Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.49
      1  1.49       chs /*	$NetBSD: uvm_km.c,v 1.49 2001/06/02 18:09:26 chs Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.6       mrg #include "opt_uvmhist.h"
     70   1.1       mrg 
     71   1.1       mrg /*
     72   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     73   1.1       mrg  */
     74   1.1       mrg 
     75   1.7     chuck /*
     76   1.7     chuck  * overview of kernel memory management:
     77   1.7     chuck  *
     78   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79   1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80   1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81   1.7     chuck  *
     82  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     83   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     84   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     85   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     86  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     87   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     88   1.7     chuck  *
     89   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     90   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     91   1.7     chuck  * chunks.
     92   1.7     chuck  *
     93   1.7     chuck  * the vm system has several standard kernel submaps, including:
     94   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     95   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     96  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     97   1.7     chuck  *		at interrupt time ***
     98  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     99   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
    100   1.7     chuck  *   exec_map => used during exec to handle exec args
    101   1.7     chuck  *   etc...
    102   1.7     chuck  *
    103   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    104   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    106  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107   1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    108   1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109   1.7     chuck  *
    110   1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    111   1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    112  1.47       chs  * by splvm().    each of these submaps has their own private kernel
    113   1.7     chuck  * object (e.g. kmem_object, mb_object).
    114   1.7     chuck  *
    115   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    116   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    117  1.47       chs  * large chunks of a kernel object's space go unused either because
    118  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    119   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    121   1.7     chuck  * offsets that are managed by the submap.
    122   1.7     chuck  *
    123   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    124   1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125   1.7     chuck  * example:
    126   1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    130  1.47       chs  *   mapped at 0xf8235000.
    131   1.7     chuck  *
    132   1.7     chuck  * note that the offsets in kmem_object and mb_object also follow this
    133   1.7     chuck  * rule.   this means that the offsets for kmem_object must fall in the
    134   1.7     chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135   1.7     chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136   1.7     chuck  * in those objects will typically not start at zero.
    137   1.7     chuck  *
    138   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    139   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    140   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    141   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    142   1.7     chuck  * and no need to save them after they are no longer referenced.
    143   1.7     chuck  */
    144   1.7     chuck 
    145   1.1       mrg #include <sys/param.h>
    146   1.1       mrg #include <sys/systm.h>
    147   1.1       mrg #include <sys/proc.h>
    148   1.1       mrg 
    149   1.1       mrg #include <uvm/uvm.h>
    150   1.1       mrg 
    151   1.1       mrg /*
    152   1.1       mrg  * global data structures
    153   1.1       mrg  */
    154   1.1       mrg 
    155  1.49       chs struct vm_map *kernel_map = NULL;
    156   1.1       mrg 
    157  1.27   thorpej struct vmi_list vmi_list;
    158  1.48       chs struct simplelock vmi_list_slock;
    159  1.27   thorpej 
    160   1.1       mrg /*
    161   1.1       mrg  * local data structues
    162   1.1       mrg  */
    163   1.1       mrg 
    164   1.1       mrg static struct vm_map		kernel_map_store;
    165   1.1       mrg static struct uvm_object	kmem_object_store;
    166   1.1       mrg static struct uvm_object	mb_object_store;
    167   1.1       mrg 
    168   1.1       mrg /*
    169  1.28   thorpej  * All pager operations here are NULL, but the object must have
    170  1.28   thorpej  * a pager ops vector associated with it; various places assume
    171  1.28   thorpej  * it to be so.
    172   1.1       mrg  */
    173  1.28   thorpej static struct uvm_pagerops	km_pager;
    174   1.1       mrg 
    175   1.1       mrg /*
    176   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    177   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    178   1.1       mrg  *
    179   1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    180   1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    181   1.1       mrg  *    "end" is the end.
    182   1.1       mrg  */
    183   1.1       mrg 
    184   1.8       mrg void
    185   1.8       mrg uvm_km_init(start, end)
    186  1.14       eeh 	vaddr_t start, end;
    187   1.1       mrg {
    188  1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    189   1.1       mrg 
    190   1.8       mrg 	/*
    191  1.27   thorpej 	 * first, initialize the interrupt-safe map list.
