uvm_km.c revision 1.41 1 1.41 nisimura /* $NetBSD: uvm_km.c,v 1.41 2000/11/27 04:36:40 nisimura Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.1 mrg * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.1 mrg *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.1 mrg *
54 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.1 mrg *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.6 mrg #include "opt_uvmhist.h"
70 1.1 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
73 1.1 mrg */
74 1.1 mrg
75 1.7 chuck /*
76 1.7 chuck * overview of kernel memory management:
77 1.7 chuck *
78 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
79 1.7 chuck * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 1.7 chuck * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 1.7 chuck *
82 1.7 chuck * the kernel_map has several "submaps." submaps can only appear in
83 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
84 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
85 1.7 chuck * are typically allocated at boot time and are never released. kernel
86 1.7 chuck * virtual address space that is mapped by a submap is locked by the
87 1.7 chuck * submap's lock -- not the kernel_map's lock.
88 1.7 chuck *
89 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
90 1.7 chuck * up the locking and protection of the kernel address space into smaller
91 1.7 chuck * chunks.
92 1.7 chuck *
93 1.7 chuck * the vm system has several standard kernel submaps, including:
94 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
95 1.7 chuck * malloc. *** access to kmem_map must be protected
96 1.7 chuck * by splimp() because we are allowed to call malloc()
97 1.7 chuck * at interrupt time ***
98 1.7 chuck * mb_map => memory for large mbufs, *** protected by splimp ***
99 1.7 chuck * pager_map => used to map "buf" structures into kernel space
100 1.7 chuck * exec_map => used during exec to handle exec args
101 1.7 chuck * etc...
102 1.7 chuck *
103 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
104 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 1.7 chuck * are "special" and never die). all kernel objects should be thought of
106 1.7 chuck * as large, fixed-sized, sparsely populated uvm_objects. each kernel
107 1.7 chuck * object is equal to the size of kernel virtual address space (i.e. the
108 1.7 chuck * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 1.7 chuck *
110 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
111 1.7 chuck * to this is for memory that belongs to submaps that must be protected
112 1.7 chuck * by splimp(). each of these submaps has their own private kernel
113 1.7 chuck * object (e.g. kmem_object, mb_object).
114 1.7 chuck *
115 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
116 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
117 1.7 chuck * large chunks of a kernel object's space go unused either because
118 1.7 chuck * that area of kernel VM is unmapped, or there is some other type of
119 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
120 1.7 chuck * objects, the only part of the object that can ever be populated is the
121 1.7 chuck * offsets that are managed by the submap.
122 1.7 chuck *
123 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
124 1.7 chuck * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 1.7 chuck * example:
126 1.7 chuck * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
129 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
130 1.7 chuck * mapped at 0xf8235000.
131 1.7 chuck *
132 1.7 chuck * note that the offsets in kmem_object and mb_object also follow this
133 1.7 chuck * rule. this means that the offsets for kmem_object must fall in the
134 1.7 chuck * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 1.7 chuck * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 1.7 chuck * in those objects will typically not start at zero.
137 1.7 chuck *
138 1.7 chuck * kernel object have one other special property: when the kernel virtual
139 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
140 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
141 1.7 chuck * this has to be done because there is no backing store for kernel pages
142 1.7 chuck * and no need to save them after they are no longer referenced.
143 1.7 chuck */
144 1.7 chuck
145 1.1 mrg #include <sys/param.h>
146 1.1 mrg #include <sys/systm.h>
147 1.1 mrg #include <sys/proc.h>
148 1.1 mrg
149 1.1 mrg #include <uvm/uvm.h>
150 1.1 mrg
151 1.1 mrg /*
152 1.1 mrg * global data structures
153 1.1 mrg */
154 1.1 mrg
155 1.1 mrg vm_map_t kernel_map = NULL;
156 1.1 mrg
157 1.27 thorpej struct vmi_list vmi_list;
158 1.27 thorpej simple_lock_data_t vmi_list_slock;
159 1.27 thorpej
160 1.1 mrg /*
161 1.1 mrg * local data structues
162 1.1 mrg */
163 1.1 mrg
164 1.1 mrg static struct vm_map kernel_map_store;
165 1.1 mrg static struct uvm_object kmem_object_store;
166 1.1 mrg static struct uvm_object mb_object_store;
167 1.1 mrg
168 1.1 mrg /*
169 1.28 thorpej * All pager operations here are NULL, but the object must have
170 1.28 thorpej * a pager ops vector associated with it; various places assume
171 1.28 thorpej * it to be so.
