Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.42.2.10
      1   1.42.2.6   nathanw /*	$NetBSD: uvm_km.c,v 1.42.2.10 2002/12/11 06:51:54 thorpej Exp $	*/
      2        1.1       mrg 
      3   1.42.2.2   nathanw /*
      4        1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5   1.42.2.2   nathanw  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6        1.1       mrg  *
      7        1.1       mrg  * All rights reserved.
      8        1.1       mrg  *
      9        1.1       mrg  * This code is derived from software contributed to Berkeley by
     10        1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11        1.1       mrg  *
     12        1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13        1.1       mrg  * modification, are permitted provided that the following conditions
     14        1.1       mrg  * are met:
     15        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20        1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21        1.1       mrg  *    must display the following acknowledgement:
     22        1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23   1.42.2.2   nathanw  *      Washington University, the University of California, Berkeley and
     24        1.1       mrg  *      its contributors.
     25        1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26        1.1       mrg  *    may be used to endorse or promote products derived from this software
     27        1.1       mrg  *    without specific prior written permission.
     28        1.1       mrg  *
     29        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30        1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31        1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32        1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33        1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34        1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35        1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36        1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37        1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39        1.1       mrg  * SUCH DAMAGE.
     40        1.1       mrg  *
     41        1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42        1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43        1.1       mrg  *
     44        1.1       mrg  *
     45        1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46        1.1       mrg  * All rights reserved.
     47   1.42.2.2   nathanw  *
     48        1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49        1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50        1.1       mrg  * notice and this permission notice appear in all copies of the
     51        1.1       mrg  * software, derivative works or modified versions, and any portions
     52        1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53   1.42.2.2   nathanw  *
     54   1.42.2.2   nathanw  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55   1.42.2.2   nathanw  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56        1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57   1.42.2.2   nathanw  *
     58        1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59        1.1       mrg  *
     60        1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61        1.1       mrg  *  School of Computer Science
     62        1.1       mrg  *  Carnegie Mellon University
     63        1.1       mrg  *  Pittsburgh PA 15213-3890
     64        1.1       mrg  *
     65        1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66        1.1       mrg  * rights to redistribute these changes.
     67        1.1       mrg  */
     68        1.6       mrg 
     69        1.1       mrg /*
     70        1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71        1.1       mrg  */
     72        1.1       mrg 
     73        1.7     chuck /*
     74        1.7     chuck  * overview of kernel memory management:
     75        1.7     chuck  *
     76        1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77        1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78        1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79        1.7     chuck  *
     80   1.42.2.2   nathanw  * the kernel_map has several "submaps."   submaps can only appear in
     81        1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82        1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83        1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84   1.42.2.2   nathanw  * virtual address space that is mapped by a submap is locked by the
     85        1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86        1.7     chuck  *
     87        1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88        1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89        1.7     chuck  * chunks.
     90        1.7     chuck  *
     91        1.7     chuck  * the vm system has several standard kernel submaps, including:
     92        1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93        1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94       1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95        1.7     chuck  *		at interrupt time ***
     96       1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97        1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98        1.7     chuck  *   exec_map => used during exec to handle exec args
     99        1.7     chuck  *   etc...
    100        1.7     chuck  *
    101        1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102        1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103        1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104   1.42.2.2   nathanw  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105        1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    106        1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107        1.7     chuck  *
    108        1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    109        1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    110   1.42.2.4   nathanw  * by splvm().  pages in these submaps are not assigned to an object.
    111        1.7     chuck  *
    112        1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    113        1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    114   1.42.2.2   nathanw  * large chunks of a kernel object's space go unused either because
    115   1.42.2.2   nathanw  * that area of kernel VM is unmapped, or there is some other type of
    116        1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117        1.7     chuck  * objects, the only part of the object that can ever be populated is the
    118        1.7     chuck  * offsets that are managed by the submap.
