mrg uvm_km_free(map, addr, size)
    627       1.8       mrg 	vm_map_t map;
    628      1.14       eeh 	vaddr_t addr;
    629      1.14       eeh 	vsize_t size;
    630       1.8       mrg {
    631       1.1       mrg 
    632      1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    633       1.1       mrg }
    634       1.1       mrg 
    635       1.1       mrg /*
    636       1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    637       1.1       mrg  * anyone waiting for vm space.
    638       1.1       mrg  *
    639       1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    640       1.1       mrg  */
    641       1.1       mrg 
    642       1.8       mrg void
    643       1.8       mrg uvm_km_free_wakeup(map, addr, size)
    644       1.8       mrg 	vm_map_t map;
    645      1.14       eeh 	vaddr_t addr;
    646      1.14       eeh 	vsize_t size;
    647       1.1       mrg {
    648       1.8       mrg 	vm_map_entry_t dead_entries;
    649       1.1       mrg 
    650       1.8       mrg 	vm_map_lock(map);
    651      1.17     chuck 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
    652       1.1       mrg 			 &dead_entries);
    653      1.31   thorpej 	wakeup(map);
    654       1.8       mrg 	vm_map_unlock(map);
    655       1.1       mrg 
    656       1.8       mrg 	if (dead_entries != NULL)
    657       1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    658       1.1       mrg }
    659       1.1       mrg 
    660       1.1       mrg /*
    661       1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    662       1.1       mrg  *
    663       1.1       mrg  * => we can sleep if needed
    664       1.1       mrg  */
    665       1.1       mrg 
    666      1.14       eeh vaddr_t
    667       1.8       mrg uvm_km_alloc1(map, size, zeroit)
    668       1.8       mrg 	vm_map_t map;
    669      1.14       eeh 	vsize_t size;
    670       1.8       mrg 	boolean_t zeroit;
    671       1.1       mrg {
    672      1.14       eeh 	vaddr_t kva, loopva, offset;
    673       1.8       mrg 	struct vm_page *pg;
    674       1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    675       1.1       mrg 
    676       1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    677       1.1       mrg 
    678       1.1       mrg #ifdef DIAGNOSTIC
    679       1.8       mrg 	if (vm_map_pmap(map) != pmap_kernel())
    680       1.8       mrg 		panic("uvm_km_alloc1");
    681       1.1       mrg #endif
    682       1.1       mrg 
    683       1.8       mrg 	size = round_page(size);
    684       1.8       mrg 	kva = vm_map_min(map);		/* hint */
    685       1.1       mrg 
    686       1.8       mrg 	/*
    687       1.8       mrg 	 * allocate some virtual space
    688       1.8       mrg 	 */
    689       1.1       mrg 
    690       1.8       mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    691       1.1       mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    692       1.1       mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    693       1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    694       1.8       mrg 		return(0);
    695       1.8       mrg 	}
    696       1.8       mrg 
    697       1.8       mrg 	/*
    698       1.8       mrg 	 * recover object offset from virtual address
    699       1.8       mrg 	 */
    700       1.8       mrg 
    701       1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    702       1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    703       1.8       mrg 
    704       1.8       mrg 	/*
    705       1.8       mrg 	 * now allocate the memory.  we must be careful about released pages.
    706       1.8       mrg 	 */
    707       1.8       mrg 
    708       1.8       mrg 	loopva = kva;
    709       1.8       mrg 	while (size) {
    710       1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    711       1.8       mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    712       1.8       mrg 
    713       1.8       mrg 		/*
    714       1.8       mrg 		 * if we found a page in an unallocated region, it must be
    715       1.8       mrg 		 * released
    716       1.8       mrg 		 */
    717       1.8       mrg 		if (pg) {
    718       1.8       mrg 			if ((pg->flags & PG_RELEASED) == 0)
    719       1.8       mrg 				panic("uvm_km_alloc1: non-released page");
    720       1.8       mrg 			pg->flags |= PG_WANTED;
    721       1.8       mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    722      1.30   thorpej 			    FALSE, "km_alloc", 0);
    723       1.8       mrg 			continue;   /* retry */
    724       1.8       mrg 		}
    725       1.8       mrg 
    726       1.8       mrg 		/* allocate ram */
    727      1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    728       1.8       mrg 		if (pg) {
    729       1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    730       1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    731       1.8       mrg 		}
    732       1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    733       1.8       mrg 		if (pg == NULL) {
    734       1.8       mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    735       1.8       mrg 			continue;
    736       1.8       mrg 		}
    737       1.8       mrg 
    738      1.24   thorpej 		/*
    739      1.24   thorpej 		 * map it in; note we're never called with an intrsafe
    740      1.24   thorpej 		 * object, so we always use regular old pmap_enter().