172 1.1 mrg */
173 1.28 thorpej static struct uvm_pagerops km_pager;
174 1.1 mrg
175 1.1 mrg /*
176 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
177 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
178 1.1 mrg *
179 1.1 mrg * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
180 1.1 mrg * we assume that [min -> start] has already been allocated and that
181 1.1 mrg * "end" is the end.
182 1.1 mrg */
183 1.1 mrg
184 1.8 mrg void
185 1.8 mrg uvm_km_init(start, end)
186 1.14 eeh vaddr_t start, end;
187 1.1 mrg {
188 1.14 eeh vaddr_t base = VM_MIN_KERNEL_ADDRESS;
189 1.1 mrg
190 1.8 mrg /*
191 1.27 thorpej * first, initialize the interrupt-safe map list.
192 1.27 thorpej */
193 1.27 thorpej LIST_INIT(&vmi_list);
194 1.27 thorpej simple_lock_init(&vmi_list_slock);
195 1.27 thorpej
196 1.27 thorpej /*
197 1.27 thorpej * next, init kernel memory objects.
198 1.8 mrg */
199 1.1 mrg
200 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
201 1.34 chs uao_init();
202 1.8 mrg uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
203 1.3 chs VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
204 1.1 mrg
205 1.24 thorpej /*
206 1.24 thorpej * kmem_object: for use by the kernel malloc(). Memory is always
207 1.24 thorpej * wired, and this object (and the kmem_map) can be accessed at
208 1.24 thorpej * interrupt time.
209 1.24 thorpej */
210 1.8 mrg simple_lock_init(&kmem_object_store.vmobjlock);
211 1.8 mrg kmem_object_store.pgops = &km_pager;
212 1.8 mrg TAILQ_INIT(&kmem_object_store.memq);
213 1.8 mrg kmem_object_store.uo_npages = 0;
214 1.8 mrg /* we are special. we never die */
215 1.24 thorpej kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
216 1.8 mrg uvmexp.kmem_object = &kmem_object_store;
217 1.8 mrg
218 1.24 thorpej /*
219 1.24 thorpej * mb_object: for mbuf cluster pages on platforms which use the
220 1.24 thorpej * mb_map. Memory is always wired, and this object (and the mb_map)
221 1.24 thorpej * can be accessed at interrupt time.
222 1.24 thorpej */
223 1.8 mrg simple_lock_init(&mb_object_store.vmobjlock);
224 1.8 mrg mb_object_store.pgops = &km_pager;
225 1.8 mrg TAILQ_INIT(&mb_object_store.memq);
226 1.8 mrg mb_object_store.uo_npages = 0;
227 1.8 mrg /* we are special. we never die */
228 1.24 thorpej mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
229 1.8 mrg uvmexp.mb_object = &mb_object_store;
230 1.8 mrg
231 1.8 mrg /*
232 1.8 mrg * init the map and reserve allready allocated kernel space
233 1.8 mrg * before installing.
234 1.8 mrg */
235 1.1 mrg
236 1.25 thorpej uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
237 1.8 mrg kernel_map_store.pmap = pmap_kernel();
238 1.8 mrg if (uvm_map(&kernel_map_store, &base, start - base, NULL,
239 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
240 1.8 mrg UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
241 1.8 mrg panic("uvm_km_init: could not reserve space for kernel");
242 1.8 mrg
243 1.8 mrg /*
244 1.8 mrg * install!