    119        1.7     chuck  *
    120        1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    121        1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122        1.7     chuck  * example:
    123        1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124        1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125        1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126        1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    127   1.42.2.2   nathanw  *   mapped at 0xf8235000.
    128        1.7     chuck  *
    129        1.7     chuck  * kernel object have one other special property: when the kernel virtual
    130        1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    131        1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    132        1.7     chuck  * this has to be done because there is no backing store for kernel pages
    133        1.7     chuck  * and no need to save them after they are no longer referenced.
    134        1.7     chuck  */
    135        1.7     chuck 
    136   1.42.2.5   nathanw #include <sys/cdefs.h>
    137   1.42.2.5   nathanw __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.42.2.10 2002/12/11 06:51:54 thorpej Exp $");
    138   1.42.2.5   nathanw 
    139   1.42.2.5   nathanw #include "opt_uvmhist.h"
    140   1.42.2.5   nathanw 
    141        1.1       mrg #include <sys/param.h>
    142        1.1       mrg #include <sys/systm.h>
    143        1.1       mrg #include <sys/proc.h>
    144        1.1       mrg 
    145        1.1       mrg #include <uvm/uvm.h>
    146        1.1       mrg 
    147        1.1       mrg /*
    148        1.1       mrg  * global data structures
    149        1.1       mrg  */
    150        1.1       mrg 
    151   1.42.2.2   nathanw struct vm_map *kernel_map = NULL;
    152        1.1       mrg 
    153        1.1       mrg /*
    154        1.1       mrg  * local data structues
    155        1.1       mrg  */
    156        1.1       mrg 
    157        1.1       mrg static struct vm_map		kernel_map_store;
    158        1.1       mrg 
    159        1.1       mrg /*
    160        1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    161        1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    162        1.1       mrg  *
    163        1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    164        1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    165        1.1       mrg  *    "end" is the end.
    166        1.1       mrg  */
    167        1.1       mrg 
    168        1.8       mrg void
    169        1.8       mrg uvm_km_init(start, end)
    170       1.14       eeh 	vaddr_t start, end;
    171        1.1       mrg {
    172       1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    173       1.27   thorpej 
    174       1.27   thorpej 	/*
    175       1.27   thorpej 	 * next, init kernel memory objects.
    176        1.8       mrg 	 */
    177        1.1       mrg 
    178        1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    179       1.34       chs 	uao_init();
    180        1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    181        1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    182        1.1       mrg 
    183       1.24   thorpej 	/*
    184   1.42.2.6   nathanw 	 * init the map and reserve any space that might already
    185   1.42.2.6   nathanw 	 * have been allocated kernel space before installing.
    186        1.8       mrg 	 */
    187        1.1       mrg 
    188       1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    189        1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    190   1.42.2.6   nathanw 	if (start != base &&
    191   1.42.2.6   nathanw 	    uvm_map(&kernel_map_store, &base, start - base, NULL,
    192   1.42.2.6   nathanw 		    UVM_UNKNOWN_OFFSET, 0,
    193   1.42.2.6   nathanw 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    194   1.42.2.6   nathanw 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
    195        1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    196   1.42.2.2   nathanw 
    197        1.8       mrg 	/*
    198        1.8       mrg 	 * install!