    192  1.27   thorpej 	 */
    193  1.27   thorpej 	LIST_INIT(&vmi_list);
    194  1.27   thorpej 	simple_lock_init(&vmi_list_slock);
    195  1.27   thorpej 
    196  1.27   thorpej 	/*
    197  1.27   thorpej 	 * next, init kernel memory objects.
    198   1.8       mrg 	 */
    199   1.1       mrg 
    200   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    201  1.34       chs 	uao_init();
    202   1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    203   1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    204   1.1       mrg 
    205  1.24   thorpej 	/*
    206  1.24   thorpej 	 * kmem_object: for use by the kernel malloc().  Memory is always
    207  1.24   thorpej 	 * wired, and this object (and the kmem_map) can be accessed at
    208  1.24   thorpej 	 * interrupt time.
    209  1.24   thorpej 	 */
    210   1.8       mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    211   1.8       mrg 	kmem_object_store.pgops = &km_pager;
    212   1.8       mrg 	TAILQ_INIT(&kmem_object_store.memq);
    213   1.8       mrg 	kmem_object_store.uo_npages = 0;
    214   1.8       mrg 	/* we are special.  we never die */
    215  1.47       chs 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    216   1.8       mrg 	uvmexp.kmem_object = &kmem_object_store;
    217   1.8       mrg 
    218  1.24   thorpej 	/*
    219  1.24   thorpej 	 * mb_object: for mbuf cluster pages on platforms which use the
    220  1.24   thorpej 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    221  1.24   thorpej 	 * can be accessed at interrupt time.
    222  1.24   thorpej 	 */
    223   1.8       mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    224   1.8       mrg 	mb_object_store.pgops = &km_pager;
    225   1.8       mrg 	TAILQ_INIT(&mb_object_store.memq);
    226   1.8       mrg 	mb_object_store.uo_npages = 0;
    227   1.8       mrg 	/* we are special.  we never die */
    228  1.47       chs 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    229   1.8       mrg 	uvmexp.mb_object = &mb_object_store;
    230   1.8       mrg 
    231   1.8       mrg 	/*
    232  1.47       chs 	 * init the map and reserve allready allocated kernel space
    233   1.8       mrg 	 * before installing.
    234   1.8       mrg 	 */
    235   1.1       mrg 
    236  1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    237   1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    238   1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    239  1.39   thorpej 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    240  1.43       chs 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    241   1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    242  1.47       chs 
    243   1.8       mrg 	/*
    244   1.8       mrg 	 * install!
    245   1.8       mrg 	 */
    246   1.8       mrg 
    247   1.8       mrg 	kernel_map = &kernel_map_store;
    248   1.1       mrg }
    249   1.1       mrg 
    250   1.1       mrg /*
    251   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    252   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    253   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    254   1.1       mrg  *
    255   1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    256   1.5   thorpej  *      by the submap must start
    257   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    258   1.1       mrg  *	alloc a new map
    259   1.1       mrg  */
    260   1.8       mrg struct vm_map *
    261  1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    262   1.8       mrg 	struct vm_map *map;
    263  1.14       eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    264  1.14       eeh 	vsize_t size;
    265  1.25   thorpej 	int flags;
    266   1.8       mrg 	boolean_t fixed;
    267   1.8       mrg 	struct vm_map *submap;
    268   1.8       mrg {
    269   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    270   1.1       mrg 
    271   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    272   1.1       mrg 
    273   1.8       mrg 	/*
    274   1.8       mrg 	 * first allocate a blank spot in the parent map
    275   1.8       mrg 	 */
    276   1.8       mrg 
    277  1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    278   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    279  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    280   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    281   1.8       mrg 	}
    282   1.8       mrg 
    283   1.8       mrg 	/*
    284   1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    285   1.8       mrg 	 */
    286   1.1       mrg 
    287   1.8       mrg 	*max = *min + size;
    288   1.5   thorpej 
    289   1.8       mrg 	/*
    290   1.8       mrg 	 * add references to pmap and create or init the submap
    291   1.8       mrg 	 */
    292   1.1       mrg 
    293   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    294   1.8       mrg 	if (submap == NULL) {
    295  1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    296   1.8       mrg 		if (submap == NULL)
    297   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    298   1.8       mrg 	} else {
    299  1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    300   1.8       mrg 		submap->pmap = vm_map_pmap(map);
    301   1.8       mrg 	}
    302   1.1       mrg 
    303   1.8       mrg 	/*
    304   1.8       mrg 	 * now let uvm_map_submap plug in it...