    741      1.24   thorpej 		 */
    742       1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    743  1.32.8.1  wrstuden 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    744      1.24   thorpej 
    745       1.8       mrg 		loopva += PAGE_SIZE;
    746       1.8       mrg 		offset += PAGE_SIZE;
    747       1.8       mrg 		size -= PAGE_SIZE;
    748       1.8       mrg 	}
    749       1.8       mrg 
    750       1.8       mrg 	/*
    751       1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    752       1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    753       1.8       mrg 	 */
    754       1.1       mrg 
    755       1.8       mrg 	if (zeroit)
    756      1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    757       1.1       mrg 
    758       1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    759       1.8       mrg 	return(kva);
    760       1.1       mrg }
    761       1.1       mrg 
    762       1.1       mrg /*
    763       1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    764       1.1       mrg  *
    765       1.1       mrg  * => memory is not allocated until fault time
    766       1.1       mrg  */
    767       1.1       mrg 
    768      1.14       eeh vaddr_t
    769       1.8       mrg uvm_km_valloc(map, size)
    770       1.8       mrg 	vm_map_t map;
    771      1.14       eeh 	vsize_t size;
    772       1.1       mrg {
    773      1.14       eeh 	vaddr_t kva;
    774       1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    775       1.1       mrg 
    776       1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    777       1.1       mrg 
    778       1.1       mrg #ifdef DIAGNOSTIC
    779       1.8       mrg 	if (vm_map_pmap(map) != pmap_kernel())
    780       1.8       mrg 		panic("uvm_km_valloc");
    781       1.1       mrg #endif
    782       1.1       mrg 
    783       1.8       mrg 	size = round_page(size);
    784       1.8       mrg 	kva = vm_map_min(map);		/* hint */
    785       1.1       mrg 
    786       1.8       mrg 	/*
    787       1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    788       1.8       mrg 	 */
    789       1.1       mrg 
    790       1.8       mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    791       1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    792       1.8       mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    793       1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    794       1.8       mrg 		return(0);
    795       1.8       mrg 	}
    796       1.1       mrg 
    797       1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    798       1.8       mrg 	return(kva);
    799       1.1       mrg }
    800       1.1       mrg 
    801       1.1       mrg /*
    802       1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    803       1.1       mrg  *
    804       1.1       mrg  * => memory is not allocated until fault time
    805       1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    806       1.1       mrg  *    is larger than map (in which case we return 0)
    807       1.1       mrg  */
    808       1.1       mrg 
    809      1.14       eeh vaddr_t
    810       1.8       mrg uvm_km_valloc_wait(map, size)
    811       1.8       mrg 	vm_map_t map;
    812      1.14       eeh 	vsize_t size;
    813       1.1       mrg {
    814      1.14       eeh 	vaddr_t kva;
    815       1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    816       1.1       mrg 
    817       1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    818       1.1       mrg 
    819       1.1       mrg #ifdef DIAGNOSTIC
    820       1.8       mrg 	if (vm_map_pmap(map) != pmap_kernel())
    821       1.8       mrg 		panic("uvm_km_valloc_wait");
    822       1.1       mrg #endif
    823       1.1       mrg 
    824       1.8       mrg 	size = round_page(size);
    825       1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    826       1.8       mrg 		return(0);
    827       1.8       mrg 
    828       1.8       mrg 	while (1) {
    829       1.8       mrg 		kva = vm_map_min(map);		/* hint */
    830       1.8       mrg 
    831       1.8       mrg 		/*
    832       1.8       mrg 		 * allocate some virtual space.   will be demand filled
    833       1.8       mrg 		 * by kernel_object.