    199        1.8       mrg 	 */
    200        1.8       mrg 
    201        1.8       mrg 	kernel_map = &kernel_map_store;
    202        1.1       mrg }
    203        1.1       mrg 
    204        1.1       mrg /*
    205        1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    206        1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    207        1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    208        1.1       mrg  *
    209        1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    210        1.5   thorpej  *      by the submap must start
    211        1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    212        1.1       mrg  *	alloc a new map
    213        1.1       mrg  */
    214        1.8       mrg struct vm_map *
    215       1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    216        1.8       mrg 	struct vm_map *map;
    217   1.42.2.4   nathanw 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    218       1.14       eeh 	vsize_t size;
    219       1.25   thorpej 	int flags;
    220        1.8       mrg 	boolean_t fixed;
    221        1.8       mrg 	struct vm_map *submap;
    222        1.8       mrg {
    223        1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    224        1.1       mrg 
    225        1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    226        1.1       mrg 
    227        1.8       mrg 	/*
    228        1.8       mrg 	 * first allocate a blank spot in the parent map
    229        1.8       mrg 	 */
    230        1.8       mrg 
    231       1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    232        1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    233   1.42.2.1   nathanw 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    234        1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    235        1.8       mrg 	}
    236        1.8       mrg 
    237        1.8       mrg 	/*
    238        1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    239        1.8       mrg 	 */
    240        1.1       mrg 
    241        1.8       mrg 	*max = *min + size;
    242        1.5   thorpej 
    243        1.8       mrg 	/*
    244        1.8       mrg 	 * add references to pmap and create or init the submap
    245        1.8       mrg 	 */
    246        1.1       mrg 
    247        1.8       mrg 	pmap_reference(vm_map_pmap(map));
    248        1.8       mrg 	if (submap == NULL) {
    249       1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    250        1.8       mrg 		if (submap == NULL)
    251        1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    252        1.8       mrg 	} else {
    253       1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    254        1.8       mrg 		submap->pmap = vm_map_pmap(map);
    255        1.8       mrg 	}
    256        1.1       mrg 
    257        1.8       mrg 	/*
    258        1.8       mrg 	 * now let uvm_map_submap plug in it...
    259        1.8       mrg 	 */
    260        1.1       mrg 
    261   1.42.2.1   nathanw 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    262        1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    263        1.1       mrg 
    264        1.8       mrg 	return(submap);
    265        1.1       mrg }
    266        1.1       mrg 
    267        1.1       mrg /*
    268        1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    269        1.1       mrg  *
    270        1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    271        1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    272        1.1       mrg  */
    273        1.1       mrg 
    274        1.8       mrg void
    275        1.8       mrg uvm_km_pgremove(uobj, start, end)
    276        1.8       mrg 	struct uvm_object *uobj;
    277       1.14       eeh 	vaddr_t start, end;
    278        1.1       mrg {
    279   1.42.2.5   nathanw 	struct vm_page *pg;
    280   1.42.2.4   nathanw 	voff_t curoff, nextoff;
    281   1.42.2.5   nathanw 	int swpgonlydelta = 0;
    282        1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    283        1.1       mrg 
    284       1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    285       1.40       chs 	simple_lock(&uobj->vmobjlock);
    286        1.3       chs 
    287   1.42.2.4   nathanw 	for (curoff = start; curoff < end; curoff = nextoff) {
    288   1.42.2.4   nathanw 		nextoff = curoff + PAGE_SIZE;
    289   1.42.2.4   nathanw 		pg = uvm_pagelookup(uobj, curoff);
    290   1.42.2.5   nathanw 		if (pg != NULL && pg->flags & PG_BUSY) {
    291   1.42.2.4   nathanw 			pg->flags |= PG_WANTED;
    292   1.42.2.4   nathanw 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    293   1.42.2.4   nathanw 				    "km_pgrm", 0);
    294   1.42.2.4   nathanw 			simple_lock(&uobj->vmobjlock);
    295   1.42.2.4   nathanw 			nextoff = curoff;
    296   1.42.2.4   nathanw 			continue;
    297   1.42.2.4   nathanw 		}
    298        1.8       mrg 
    299   1.42.2.4   nathanw 		/*
    300   1.42.2.4   nathanw 		 * free the swap slot, then the page.