    305   1.8       mrg 	 */
    306   1.1       mrg 
    307  1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    308   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    309   1.1       mrg 
    310   1.8       mrg 	return(submap);
    311   1.1       mrg }
    312   1.1       mrg 
    313   1.1       mrg /*
    314   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    315   1.1       mrg  *
    316   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    317   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    318   1.1       mrg  */
    319   1.1       mrg 
    320   1.1       mrg #define UKM_HASH_PENALTY 4      /* a guess */
    321   1.1       mrg 
    322   1.8       mrg void
    323   1.8       mrg uvm_km_pgremove(uobj, start, end)
    324   1.8       mrg 	struct uvm_object *uobj;
    325  1.14       eeh 	vaddr_t start, end;
    326   1.1       mrg {
    327  1.24   thorpej 	boolean_t by_list;
    328   1.8       mrg 	struct vm_page *pp, *ppnext;
    329  1.14       eeh 	vaddr_t curoff;
    330   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    331   1.1       mrg 
    332  1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    333  1.40       chs 	simple_lock(&uobj->vmobjlock);
    334   1.3       chs 
    335   1.8       mrg 	/* choose cheapest traversal */
    336   1.8       mrg 	by_list = (uobj->uo_npages <=
    337  1.18       chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    338  1.47       chs 
    339   1.8       mrg 	if (by_list)
    340   1.8       mrg 		goto loop_by_list;
    341   1.1       mrg 
    342   1.8       mrg 	/* by hash */
    343   1.1       mrg 
    344   1.8       mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    345   1.8       mrg 		pp = uvm_pagelookup(uobj, curoff);
    346   1.8       mrg 		if (pp == NULL)
    347   1.8       mrg 			continue;
    348   1.8       mrg 
    349   1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    350   1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    351  1.24   thorpej 
    352   1.8       mrg 		/* now do the actual work */
    353  1.24   thorpej 		if (pp->flags & PG_BUSY) {
    354   1.8       mrg 			/* owner must check for this when done */
    355   1.8       mrg 			pp->flags |= PG_RELEASED;
    356  1.24   thorpej 		} else {
    357  1.24   thorpej 			/* free the swap slot... */
    358  1.24   thorpej 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    359   1.8       mrg 
    360   1.8       mrg 			/*
    361  1.24   thorpej 			 * ...and free the page; note it may be on the
    362  1.24   thorpej 			 * active or inactive queues.
    363   1.8       mrg 			 */
    364   1.8       mrg 			uvm_lock_pageq();
    365   1.8       mrg 			uvm_pagefree(pp);
    366   1.8       mrg 			uvm_unlock_pageq();
    367   1.8       mrg 		}
    368   1.8       mrg 	}
    369   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    370   1.8       mrg 	return;
    371   1.1       mrg 
    372   1.1       mrg loop_by_list:
    373   1.1       mrg 
    374  1.40       chs 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    375  1.40       chs 		ppnext = TAILQ_NEXT(pp, listq);
    376   1.8       mrg 		if (pp->offset < start || pp->offset >= end) {
    377   1.8       mrg 			continue;
    378   1.8       mrg 		}
    379   1.8       mrg 
    380   1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    381   1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    382  1.24   thorpej 
    383  1.24   thorpej 		if (pp->flags & PG_BUSY) {
    384   1.8       mrg 			/* owner must check for this when done */
    385   1.8       mrg 			pp->flags |= PG_RELEASED;
    386  1.24   thorpej 		} else {
    387  1.24   thorpej 			/* free the swap slot... */
    388  1.24   thorpej 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    389   1.8       mrg 
    390   1.8       mrg 			/*
    391  1.24   thorpej 			 * ...and free the page; note it may be on the
    392  1.24   thorpej 			 * active or inactive queues.