245 1.8 mrg */
246 1.8 mrg
247 1.8 mrg kernel_map = &kernel_map_store;
248 1.1 mrg }
249 1.1 mrg
250 1.1 mrg /*
251 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
252 1.1 mrg * is allocated all references to that area of VM must go through it. this
253 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
254 1.1 mrg *
255 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
256 1.5 thorpej * by the submap must start
257 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
258 1.1 mrg * alloc a new map
259 1.1 mrg */
260 1.8 mrg struct vm_map *
261 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
262 1.8 mrg struct vm_map *map;
263 1.14 eeh vaddr_t *min, *max; /* OUT, OUT */
264 1.14 eeh vsize_t size;
265 1.25 thorpej int flags;
266 1.8 mrg boolean_t fixed;
267 1.8 mrg struct vm_map *submap;
268 1.8 mrg {
269 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
270 1.1 mrg
271 1.8 mrg size = round_page(size); /* round up to pagesize */
272 1.1 mrg
273 1.8 mrg /*
274 1.8 mrg * first allocate a blank spot in the parent map
275 1.8 mrg */
276 1.8 mrg
277 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
278 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
279 1.8 mrg UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
280 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
281 1.8 mrg }
282 1.8 mrg
283 1.8 mrg /*
284 1.8 mrg * set VM bounds (min is filled in by uvm_map)
285 1.8 mrg */
286 1.1 mrg
287 1.8 mrg *max = *min + size;
288 1.5 thorpej
289 1.8 mrg /*
290 1.8 mrg * add references to pmap and create or init the submap
291 1.8 mrg */
292 1.1 mrg
293 1.8 mrg pmap_reference(vm_map_pmap(map));
294 1.8 mrg if (submap == NULL) {
295 1.25 thorpej submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
296 1.8 mrg if (submap == NULL)
297 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
298 1.8 mrg } else {
299 1.25 thorpej uvm_map_setup(submap, *min, *max, flags);
300 1.8 mrg submap->pmap = vm_map_pmap(map);
301 1.8 mrg }
302 1.1 mrg
303 1.8 mrg /*
304 1.8 mrg * now let uvm_map_submap plug in it...
305 1.8 mrg */
306 1.1 mrg
307 1.8 mrg if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
308 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
309 1.1 mrg
310 1.8 mrg return(submap);
311 1.1 mrg }
312 1.1 mrg
313 1.1 mrg /*
314 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
315 1.1 mrg *
316 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
317 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
318 1.1 mrg */
319 1.1 mrg
320 1.1 mrg #define UKM_HASH_PENALTY 4 /* a guess */
321 1.1 mrg
322 1.8 mrg void
323 1.8 mrg uvm_km_pgremove(uobj, start, end)
324 1.8 mrg struct uvm_object *uobj;
325 1.14 eeh vaddr_t start, end;
326 1.1 mrg {
327 1.24 thorpej boolean_t by_list;
328 1.8 mrg struct vm_page *pp, *ppnext;
329 1.14 eeh vaddr_t curoff;
330 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
331 1.1 mrg
332 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
333 1.40 chs simple_lock(&uobj->vmobjlock);
334 1.3 chs
335 1.8 mrg /* choose cheapest traversal */
336 1.8 mrg by_list = (uobj->uo_npages <=
337 1.18 chs ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
338 1.1 mrg
339 1.8 mrg if (by_list)
340 1.8 mrg goto loop_by_list;
341 1.1 mrg
342 1.8 mrg /* by hash */
343 1.1 mrg
344 1.8 mrg for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
345 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
346 1.8 mrg if (pp == NULL)
347 1.8 mrg continue;
348 1.8 mrg
349 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
350 1.8 mrg pp->flags & PG_BUSY, 0, 0);
351 1.24 thorpej
352 1.8 mrg /* now do the actual work */
353 1.24 thorpej if (pp->flags & PG_BUSY) {
354 1.8 mrg /* owner must check for this when done */
355 1.8 mrg pp->flags |= PG_RELEASED;
356 1.24 thorpej } else {
357 1.24 thorpej /* free the swap slot... */
358 1.24 thorpej uao_dropswap(uobj, curoff >> PAGE_SHIFT);
359 1.8 mrg
360 1.8 mrg /*
361 1.24 thorpej * ...and free the page; note it may be on the
362 1.24 thorpej * active or inactive queues.