    301   1.42.2.4   nathanw 		 */
    302        1.8       mrg 
    303   1.42.2.5   nathanw 		if (pg == NULL &&
    304   1.42.2.5   nathanw 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    305   1.42.2.5   nathanw 			swpgonlydelta++;
    306   1.42.2.5   nathanw 		}
    307   1.42.2.4   nathanw 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    308   1.42.2.5   nathanw 		if (pg != NULL) {
    309   1.42.2.5   nathanw 			uvm_lock_pageq();
    310   1.42.2.5   nathanw 			uvm_pagefree(pg);
    311   1.42.2.5   nathanw 			uvm_unlock_pageq();
    312   1.42.2.5   nathanw 		}
    313        1.8       mrg 	}
    314        1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    315        1.8       mrg 
    316   1.42.2.5   nathanw 	if (swpgonlydelta > 0) {
    317   1.42.2.5   nathanw 		simple_lock(&uvm.swap_data_lock);
    318   1.42.2.5   nathanw 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    319   1.42.2.5   nathanw 		uvmexp.swpgonly -= swpgonlydelta;
    320   1.42.2.5   nathanw 		simple_unlock(&uvm.swap_data_lock);
    321       1.24   thorpej 	}
    322       1.24   thorpej }
    323       1.24   thorpej 
    324       1.24   thorpej 
    325       1.24   thorpej /*
    326       1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    327   1.42.2.4   nathanw  *    maps
    328       1.24   thorpej  *
    329       1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    330   1.42.2.4   nathanw  *    the pages right away.    (this is called from uvm_unmap_...).
    331       1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    332   1.42.2.4   nathanw  *    be on the active or inactive queues (because they have no object).
    333       1.24   thorpej  */
    334       1.24   thorpej 
    335       1.24   thorpej void
    336   1.42.2.4   nathanw uvm_km_pgremove_intrsafe(start, end)
    337       1.24   thorpej 	vaddr_t start, end;
    338       1.24   thorpej {
    339   1.42.2.4   nathanw 	struct vm_page *pg;
    340   1.42.2.4   nathanw 	paddr_t pa;
    341       1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    342       1.24   thorpej 
    343   1.42.2.4   nathanw 	for (; start < end; start += PAGE_SIZE) {
    344   1.42.2.4   nathanw 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    345       1.24   thorpej 			continue;
    346       1.40       chs 		}
    347   1.42.2.4   nathanw 		pg = PHYS_TO_VM_PAGE(pa);
    348   1.42.2.4   nathanw 		KASSERT(pg);
    349   1.42.2.4   nathanw 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    350   1.42.2.4   nathanw 		uvm_pagefree(pg);
    351       1.24   thorpej 	}
    352        1.1       mrg }
    353        1.1       mrg 
    354        1.1       mrg 
    355        1.1       mrg /*
    356        1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    357        1.1       mrg  *
    358        1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    359        1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    360        1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    361        1.1       mrg  *	this case.
    362        1.1       mrg  * => we return KVA of memory allocated
    363        1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    364        1.1       mrg  *	lock the map
    365        1.1       mrg  */
    366        1.1       mrg 
    367       1.14       eeh vaddr_t
    368        1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    369   1.42.2.2   nathanw 	struct vm_map *map;
    370        1.8       mrg 	struct uvm_object *obj;
    371       1.14       eeh 	vsize_t size;
    372        1.8       mrg 	int flags;
    373        1.1       mrg {
    374       1.14       eeh 	vaddr_t kva, loopva;
    375       1.14       eeh 	vaddr_t offset;
    376   1.42.2.2   nathanw 	vsize_t loopsize;
    377        1.8       mrg 	struct vm_page *pg;
    378        1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    379        1.1       mrg 
    380        1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    381       1.40       chs 		    map, obj, size, flags);
    382       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    383        1.1       mrg 
    384        1.8       mrg 	/*
    385        1.8       mrg 	 * setup for call
    386        1.8       mrg 	 */
    387        1.8       mrg 
    388        1.8       mrg 	size = round_page(size);
    389        1.8       mrg 	kva = vm_map_min(map);	/* hint */
    390        1.1       mrg 
    391        1.8       mrg 	/*
    392        1.8       mrg 	 * allocate some virtual space
    393        1.8       mrg 	 */
    394        1.8       mrg 
    395       1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    396       1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    397  1.42.2.10   thorpej 			  UVM_ADV_RANDOM,
    398  1.42.2.10   thorpej 			  (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
    399   1.42.2.1   nathanw 			!= 0)) {
    400        1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    401        1.8       mrg 		return(0);
    402        1.8       mrg 	}
    403        1.8       mrg 
    404        1.8       mrg 	/*
    405        1.8       mrg 	 * if all we wanted was VA, return now
    406        1.8       mrg 	 */
    407        1.8       mrg 
    408        1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    409        1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    410        1.8       mrg 		return(kva);
    411        1.8       mrg 	}
    412       1.40       chs 
    413        1.8       mrg 	/*
    414        1.8       mrg 	 * recover object offset from virtual address
    415        1.8       mrg 	 */
    416        1.8       mrg 
    417        1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    418        1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    419        1.8       mrg 
    420        1.8       mrg 	/*
    421        1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    422        1.8       mrg 	 * whom should ever get a handle on this area of VM.