    393   1.8       mrg 			 */
    394   1.8       mrg 			uvm_lock_pageq();
    395   1.8       mrg 			uvm_pagefree(pp);
    396   1.8       mrg 			uvm_unlock_pageq();
    397   1.8       mrg 		}
    398  1.24   thorpej 	}
    399  1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    400  1.24   thorpej }
    401  1.24   thorpej 
    402  1.24   thorpej 
    403  1.24   thorpej /*
    404  1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    405  1.24   thorpej  *    objects
    406  1.24   thorpej  *
    407  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    408  1.24   thorpej  *    the pages right away.    (this gets called from uvm_unmap_...).
    409  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    410  1.24   thorpej  *    be on the active or inactive queues (because these objects are
    411  1.24   thorpej  *    never allowed to "page").
    412  1.24   thorpej  */
    413  1.24   thorpej 
    414  1.24   thorpej void
    415  1.24   thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
    416  1.24   thorpej 	struct uvm_object *uobj;
    417  1.24   thorpej 	vaddr_t start, end;
    418  1.24   thorpej {
    419  1.24   thorpej 	boolean_t by_list;
    420  1.24   thorpej 	struct vm_page *pp, *ppnext;
    421  1.24   thorpej 	vaddr_t curoff;
    422  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    423  1.24   thorpej 
    424  1.40       chs 	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
    425  1.24   thorpej 	simple_lock(&uobj->vmobjlock);		/* lock object */
    426  1.24   thorpej 
    427  1.24   thorpej 	/* choose cheapest traversal */
    428  1.24   thorpej 	by_list = (uobj->uo_npages <=
    429  1.24   thorpej 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    430  1.47       chs 
    431  1.24   thorpej 	if (by_list)
    432  1.24   thorpej 		goto loop_by_list;
    433  1.24   thorpej 
    434  1.24   thorpej 	/* by hash */
    435  1.24   thorpej 
    436  1.24   thorpej 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    437  1.24   thorpej 		pp = uvm_pagelookup(uobj, curoff);
    438  1.40       chs 		if (pp == NULL) {
    439  1.24   thorpej 			continue;
    440  1.40       chs 		}
    441  1.24   thorpej 
    442  1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    443  1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    444  1.40       chs 		KASSERT((pp->flags & PG_BUSY) == 0);
    445  1.40       chs 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    446  1.40       chs 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    447  1.24   thorpej 		uvm_pagefree(pp);
    448  1.24   thorpej 	}
    449  1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    450  1.24   thorpej 	return;
    451  1.24   thorpej 
    452  1.24   thorpej loop_by_list:
    453   1.1       mrg 
    454  1.40       chs 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    455  1.40       chs 		ppnext = TAILQ_NEXT(pp, listq);
    456  1.24   thorpej 		if (pp->offset < start || pp->offset >= end) {
    457  1.24   thorpej 			continue;
    458  1.24   thorpej 		}
    459  1.24   thorpej 
    460  1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    461  1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    462  1.40       chs 		KASSERT((pp->flags & PG_BUSY) == 0);
    463  1.40       chs 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    464  1.40       chs 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    465  1.24   thorpej 		uvm_pagefree(pp);
    466   1.8       mrg 	}
    467   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    468   1.1       mrg }
    469   1.1       mrg 
    470   1.1       mrg 
    471   1.1       mrg /*
    472   1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    473   1.1       mrg  *
    474   1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    475   1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    476   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    477   1.1       mrg  *	this case.