363 1.8 mrg */
364 1.8 mrg uvm_lock_pageq();
365 1.8 mrg uvm_pagefree(pp);
366 1.8 mrg uvm_unlock_pageq();
367 1.8 mrg }
368 1.8 mrg }
369 1.8 mrg simple_unlock(&uobj->vmobjlock);
370 1.8 mrg return;
371 1.1 mrg
372 1.1 mrg loop_by_list:
373 1.1 mrg
374 1.40 chs for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
375 1.40 chs ppnext = TAILQ_NEXT(pp, listq);
376 1.8 mrg if (pp->offset < start || pp->offset >= end) {
377 1.8 mrg continue;
378 1.8 mrg }
379 1.8 mrg
380 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
381 1.8 mrg pp->flags & PG_BUSY, 0, 0);
382 1.24 thorpej
383 1.24 thorpej if (pp->flags & PG_BUSY) {
384 1.8 mrg /* owner must check for this when done */
385 1.8 mrg pp->flags |= PG_RELEASED;
386 1.24 thorpej } else {
387 1.24 thorpej /* free the swap slot... */
388 1.24 thorpej uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
389 1.8 mrg
390 1.8 mrg /*
391 1.24 thorpej * ...and free the page; note it may be on the
392 1.24 thorpej * active or inactive queues.
393 1.8 mrg */
394 1.8 mrg uvm_lock_pageq();
395 1.8 mrg uvm_pagefree(pp);
396 1.8 mrg uvm_unlock_pageq();
397 1.8 mrg }
398 1.24 thorpej }
399 1.24 thorpej simple_unlock(&uobj->vmobjlock);
400 1.24 thorpej }
401 1.24 thorpej
402 1.24 thorpej
403 1.24 thorpej /*
404 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
405 1.24 thorpej * objects
406 1.24 thorpej *
407 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
408 1.24 thorpej * the pages right away. (this gets called from uvm_unmap_...).
409 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
410 1.24 thorpej * be on the active or inactive queues (because these objects are
411 1.24 thorpej * never allowed to "page").
412 1.24 thorpej */
413 1.24 thorpej
414 1.24 thorpej void
415 1.24 thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
416 1.24 thorpej struct uvm_object *uobj;
417 1.24 thorpej vaddr_t start, end;
418 1.24 thorpej {
419 1.24 thorpej boolean_t by_list;
420 1.24 thorpej struct vm_page *pp, *ppnext;
421 1.24 thorpej vaddr_t curoff;
422 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
423 1.24 thorpej
424 1.40 chs KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
425 1.24 thorpej simple_lock(&uobj->vmobjlock); /* lock object */
426 1.24 thorpej
427 1.24 thorpej /* choose cheapest traversal */
428 1.24 thorpej by_list = (uobj->uo_npages <=
429 1.24 thorpej ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
430 1.24 thorpej
431 1.24 thorpej if (by_list)
432 1.24 thorpej goto loop_by_list;
433 1.24 thorpej
434 1.24 thorpej /* by hash */
435 1.24 thorpej
436 1.24 thorpej for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
437 1.24 thorpej pp = uvm_pagelookup(uobj, curoff);
438 1.40 chs if (pp == NULL) {
439 1.24 thorpej continue;
440 1.40 chs }
441 1.24 thorpej
442 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
443 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
444 1.40 chs KASSERT((pp->flags & PG_BUSY) == 0);
445 1.40 chs KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
446 1.40 chs KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
447 1.24 thorpej uvm_pagefree(pp);
448 1.24 thorpej }
449 1.24 thorpej simple_unlock(&uobj->vmobjlock);
450 1.24 thorpej return;
451 1.24 thorpej
452 1.24 thorpej loop_by_list:
453 1.1 mrg
454 1.40 chs for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
455 1.40 chs ppnext = TAILQ_NEXT(pp, listq);
456 1.24 thorpej if (pp->offset < start || pp->offset >= end) {
457 1.24 thorpej continue;
458 1.24 thorpej }
459 1.24 thorpej
460 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
461 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
462 1.40 chs KASSERT((pp->flags & PG_BUSY) == 0);
463 1.40 chs KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
464 1.40 chs KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
465 1.24 thorpej uvm_pagefree(pp);
466 1.8 mrg }
467 1.8 mrg simple_unlock(&uobj->vmobjlock);
468 1.1 mrg }
469 1.1 mrg
470 1.1 mrg
471 1.1 mrg /*
472 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
473 1.1 mrg *
474 1.1 mrg * => we map wired memory into the specified map using the obj passed in
475 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
476 1.1 mrg * free VM space in the map... caller should be prepared to handle
477 1.1 mrg * this case.