    423        1.8       mrg 	 */
    424        1.8       mrg 
    425        1.8       mrg 	loopva = kva;
    426   1.42.2.2   nathanw 	loopsize = size;
    427   1.42.2.2   nathanw 	while (loopsize) {
    428   1.42.2.4   nathanw 		if (obj) {
    429   1.42.2.4   nathanw 			simple_lock(&obj->vmobjlock);
    430   1.42.2.4   nathanw 		}
    431   1.42.2.4   nathanw 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    432   1.42.2.2   nathanw 		if (__predict_true(pg != NULL)) {
    433        1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    434        1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    435        1.8       mrg 		}
    436   1.42.2.4   nathanw 		if (obj) {
    437   1.42.2.4   nathanw 			simple_unlock(&obj->vmobjlock);
    438   1.42.2.4   nathanw 		}
    439   1.42.2.2   nathanw 
    440        1.8       mrg 		/*
    441        1.8       mrg 		 * out of memory?
    442        1.8       mrg 		 */
    443        1.8       mrg 
    444       1.35   thorpej 		if (__predict_false(pg == NULL)) {
    445   1.42.2.8   nathanw 			if ((flags & UVM_KMF_NOWAIT) ||
    446   1.42.2.8   nathanw 			    ((flags & UVM_KMF_CANFAIL) &&
    447   1.42.2.8   nathanw 			     uvmexp.swpgonly == uvmexp.swpages)) {
    448        1.8       mrg 				/* free everything! */
    449       1.17     chuck 				uvm_unmap(map, kva, kva + size);
    450   1.42.2.8   nathanw 				return (0);
    451        1.8       mrg 			} else {
    452        1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    453        1.8       mrg 				continue;
    454        1.8       mrg 			}
    455        1.8       mrg 		}
    456   1.42.2.2   nathanw 
    457        1.8       mrg 		/*
    458   1.42.2.4   nathanw 		 * map it in
    459        1.8       mrg 		 */
    460       1.40       chs 
    461   1.42.2.4   nathanw 		if (obj == NULL) {
    462       1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    463   1.42.2.7   nathanw 			    VM_PROT_READ | VM_PROT_WRITE);
    464       1.24   thorpej 		} else {
    465       1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    466       1.33   thorpej 			    UVM_PROT_ALL,
    467       1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    468       1.24   thorpej 		}
    469        1.8       mrg 		loopva += PAGE_SIZE;
    470        1.8       mrg 		offset += PAGE_SIZE;
    471   1.42.2.2   nathanw 		loopsize -= PAGE_SIZE;
    472        1.8       mrg 	}
    473   1.42.2.4   nathanw 
    474   1.42.2.4   nathanw        	pmap_update(pmap_kernel());
    475   1.42.2.4   nathanw 
    476        1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    477        1.8       mrg 	return(kva);
    478        1.1       mrg }
    479        1.1       mrg 
    480        1.1       mrg /*
    481        1.1       mrg  * uvm_km_free: free an area of kernel memory
    482        1.1       mrg  */
    483        1.1       mrg 
    484        1.8       mrg void
    485        1.8       mrg uvm_km_free(map, addr, size)
    486   1.42.2.2   nathanw 	struct vm_map *map;
    487       1.14       eeh 	vaddr_t addr;
    488       1.14       eeh 	vsize_t size;
    489        1.8       mrg {
    490       1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    491        1.1       mrg }
    492        1.1       mrg 
    493        1.1       mrg /*
    494        1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    495        1.1       mrg  * anyone waiting for vm space.