    478   1.1       mrg  * => we return KVA of memory allocated
    479   1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    480   1.1       mrg  *	lock the map
    481   1.1       mrg  */
    482   1.1       mrg 
    483  1.14       eeh vaddr_t
    484   1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    485  1.49       chs 	struct vm_map *map;
    486   1.8       mrg 	struct uvm_object *obj;
    487  1.14       eeh 	vsize_t size;
    488   1.8       mrg 	int flags;
    489   1.1       mrg {
    490  1.14       eeh 	vaddr_t kva, loopva;
    491  1.14       eeh 	vaddr_t offset;
    492  1.44   thorpej 	vsize_t loopsize;
    493   1.8       mrg 	struct vm_page *pg;
    494   1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    495   1.1       mrg 
    496   1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    497  1.40       chs 		    map, obj, size, flags);
    498  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    499   1.1       mrg 
    500   1.8       mrg 	/*
    501   1.8       mrg 	 * setup for call
    502   1.8       mrg 	 */
    503   1.8       mrg 
    504   1.8       mrg 	size = round_page(size);
    505   1.8       mrg 	kva = vm_map_min(map);	/* hint */
    506   1.1       mrg 
    507   1.8       mrg 	/*
    508   1.8       mrg 	 * allocate some virtual space
    509   1.8       mrg 	 */
    510   1.8       mrg 
    511  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    512  1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    513  1.47       chs 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    514  1.43       chs 			!= 0)) {
    515   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    516   1.8       mrg 		return(0);
    517   1.8       mrg 	}
    518   1.8       mrg 
    519   1.8       mrg 	/*
    520   1.8       mrg 	 * if all we wanted was VA, return now
    521   1.8       mrg 	 */
    522   1.8       mrg 
    523   1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    524   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    525   1.8       mrg 		return(kva);
    526   1.8       mrg 	}
    527  1.40       chs 
    528   1.8       mrg 	/*
    529   1.8       mrg 	 * recover object offset from virtual address
    530   1.8       mrg 	 */
    531   1.8       mrg 
    532   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    533   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    534   1.8       mrg 
    535   1.8       mrg 	/*
    536   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    537   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    538   1.8       mrg 	 */
    539   1.8       mrg 
    540   1.8       mrg 	loopva = kva;
    541  1.44   thorpej 	loopsize = size;
    542  1.44   thorpej 	while (loopsize) {
    543   1.8       mrg 		simple_lock(&obj->vmobjlock);
    544  1.23       chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    545  1.45   thorpej 		if (__predict_true(pg != NULL)) {
    546   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    547   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    548   1.8       mrg 		}
    549   1.8       mrg 		simple_unlock(&obj->vmobjlock);
    550  1.47       chs 
    551   1.8       mrg 		/*
    552   1.8       mrg 		 * out of memory?
    553   1.8       mrg 		 */
    554   1.8       mrg 
    555  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    556   1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    557   1.8       mrg 				/* free everything! */
    558  1.17     chuck 				uvm_unmap(map, kva, kva + size);
    559   1.8       mrg 				return(0);
    560   1.8       mrg 			} else {
    561   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    562   1.8       mrg 				continue;
    563   1.8       mrg 			}
    564   1.8       mrg 		}
    565  1.47       chs 
    566   1.8       mrg 		/*
    567   1.8       mrg 		 * map it in: note that we call pmap_enter with the map and
    568   1.8       mrg 		 * object unlocked in case we are kmem_map/kmem_object
    569   1.8       mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    570   1.8       mrg 		 * it will need to lock it itself!)
    571   1.8       mrg 		 */
    572  1.40       chs 
    573  1.24   thorpej 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    574  1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    575  1.24   thorpej 			    VM_PROT_ALL);
    576  1.24   thorpej 		} else {
    577  1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    578  1.33   thorpej 			    UVM_PROT_ALL,
    579  1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    580  1.24   thorpej 		}
    581   1.8       mrg 		loopva += PAGE_SIZE;
    582   1.8       mrg 		offset += PAGE_SIZE;
    583  1.44   thorpej 		loopsize -= PAGE_SIZE;
    584   1.8       mrg 	}
    585  1.46   thorpej 	pmap_update();
    586   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    587   1.8       mrg 	return(kva);
    588   1.1       mrg }
    589   1.1       mrg 
    590   1.1       mrg /*
    591   1.1       mrg  * uvm_km_free: free an area of kernel memory
    592   1.1       mrg  */
    593   1.1       mrg 
    594   1.8       mrg void
    595   1.8       mrg uvm_km_free(map, addr, size)
    596  1.49       chs 	struct vm_map *map;
    597  1.14       eeh 	vaddr_t addr;
    598  1.14       eeh 	vsize_t size;
    599   1.8       mrg {
    600  1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    601   1.1       mrg }
    602   1.1       mrg 
    603   1.1       mrg /*
    604   1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    605   1.1       mrg  * anyone waiting for vm space.