478 1.1 mrg * => we return KVA of memory allocated
479 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
480 1.1 mrg * lock the map
481 1.1 mrg */
482 1.1 mrg
483 1.14 eeh vaddr_t
484 1.8 mrg uvm_km_kmemalloc(map, obj, size, flags)
485 1.8 mrg vm_map_t map;
486 1.8 mrg struct uvm_object *obj;
487 1.14 eeh vsize_t size;
488 1.8 mrg int flags;
489 1.1 mrg {
490 1.14 eeh vaddr_t kva, loopva;
491 1.14 eeh vaddr_t offset;
492 1.8 mrg struct vm_page *pg;
493 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
494 1.1 mrg
495 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
496 1.40 chs map, obj, size, flags);
497 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
498 1.1 mrg
499 1.8 mrg /*
500 1.8 mrg * setup for call
501 1.8 mrg */
502 1.8 mrg
503 1.8 mrg size = round_page(size);
504 1.8 mrg kva = vm_map_min(map); /* hint */
505 1.1 mrg
506 1.8 mrg /*
507 1.8 mrg * allocate some virtual space
508 1.8 mrg */
509 1.8 mrg
510 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
511 1.39 thorpej 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
512 1.1 mrg UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
513 1.35 thorpej != KERN_SUCCESS)) {
514 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
515 1.8 mrg return(0);
516 1.8 mrg }
517 1.8 mrg
518 1.8 mrg /*
519 1.8 mrg * if all we wanted was VA, return now
520 1.8 mrg */
521 1.8 mrg
522 1.8 mrg if (flags & UVM_KMF_VALLOC) {
523 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
524 1.8 mrg return(kva);
525 1.8 mrg }
526 1.40 chs
527 1.8 mrg /*
528 1.8 mrg * recover object offset from virtual address
529 1.8 mrg */
530 1.8 mrg
531 1.8 mrg offset = kva - vm_map_min(kernel_map);
532 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
533 1.8 mrg
534 1.8 mrg /*
535 1.8 mrg * now allocate and map in the memory... note that we are the only ones
536 1.8 mrg * whom should ever get a handle on this area of VM.
537 1.8 mrg */
538 1.8 mrg
539 1.8 mrg loopva = kva;
540 1.8 mrg while (size) {
541 1.8 mrg simple_lock(&obj->vmobjlock);
542 1.23 chs pg = uvm_pagealloc(obj, offset, NULL, 0);
543 1.8 mrg if (pg) {
544 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
545 1.8 mrg UVM_PAGE_OWN(pg, NULL);
546 1.8 mrg }
547 1.8 mrg simple_unlock(&obj->vmobjlock);
548 1.8 mrg
549 1.8 mrg /*
550 1.8 mrg * out of memory?
551 1.8 mrg */
552 1.8 mrg
553 1.35 thorpej if (__predict_false(pg == NULL)) {
554 1.8 mrg if (flags & UVM_KMF_NOWAIT) {
555 1.8 mrg /* free everything! */
556 1.17 chuck uvm_unmap(map, kva, kva + size);
557 1.8 mrg return(0);
558 1.8 mrg } else {
559 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
560 1.8 mrg continue;
561 1.8 mrg }
562 1.8 mrg }
563 1.8 mrg
564 1.8 mrg /*
565 1.8 mrg * map it in: note that we call pmap_enter with the map and
566 1.8 mrg * object unlocked in case we are kmem_map/kmem_object
567 1.8 mrg * (because if pmap_enter wants to allocate out of kmem_object
568 1.8 mrg * it will need to lock it itself!)