    496        1.1       mrg  *
    497        1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    498        1.1       mrg  */
    499        1.1       mrg 
    500        1.8       mrg void
    501        1.8       mrg uvm_km_free_wakeup(map, addr, size)
    502   1.42.2.2   nathanw 	struct vm_map *map;
    503       1.14       eeh 	vaddr_t addr;
    504       1.14       eeh 	vsize_t size;
    505        1.1       mrg {
    506   1.42.2.2   nathanw 	struct vm_map_entry *dead_entries;
    507        1.1       mrg 
    508        1.8       mrg 	vm_map_lock(map);
    509   1.42.2.2   nathanw 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    510   1.42.2.1   nathanw 	    &dead_entries);
    511       1.31   thorpej 	wakeup(map);
    512        1.8       mrg 	vm_map_unlock(map);
    513        1.8       mrg 	if (dead_entries != NULL)
    514        1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    515        1.1       mrg }
    516        1.1       mrg 
    517        1.1       mrg /*
    518        1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    519        1.1       mrg  *
    520        1.1       mrg  * => we can sleep if needed
    521        1.1       mrg  */
    522        1.1       mrg 
    523       1.14       eeh vaddr_t
    524        1.8       mrg uvm_km_alloc1(map, size, zeroit)
    525   1.42.2.2   nathanw 	struct vm_map *map;
    526       1.14       eeh 	vsize_t size;
    527        1.8       mrg 	boolean_t zeroit;
    528        1.1       mrg {
    529       1.14       eeh 	vaddr_t kva, loopva, offset;
    530        1.8       mrg 	struct vm_page *pg;
    531        1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    532        1.1       mrg 
    533        1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    534       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    535        1.1       mrg 
    536        1.8       mrg 	size = round_page(size);
    537        1.8       mrg 	kva = vm_map_min(map);		/* hint */
    538        1.1       mrg 
    539        1.8       mrg 	/*
    540        1.8       mrg 	 * allocate some virtual space
    541        1.8       mrg 	 */
    542        1.1       mrg 
    543       1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    544       1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    545       1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    546   1.42.2.1   nathanw 					      0)) != 0)) {
    547        1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    548        1.8       mrg 		return(0);
    549        1.8       mrg 	}
    550        1.8       mrg 
    551        1.8       mrg 	/*
    552        1.8       mrg 	 * recover object offset from virtual address
    553        1.8       mrg 	 */
    554        1.8       mrg 
    555        1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    556        1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    557        1.8       mrg 
    558        1.8       mrg 	/*
    559   1.42.2.4   nathanw 	 * now allocate the memory.