    606   1.1       mrg  *
    607   1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    608   1.1       mrg  */
    609   1.1       mrg 
    610   1.8       mrg void
    611   1.8       mrg uvm_km_free_wakeup(map, addr, size)
    612  1.49       chs 	struct vm_map *map;
    613  1.14       eeh 	vaddr_t addr;
    614  1.14       eeh 	vsize_t size;
    615   1.1       mrg {
    616  1.49       chs 	struct vm_map_entry *dead_entries;
    617   1.1       mrg 
    618   1.8       mrg 	vm_map_lock(map);
    619  1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    620  1.43       chs 	    &dead_entries);
    621  1.31   thorpej 	wakeup(map);
    622   1.8       mrg 	vm_map_unlock(map);
    623   1.8       mrg 	if (dead_entries != NULL)
    624   1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    625   1.1       mrg }
    626   1.1       mrg 
    627   1.1       mrg /*
    628   1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    629   1.1       mrg  *
    630   1.1       mrg  * => we can sleep if needed
    631   1.1       mrg  */
    632   1.1       mrg 
    633  1.14       eeh vaddr_t
    634   1.8       mrg uvm_km_alloc1(map, size, zeroit)
    635  1.49       chs 	struct vm_map *map;
    636  1.14       eeh 	vsize_t size;
    637   1.8       mrg 	boolean_t zeroit;
    638   1.1       mrg {
    639  1.14       eeh 	vaddr_t kva, loopva, offset;
    640   1.8       mrg 	struct vm_page *pg;
    641   1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    642   1.1       mrg 
    643   1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    644  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    645   1.1       mrg 
    646   1.8       mrg 	size = round_page(size);
    647   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    648   1.1       mrg 
    649   1.8       mrg 	/*
    650   1.8       mrg 	 * allocate some virtual space
    651   1.8       mrg 	 */
    652   1.1       mrg 
    653  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    654  1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    655  1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    656  1.43       chs 					      0)) != 0)) {
    657   1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    658   1.8       mrg 		return(0);
    659   1.8       mrg 	}
    660   1.8       mrg 
    661   1.8       mrg 	/*
    662   1.8       mrg 	 * recover object offset from virtual address
    663   1.8       mrg 	 */
    664   1.8       mrg 
    665   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    666   1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    667   1.8       mrg 
    668   1.8       mrg 	/*
    669   1.8       mrg 	 * now allocate the memory.  we must be careful about released pages.
    670   1.8       mrg 	 */
    671   1.8       mrg 
    672   1.8       mrg 	loopva = kva;
    673   1.8       mrg 	while (size) {
    674   1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    675   1.8       mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    676   1.8       mrg 
    677   1.8       mrg 		/*
    678   1.8       mrg 		 * if we found a page in an unallocated region, it must be
    679   1.8       mrg 		 * released
    680   1.8       mrg 		 */
    681   1.8       mrg 		if (pg) {
    682   1.8       mrg 			if ((pg->flags & PG_RELEASED) == 0)
    683   1.8       mrg 				panic("uvm_km_alloc1: non-released page");
    684   1.8       mrg 			pg->flags |= PG_WANTED;
    685   1.8       mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    686  1.30   thorpej 			    FALSE, "km_alloc", 0);
    687   1.8       mrg 			continue;   /* retry */
    688   1.8       mrg 		}
    689  1.47       chs 
    690   1.8       mrg 		/* allocate ram */
    691  1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    692   1.8       mrg 		if (pg) {
    693   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    694   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    695   1.8       mrg 		}
    696   1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    697  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    698   1.8       mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    699   1.8       mrg 			continue;
    700   1.8       mrg 		}
    701  1.47       chs 
    702  1.24   thorpej 		/*
    703  1.24   thorpej 		 * map it in; note we're never called with an intrsafe
    704  1.24   thorpej 		 * object, so we always use regular old pmap_enter().