569 1.8 mrg */
570 1.40 chs
571 1.24 thorpej if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
572 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
573 1.24 thorpej VM_PROT_ALL);
574 1.24 thorpej } else {
575 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
576 1.33 thorpej UVM_PROT_ALL,
577 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
578 1.24 thorpej }
579 1.8 mrg loopva += PAGE_SIZE;
580 1.8 mrg offset += PAGE_SIZE;
581 1.8 mrg size -= PAGE_SIZE;
582 1.8 mrg }
583 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
584 1.8 mrg return(kva);
585 1.1 mrg }
586 1.1 mrg
587 1.1 mrg /*
588 1.1 mrg * uvm_km_free: free an area of kernel memory
589 1.1 mrg */
590 1.1 mrg
591 1.8 mrg void
592 1.8 mrg uvm_km_free(map, addr, size)
593 1.8 mrg vm_map_t map;
594 1.14 eeh vaddr_t addr;
595 1.14 eeh vsize_t size;
596 1.8 mrg {
597 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
598 1.1 mrg }
599 1.1 mrg
600 1.1 mrg /*
601 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
602 1.1 mrg * anyone waiting for vm space.
603 1.1 mrg *
604 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
605 1.1 mrg */
606 1.1 mrg
607 1.8 mrg void
608 1.8 mrg uvm_km_free_wakeup(map, addr, size)
609 1.8 mrg vm_map_t map;
610 1.14 eeh vaddr_t addr;
611 1.14 eeh vsize_t size;
612 1.1 mrg {
613 1.8 mrg vm_map_entry_t dead_entries;
614 1.1 mrg
615 1.8 mrg vm_map_lock(map);
616 1.17 chuck (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size),
617 1.1 mrg &dead_entries);
618 1.31 thorpej wakeup(map);
619 1.8 mrg vm_map_unlock(map);
620 1.1 mrg
621 1.8 mrg if (dead_entries != NULL)
622 1.8 mrg uvm_unmap_detach(dead_entries, 0);
623 1.1 mrg }
624 1.1 mrg
625 1.1 mrg /*
626 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
627 1.1 mrg *
628 1.1 mrg * => we can sleep if needed
629 1.1 mrg */
630 1.1 mrg
631 1.14 eeh vaddr_t
632 1.8 mrg uvm_km_alloc1(map, size, zeroit)
633 1.8 mrg vm_map_t map;
634 1.14 eeh vsize_t size;
635 1.8 mrg boolean_t zeroit;
636 1.1 mrg {
637 1.14 eeh vaddr_t kva, loopva, offset;
638 1.8 mrg struct vm_page *pg;
639 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
640 1.1 mrg
641 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
642 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
643 1.1 mrg
644 1.8 mrg size = round_page(size);
645 1.8 mrg kva = vm_map_min(map); /* hint */
646 1.1 mrg
647 1.8 mrg /*
648 1.8 mrg * allocate some virtual space
649 1.8 mrg */
650 1.1 mrg
651 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
652 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
653 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
654 1.35 thorpej 0)) != KERN_SUCCESS)) {
655 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
656 1.8 mrg return(0);
657 1.8 mrg }
658 1.8 mrg
659 1.8 mrg /*
660 1.8 mrg * recover object offset from virtual address
661 1.8 mrg */
662 1.8 mrg
663 1.8 mrg offset = kva - vm_map_min(kernel_map);
664 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
665 1.8 mrg
666 1.8 mrg /*
667 1.8 mrg * now allocate the memory. we must be careful about released pages.
668 1.8 mrg */
669 1.8 mrg
670 1.8 mrg loopva = kva;
671 1.8 mrg while (size) {
672 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
673 1.8 mrg pg = uvm_pagelookup(uvm.kernel_object, offset);
674 1.8 mrg
675 1.8 mrg /*
676 1.8 mrg * if we found a page in an unallocated region, it must be
677 1.8 mrg * released
678 1.8 mrg */
679 1.8 mrg if (pg) {
680 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
681 1.8 mrg panic("uvm_km_alloc1: non-released page");
682 1.8 mrg pg->flags |= PG_WANTED;
683 1.8 mrg UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
684 1.30 thorpej FALSE, "km_alloc", 0);
685 1.8 mrg continue; /* retry */
686 1.8 mrg }
687 1.8 mrg
688 1.8 mrg /* allocate ram */
689 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
690 1.8 mrg if (pg) {
691 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
692 1.8 mrg UVM_PAGE_OWN(pg, NULL);
693 1.8 mrg }
694 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
695 1.35 thorpej if (__predict_false(pg == NULL)) {
696 1.8 mrg uvm_wait("km_alloc1w"); /* wait for memory */
697 1.8 mrg continue;
698 1.8 mrg }
699 1.8 mrg
700 1.24 thorpej /*
701 1.24 thorpej * map it in; note we're never called with an intrsafe
702 1.24 thorpej * object, so we always use regular old pmap_enter().