    560        1.8       mrg 	 */
    561        1.8       mrg 
    562        1.8       mrg 	loopva = kva;
    563        1.8       mrg 	while (size) {
    564        1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    565   1.42.2.4   nathanw 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    566       1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    567        1.8       mrg 		if (pg) {
    568   1.42.2.4   nathanw 			pg->flags &= ~PG_BUSY;
    569        1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    570        1.8       mrg 		}
    571        1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    572   1.42.2.4   nathanw 		if (pg == NULL) {
    573   1.42.2.4   nathanw 			uvm_wait("km_alloc1w");
    574        1.8       mrg 			continue;
    575        1.8       mrg 		}
    576        1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    577       1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    578        1.8       mrg 		loopva += PAGE_SIZE;
    579        1.8       mrg 		offset += PAGE_SIZE;
    580        1.8       mrg 		size -= PAGE_SIZE;
    581        1.8       mrg 	}
    582   1.42.2.4   nathanw 	pmap_update(map->pmap);
    583   1.42.2.2   nathanw 
    584        1.8       mrg 	/*
    585        1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    586        1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    587        1.8       mrg 	 */
    588        1.1       mrg 
    589        1.8       mrg 	if (zeroit)
    590       1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    591        1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    592        1.8       mrg 	return(kva);
    593        1.1       mrg }
    594        1.1       mrg 
    595        1.1       mrg /*
    596        1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    597        1.1       mrg  *
    598        1.1       mrg  * => memory is not allocated until fault time
    599        1.1       mrg  */
    600        1.1       mrg 
    601       1.14       eeh vaddr_t
    602        1.8       mrg uvm_km_valloc(map, size)
    603   1.42.2.2   nathanw 	struct vm_map *map;
    604       1.14       eeh 	vsize_t size;
    605        1.1       mrg {
    606       1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    607       1.41  nisimura }
    608       1.41  nisimura 
    609       1.41  nisimura vaddr_t
    610       1.41  nisimura uvm_km_valloc_align(map, size, align)
    611   1.42.2.2   nathanw 	struct vm_map *map;
    612       1.41  nisimura 	vsize_t size;
    613       1.41  nisimura 	vsize_t align;
    614       1.41  nisimura {
    615       1.14       eeh 	vaddr_t kva;
    616        1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    617        1.1       mrg 
    618        1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    619       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    620        1.1       mrg 
    621        1.8       mrg 	size = round_page(size);
    622        1.8       mrg 	kva = vm_map_min(map);		/* hint */
    623        1.1       mrg 
    624        1.8       mrg 	/*
    625        1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    626        1.8       mrg 	 */
    627        1.1       mrg 
    628       1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    629       1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    630       1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    631   1.42.2.1   nathanw 					    0)) != 0)) {
    632        1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    633        1.8       mrg 		return(0);
    634        1.8       mrg 	}
    635        1.1       mrg 
    636        1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    637        1.8       mrg 	return(kva);
    638        1.1       mrg }
    639        1.1       mrg 
    640        1.1       mrg /*
    641        1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    642        1.1       mrg  *
    643        1.1       mrg  * => memory is not allocated until fault time
    644        1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    645        1.1       mrg  *    is larger than map (in which case we return 0)
    646        1.1       mrg  */
    647        1.1       mrg 
    648       1.14       eeh vaddr_t
    649       1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    650   1.42.2.2   nathanw 	struct vm_map *map;
    651       1.14       eeh 	vsize_t size;
    652       1.38     jeffs 	voff_t prefer;
    653        1.1       mrg {
    654       1.14       eeh 	vaddr_t kva;
    655       1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    656        1.1       mrg 
    657        1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    658       1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    659        1.1       mrg 
    660        1.8       mrg 	size = round_page(size);
    661        1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    662        1.8       mrg 		return(0);
    663        1.8       mrg 
    664   1.42.2.4   nathanw 	for (;;) {
    665        1.8       mrg 		kva = vm_map_min(map);		/* hint */
    666        1.8       mrg 
    667        1.8       mrg 		/*
    668        1.8       mrg 		 * allocate some virtual space.   will be demand filled
    669        1.8       mrg 		 * by kernel_object.