    705  1.24   thorpej 		 */
    706   1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    707  1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    708  1.24   thorpej 
    709   1.8       mrg 		loopva += PAGE_SIZE;
    710   1.8       mrg 		offset += PAGE_SIZE;
    711   1.8       mrg 		size -= PAGE_SIZE;
    712   1.8       mrg 	}
    713  1.46   thorpej 
    714  1.46   thorpej 	pmap_update();
    715  1.46   thorpej 
    716   1.8       mrg 	/*
    717   1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    718   1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    719   1.8       mrg 	 */
    720   1.1       mrg 
    721   1.8       mrg 	if (zeroit)
    722  1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    723   1.1       mrg 
    724   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    725   1.8       mrg 	return(kva);
    726   1.1       mrg }
    727   1.1       mrg 
    728   1.1       mrg /*
    729   1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    730   1.1       mrg  *
    731   1.1       mrg  * => memory is not allocated until fault time
    732   1.1       mrg  */
    733   1.1       mrg 
    734  1.14       eeh vaddr_t
    735   1.8       mrg uvm_km_valloc(map, size)
    736  1.49       chs 	struct vm_map *map;
    737  1.14       eeh 	vsize_t size;
    738   1.1       mrg {
    739  1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    740  1.41  nisimura }
    741  1.41  nisimura 
    742  1.41  nisimura vaddr_t
    743  1.41  nisimura uvm_km_valloc_align(map, size, align)
    744  1.49       chs 	struct vm_map *map;
    745  1.41  nisimura 	vsize_t size;
    746  1.41  nisimura 	vsize_t align;
    747  1.41  nisimura {
    748  1.14       eeh 	vaddr_t kva;
    749   1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    750   1.1       mrg 
    751   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    752  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    753   1.1       mrg 
    754   1.8       mrg 	size = round_page(size);
    755   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    756   1.1       mrg 
    757   1.8       mrg 	/*
    758   1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    759   1.8       mrg 	 */
    760   1.1       mrg 
    761  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    762  1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    763  1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    764  1.43       chs 					    0)) != 0)) {
    765   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    766   1.8       mrg 		return(0);
    767   1.8       mrg 	}
    768   1.1       mrg 
    769   1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    770   1.8       mrg 	return(kva);
    771   1.1       mrg }
    772   1.1       mrg 
    773   1.1       mrg /*
    774   1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    775   1.1       mrg  *
    776   1.1       mrg  * => memory is not allocated until fault time
    777   1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    778   1.1       mrg  *    is larger than map (in which case we return 0)
    779   1.1       mrg  */
    780   1.1       mrg 
    781  1.14       eeh vaddr_t
    782  1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    783  1.49       chs 	struct vm_map *map;
    784  1.14       eeh 	vsize_t size;
    785  1.38     jeffs 	voff_t prefer;
    786   1.1       mrg {
    787  1.14       eeh 	vaddr_t kva;
    788  1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    789   1.1       mrg 
    790   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    791  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    792   1.1       mrg 
    793   1.8       mrg 	size = round_page(size);
    794   1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    795   1.8       mrg 		return(0);
    796   1.8       mrg 
    797   1.8       mrg 	while (1) {
    798   1.8       mrg 		kva = vm_map_min(map);		/* hint */
    799   1.8       mrg 
    800   1.8       mrg 		/*
    801   1.8       mrg 		 * allocate some virtual space.   will be demand filled
    802   1.8       mrg 		 * by kernel_object.