703 1.24 thorpej */
704 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
705 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
706 1.24 thorpej
707 1.8 mrg loopva += PAGE_SIZE;
708 1.8 mrg offset += PAGE_SIZE;
709 1.8 mrg size -= PAGE_SIZE;
710 1.8 mrg }
711 1.8 mrg
712 1.8 mrg /*
713 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
714 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
715 1.8 mrg */
716 1.1 mrg
717 1.8 mrg if (zeroit)
718 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
719 1.1 mrg
720 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
721 1.8 mrg return(kva);
722 1.1 mrg }
723 1.1 mrg
724 1.1 mrg /*
725 1.1 mrg * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
726 1.1 mrg *
727 1.1 mrg * => memory is not allocated until fault time
728 1.1 mrg */
729 1.1 mrg
730 1.14 eeh vaddr_t
731 1.8 mrg uvm_km_valloc(map, size)
732 1.8 mrg vm_map_t map;
733 1.14 eeh vsize_t size;
734 1.1 mrg {
735 1.41 nisimura return(uvm_km_valloc_align(map, size, 0));
736 1.41 nisimura }
737 1.41 nisimura
738 1.41 nisimura vaddr_t
739 1.41 nisimura uvm_km_valloc_align(map, size, align)
740 1.41 nisimura vm_map_t map;
741 1.41 nisimura vsize_t size;
742 1.41 nisimura vsize_t align;
743 1.41 nisimura {
744 1.14 eeh vaddr_t kva;
745 1.8 mrg UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
746 1.1 mrg
747 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
748 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
749 1.1 mrg
750 1.8 mrg size = round_page(size);
751 1.8 mrg kva = vm_map_min(map); /* hint */
752 1.1 mrg
753 1.8 mrg /*
754 1.8 mrg * allocate some virtual space. will be demand filled by kernel_object.
755 1.8 mrg */
756 1.1 mrg
757 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
758 1.41 nisimura UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
759 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
760 1.35 thorpej 0)) != KERN_SUCCESS)) {
761 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
762 1.8 mrg return(0);
763 1.8 mrg }
764 1.1 mrg
765 1.8 mrg UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
766 1.8 mrg return(kva);
767 1.1 mrg }
768 1.1 mrg
769 1.1 mrg /*
770 1.1 mrg * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
771 1.1 mrg *
772 1.1 mrg * => memory is not allocated until fault time
773 1.1 mrg * => if no room in map, wait for space to free, unless requested size
774 1.1 mrg * is larger than map (in which case we return 0)
775 1.1 mrg */
776 1.1 mrg
777 1.14 eeh vaddr_t
778 1.38 jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
779 1.8 mrg vm_map_t map;
780 1.14 eeh vsize_t size;
781 1.38 jeffs voff_t prefer;
782 1.1 mrg {
783 1.14 eeh vaddr_t kva;
784 1.38 jeffs UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
785 1.1 mrg
786 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
787 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
788 1.1 mrg
789 1.8 mrg size = round_page(size);
790 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
791 1.8 mrg return(0);
792 1.8 mrg
793 1.8 mrg while (1) {
794 1.8 mrg kva = vm_map_min(map); /* hint */
795 1.8 mrg
796 1.8 mrg /*
797 1.8 mrg * allocate some virtual space. will be demand filled
798 1.8 mrg * by kernel_object.