    834       1.8       mrg 		 */
    835       1.8       mrg 
    836       1.8       mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    837       1.8       mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    838       1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    839       1.8       mrg 		    == KERN_SUCCESS) {
    840       1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    841       1.8       mrg 			return(kva);
    842       1.8       mrg 		}
    843       1.8       mrg 
    844       1.8       mrg 		/*
    845       1.8       mrg 		 * failed.  sleep for a while (on map)
    846       1.8       mrg 		 */
    847       1.8       mrg 
    848       1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    849       1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    850       1.8       mrg 	}
    851       1.8       mrg 	/*NOTREACHED*/
    852      1.10   thorpej }
    853      1.10   thorpej 
    854      1.10   thorpej /* Sanity; must specify both or none. */
    855      1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    856      1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    857      1.10   thorpej #error Must specify MAP and UNMAP together.
    858      1.10   thorpej #endif
    859      1.10   thorpej 
    860      1.10   thorpej /*
    861      1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    862      1.10   thorpej  *
    863      1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    864      1.10   thorpej  */
    865      1.10   thorpej 
    866      1.11   thorpej /* ARGSUSED */
    867      1.14       eeh vaddr_t
    868      1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    869      1.11   thorpej 	vm_map_t map;
    870      1.12   thorpej 	struct uvm_object *obj;
    871      1.15   thorpej 	boolean_t waitok;
    872      1.10   thorpej {
    873      1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    874      1.10   thorpej 	struct vm_page *pg;
    875      1.14       eeh 	vaddr_t va;
    876      1.10   thorpej 
    877      1.15   thorpej  again:
    878      1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    879      1.15   thorpej 	if (pg == NULL) {
    880      1.15   thorpej 		if (waitok) {
    881      1.15   thorpej 			uvm_wait("plpg");
    882      1.15   thorpej 			goto again;
    883      1.15   thorpej 		} else
    884      1.15   thorpej 			return (0);
    885      1.15   thorpej 	}
    886      1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    887      1.10   thorpej 	if (va == 0)
    888      1.10   thorpej 		uvm_pagefree(pg);
    889      1.10   thorpej 	return (va);
    890      1.10   thorpej #else
    891      1.14       eeh 	vaddr_t va;
    892      1.10   thorpej 	int s;
    893      1.10   thorpej 
    894      1.16   thorpej 	/*
    895      1.16   thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    896      1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    897      1.16   thorpej 	 * go to splimp in this case (since unprocted maps will never be
    898      1.16   thorpej 	 * accessed in interrupt context).
    899      1.16   thorpej 	 *
    900      1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    901      1.16   thorpej 	 * XXX function.
    902      1.16   thorpej 	 */
    903      1.16   thorpej 
    904      1.10   thorpej 	s = splimp();
    905      1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    906      1.10   thorpej 	splx(s);
    907      1.10   thorpej 	return (va);
    908      1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    909      1.10   thorpej }
    910      1.10   thorpej 
    911      1.10   thorpej /*
    912      1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    913      1.10   thorpej  *
    914      1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    915      1.10   thorpej  */
    916      1.10   thorpej 
    917      1.11   thorpej /* ARGSUSED */
    918      1.10   thorpej void
    919      1.11   thorpej uvm_km_free_poolpage1(map, addr)
    920      1.11   thorpej 	vm_map_t map;
    921      1.14       eeh 	vaddr_t addr;
    922      1.10   thorpej {
    923      1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    924      1.14       eeh 	paddr_t pa;
    925      1.10   thorpej 
    926      1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    927      1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    928      1.10   thorpej #else
    929      1.10   thorpej 	int s;
    930      1.16   thorpej 
    931      1.16   thorpej 	/*
    932      1.16   thorpej 	 * NOTE: We may be called with a map that doens't require splimp
    933      1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    934      1.16   thorpej 	 * go to splimp in this case (since unprocted maps will never be
    935      1.16   thorpej 	 * accessed in interrupt context).
    936      1.16   thorpej 	 *
    937      1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    938      1.16   thorpej 	 * XXX function.
    939      1.16   thorpej 	 */
    940      1.10   thorpej 
    941      1.10   thorpej 	s = splimp();
    942      1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    943      1.10   thorpej 	splx(s);
    944      1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    945       1.1       mrg }
    946