    803   1.8       mrg 		 */
    804   1.8       mrg 
    805  1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    806  1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    807   1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    808  1.43       chs 		    == 0)) {
    809   1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    810   1.8       mrg 			return(kva);
    811   1.8       mrg 		}
    812   1.8       mrg 
    813   1.8       mrg 		/*
    814   1.8       mrg 		 * failed.  sleep for a while (on map)
    815   1.8       mrg 		 */
    816   1.8       mrg 
    817   1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    818   1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    819   1.8       mrg 	}
    820   1.8       mrg 	/*NOTREACHED*/
    821  1.38     jeffs }
    822  1.38     jeffs 
    823  1.38     jeffs vaddr_t
    824  1.38     jeffs uvm_km_valloc_wait(map, size)
    825  1.49       chs 	struct vm_map *map;
    826  1.38     jeffs 	vsize_t size;
    827  1.38     jeffs {
    828  1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    829  1.10   thorpej }
    830  1.10   thorpej 
    831  1.10   thorpej /* Sanity; must specify both or none. */
    832  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    833  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    834  1.10   thorpej #error Must specify MAP and UNMAP together.
    835  1.10   thorpej #endif
    836  1.10   thorpej 
    837  1.10   thorpej /*
    838  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    839  1.10   thorpej  *
    840  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    841  1.10   thorpej  */
    842  1.10   thorpej 
    843  1.11   thorpej /* ARGSUSED */
    844  1.14       eeh vaddr_t
    845  1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    846  1.49       chs 	struct vm_map *map;
    847  1.12   thorpej 	struct uvm_object *obj;
    848  1.15   thorpej 	boolean_t waitok;
    849  1.10   thorpej {
    850  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    851  1.10   thorpej 	struct vm_page *pg;
    852  1.14       eeh 	vaddr_t va;
    853  1.10   thorpej 
    854  1.15   thorpej  again:
    855  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    856  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    857  1.15   thorpej 		if (waitok) {
    858  1.15   thorpej 			uvm_wait("plpg");
    859  1.15   thorpej 			goto again;
    860  1.15   thorpej 		} else
    861  1.15   thorpej 			return (0);
    862  1.15   thorpej 	}
    863  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    864  1.35   thorpej 	if (__predict_false(va == 0))
    865  1.10   thorpej 		uvm_pagefree(pg);
    866  1.10   thorpej 	return (va);
    867  1.10   thorpej #else
    868  1.14       eeh 	vaddr_t va;
    869  1.10   thorpej 	int s;
    870  1.10   thorpej 
    871  1.16   thorpej 	/*
    872  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    873  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    874  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    875  1.16   thorpej 	 * accessed in interrupt context).
    876  1.16   thorpej 	 *
    877  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    878  1.16   thorpej 	 * XXX function.
    879  1.16   thorpej 	 */
    880  1.16   thorpej 
    881  1.42   thorpej 	s = splvm();
    882  1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    883  1.10   thorpej 	splx(s);
    884  1.10   thorpej 	return (va);
    885  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    886  1.10   thorpej }
    887  1.10   thorpej 
    888  1.10   thorpej /*
    889  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    890  1.10   thorpej  *
    891  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    892  1.10   thorpej  */
    893  1.10   thorpej 
    894  1.11   thorpej /* ARGSUSED */
    895  1.10   thorpej void
    896  1.11   thorpej uvm_km_free_poolpage1(map, addr)
    897  1.49       chs 	struct vm_map *map;
    898  1.14       eeh 	vaddr_t addr;
    899  1.10   thorpej {
    900  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    901  1.14       eeh 	paddr_t pa;
    902  1.10   thorpej 
    903  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    904  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    905  1.10   thorpej #else
    906  1.10   thorpej 	int s;
    907  1.16   thorpej 
    908  1.16   thorpej 	/*
    909  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    910  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    911  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    912  1.16   thorpej 	 * accessed in interrupt context).
    913  1.16   thorpej 	 *
    914  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    915  1.16   thorpej 	 * XXX function.
    916  1.16   thorpej 	 */
    917  1.10   thorpej 
    918  1.42   thorpej 	s = splvm();
    919  1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    920  1.10   thorpej 	splx(s);
    921  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    922   1.1       mrg }
    923