799 1.8 mrg */
800 1.8 mrg
801 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
802 1.39 thorpej prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
803 1.8 mrg UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
804 1.35 thorpej == KERN_SUCCESS)) {
805 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
806 1.8 mrg return(kva);
807 1.8 mrg }
808 1.8 mrg
809 1.8 mrg /*
810 1.8 mrg * failed. sleep for a while (on map)
811 1.8 mrg */
812 1.8 mrg
813 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
814 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
815 1.8 mrg }
816 1.8 mrg /*NOTREACHED*/
817 1.38 jeffs }
818 1.38 jeffs
819 1.38 jeffs vaddr_t
820 1.38 jeffs uvm_km_valloc_wait(map, size)
821 1.38 jeffs vm_map_t map;
822 1.38 jeffs vsize_t size;
823 1.38 jeffs {
824 1.38 jeffs return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
825 1.10 thorpej }
826 1.10 thorpej
827 1.10 thorpej /* Sanity; must specify both or none. */
828 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
829 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
830 1.10 thorpej #error Must specify MAP and UNMAP together.
831 1.10 thorpej #endif
832 1.10 thorpej
833 1.10 thorpej /*
834 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
835 1.10 thorpej *
836 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
837 1.10 thorpej */
838 1.10 thorpej
839 1.11 thorpej /* ARGSUSED */
840 1.14 eeh vaddr_t
841 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
842 1.11 thorpej vm_map_t map;
843 1.12 thorpej struct uvm_object *obj;
844 1.15 thorpej boolean_t waitok;
845 1.10 thorpej {
846 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
847 1.10 thorpej struct vm_page *pg;
848 1.14 eeh vaddr_t va;
849 1.10 thorpej
850 1.15 thorpej again:
851 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
852 1.35 thorpej if (__predict_false(pg == NULL)) {
853 1.15 thorpej if (waitok) {
854 1.15 thorpej uvm_wait("plpg");
855 1.15 thorpej goto again;
856 1.15 thorpej } else
857 1.15 thorpej return (0);
858 1.15 thorpej }
859 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
860 1.35 thorpej if (__predict_false(va == 0))
861 1.10 thorpej uvm_pagefree(pg);
862 1.10 thorpej return (va);
863 1.10 thorpej #else
864 1.14 eeh vaddr_t va;
865 1.10 thorpej int s;
866 1.10 thorpej
867 1.16 thorpej /*
868 1.16 thorpej * NOTE: We may be called with a map that doens't require splimp
869 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
870 1.16 thorpej * go to splimp in this case (since unprocted maps will never be
871 1.16 thorpej * accessed in interrupt context).
872 1.16 thorpej *
873 1.16 thorpej * XXX We may want to consider changing the interface to this
874 1.16 thorpej * XXX function.
875 1.16 thorpej */
876 1.16 thorpej
877 1.10 thorpej s = splimp();
878 1.15 thorpej va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
879 1.10 thorpej splx(s);
880 1.10 thorpej return (va);
881 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
882 1.10 thorpej }
883 1.10 thorpej
884 1.10 thorpej /*
885 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
886 1.10 thorpej *
887 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
888 1.10 thorpej */
889 1.10 thorpej
890 1.11 thorpej /* ARGSUSED */
891 1.10 thorpej void
892 1.11 thorpej uvm_km_free_poolpage1(map, addr)
893 1.11 thorpej vm_map_t map;
894 1.14 eeh vaddr_t addr;
895 1.10 thorpej {
896 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
897 1.14 eeh paddr_t pa;
898 1.10 thorpej
899 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
900 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
901 1.10 thorpej #else
902 1.10 thorpej int s;
903 1.16 thorpej
904 1.16 thorpej /*
905 1.16 thorpej * NOTE: We may be called with a map that doens't require splimp
906 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
907 1.16 thorpej * go to splimp in this case (since unprocted maps will never be
908 1.16 thorpej * accessed in interrupt context).
909 1.16 thorpej *
910 1.16 thorpej * XXX We may want to consider changing the interface to this
911 1.16 thorpej * XXX function.
912 1.16 thorpej */
913 1.10 thorpej
914 1.10 thorpej s = splimp();
915 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
916 1.10 thorpej splx(s);
917 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
918 1.1 mrg }
919