    670        1.8       mrg 		 */
    671        1.8       mrg 
    672       1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    673       1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    674        1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    675   1.42.2.1   nathanw 		    == 0)) {
    676        1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    677        1.8       mrg 			return(kva);
    678        1.8       mrg 		}
    679        1.8       mrg 
    680        1.8       mrg 		/*
    681        1.8       mrg 		 * failed.  sleep for a while (on map)
    682        1.8       mrg 		 */
    683        1.8       mrg 
    684        1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    685        1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    686        1.8       mrg 	}
    687        1.8       mrg 	/*NOTREACHED*/
    688       1.38     jeffs }
    689       1.38     jeffs 
    690       1.38     jeffs vaddr_t
    691       1.38     jeffs uvm_km_valloc_wait(map, size)
    692   1.42.2.2   nathanw 	struct vm_map *map;
    693       1.38     jeffs 	vsize_t size;
    694       1.38     jeffs {
    695       1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    696       1.10   thorpej }
    697       1.10   thorpej 
    698       1.10   thorpej /* Sanity; must specify both or none. */
    699       1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    700       1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    701       1.10   thorpej #error Must specify MAP and UNMAP together.
    702       1.10   thorpej #endif
    703       1.10   thorpej 
    704       1.10   thorpej /*
    705       1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    706       1.10   thorpej  *
    707       1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    708       1.10   thorpej  */
    709       1.10   thorpej 
    710       1.11   thorpej /* ARGSUSED */
    711       1.14       eeh vaddr_t
    712       1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    713   1.42.2.2   nathanw 	struct vm_map *map;
    714       1.12   thorpej 	struct uvm_object *obj;
    715       1.15   thorpej 	boolean_t waitok;
    716       1.10   thorpej {
    717       1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    718       1.10   thorpej 	struct vm_page *pg;
    719       1.14       eeh 	vaddr_t va;
    720       1.10   thorpej 
    721       1.15   thorpej  again:
    722       1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    723       1.35   thorpej 	if (__predict_false(pg == NULL)) {
    724       1.15   thorpej 		if (waitok) {
    725       1.15   thorpej 			uvm_wait("plpg");
    726       1.15   thorpej 			goto again;
    727       1.15   thorpej 		} else
    728       1.15   thorpej 			return (0);
    729       1.15   thorpej 	}
    730       1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    731       1.35   thorpej 	if (__predict_false(va == 0))
    732       1.10   thorpej 		uvm_pagefree(pg);
    733       1.10   thorpej 	return (va);
    734       1.10   thorpej #else
    735       1.14       eeh 	vaddr_t va;
    736       1.10   thorpej 	int s;
    737       1.10   thorpej 
    738       1.16   thorpej 	/*
    739       1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    740       1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    741       1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    742       1.16   thorpej 	 * accessed in interrupt context).
    743       1.16   thorpej 	 *
    744       1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    745       1.16   thorpej 	 * XXX function.
    746       1.16   thorpej 	 */
    747       1.16   thorpej 
    748       1.42   thorpej 	s = splvm();
    749  1.42.2.10   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    750  1.42.2.10   thorpej 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    751       1.10   thorpej 	splx(s);
    752       1.10   thorpej 	return (va);
    753       1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    754       1.10   thorpej }
    755       1.10   thorpej 
    756       1.10   thorpej /*
    757       1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    758       1.10   thorpej  *
    759       1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    760       1.10   thorpej  */
    761       1.10   thorpej 
    762       1.11   thorpej /* ARGSUSED */
    763       1.10   thorpej void
    764       1.11   thorpej uvm_km_free_poolpage1(map, addr)
    765   1.42.2.2   nathanw 	struct vm_map *map;
    766       1.14       eeh 	vaddr_t addr;
    767       1.10   thorpej {
    768       1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    769       1.14       eeh 	paddr_t pa;
    770       1.10   thorpej 
    771       1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    772       1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    773       1.10   thorpej #else
    774       1.10   thorpej 	int s;
    775       1.16   thorpej 
    776       1.16   thorpej 	/*
    777       1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    778       1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    779       1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    780       1.16   thorpej 	 * accessed in interrupt context).
    781       1.16   thorpej 	 *
    782       1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    783       1.16   thorpej 	 * XXX function.
    784       1.16   thorpej 	 */
    785       1.10   thorpej 
    786       1.42   thorpej 	s = splvm();
    787       1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    788       1.10   thorpej 	splx(s);
    789       1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    790        1.1       mrg }
    791