Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.50.4.1
      1  1.50.4.1      fvdl /*	$NetBSD: uvm_km.c,v 1.50.4.1 2001/10/01 12:48:41 fvdl Exp $	*/
      2       1.1       mrg 
      3      1.47       chs /*
      4       1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1       mrg  *
      7       1.1       mrg  * All rights reserved.
      8       1.1       mrg  *
      9       1.1       mrg  * This code is derived from software contributed to Berkeley by
     10       1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1       mrg  *
     12       1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1       mrg  * modification, are permitted provided that the following conditions
     14       1.1       mrg  * are met:
     15       1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1       mrg  *    must display the following acknowledgement:
     22       1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.47       chs  *      Washington University, the University of California, Berkeley and
     24       1.1       mrg  *      its contributors.
     25       1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1       mrg  *    may be used to endorse or promote products derived from this software
     27       1.1       mrg  *    without specific prior written permission.
     28       1.1       mrg  *
     29       1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1       mrg  * SUCH DAMAGE.
     40       1.1       mrg  *
     41       1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42       1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43       1.1       mrg  *
     44       1.1       mrg  *
     45       1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1       mrg  * All rights reserved.
     47      1.47       chs  *
     48       1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1       mrg  * notice and this permission notice appear in all copies of the
     51       1.1       mrg  * software, derivative works or modified versions, and any portions
     52       1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.47       chs  *
     54      1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.47       chs  *
     58       1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1       mrg  *
     60       1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1       mrg  *  School of Computer Science
     62       1.1       mrg  *  Carnegie Mellon University
     63       1.1       mrg  *  Pittsburgh PA 15213-3890
     64       1.1       mrg  *
     65       1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1       mrg  * rights to redistribute these changes.
     67       1.1       mrg  */
     68       1.6       mrg 
     69       1.6       mrg #include "opt_uvmhist.h"
     70       1.1       mrg 
     71       1.1       mrg /*
     72       1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     73       1.1       mrg  */
     74       1.1       mrg 
     75       1.7     chuck /*
     76       1.7     chuck  * overview of kernel memory management:
     77       1.7     chuck  *
     78       1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79       1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80       1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81       1.7     chuck  *
     82      1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     83       1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     84       1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     85       1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     86      1.47       chs  * virtual address space that is mapped by a submap is locked by the
     87       1.7     chuck  * submap's lock -- not the kernel_map's lock.
     88       1.7     chuck  *
     89       1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     90       1.7     chuck  * up the locking and protection of the kernel address space into smaller
     91       1.7     chuck  * chunks.
     92       1.7     chuck  *
     93       1.7     chuck  * the vm system has several standard kernel submaps, including:
     94       1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     95       1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     96      1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     97       1.7     chuck  *		at interrupt time ***
     98      1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     99       1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
    100       1.7     chuck  *   exec_map => used during exec to handle exec args
    101       1.7     chuck  *   etc...
    102       1.7     chuck  *
    103       1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    104       1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105       1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    106      1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107       1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    108       1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109       1.7     chuck  *
    110       1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    111       1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    112  1.50.4.1      fvdl  * by splvm().  pages in these submaps are not assigned to an object.
    113       1.7     chuck  *
    114       1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    115       1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    116      1.47       chs  * large chunks of a kernel object's space go unused either because
    117      1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    118       1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    119       1.7     chuck  * objects, the only part of the object that can ever be populated is the
    120       1.7     chuck  * offsets that are managed by the submap.
    121       1.7     chuck  *
    122       1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    123       1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    124       1.7     chuck  * example:
    125       1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    126       1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    127       1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    128       1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    129      1.47       chs  *   mapped at 0xf8235000.
    130       1.7     chuck  *
    131       1.7     chuck  * kernel object have one other special property: when the kernel virtual
    132       1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    133       1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    134       1.7     chuck  * this has to be done because there is no backing store for kernel pages
    135       1.7     chuck  * and no need to save them after they are no longer referenced.
    136       1.7     chuck  */
    137       1.7     chuck 
    138       1.1       mrg #include <sys/param.h>
    139       1.1       mrg #include <sys/systm.h>
    140       1.1       mrg #include <sys/proc.h>
    141       1.1       mrg 
    142       1.1       mrg #include <uvm/uvm.h>
    143       1.1       mrg 
    144       1.1       mrg /*
    145       1.1       mrg  * global data structures
    146       1.1       mrg  */
    147       1.1       mrg 
    148      1.49       chs struct vm_map *kernel_map = NULL;
    149       1.1       mrg 
    150       1.1       mrg /*
    151       1.1       mrg  * local data structues
    152       1.1       mrg  */
    153       1.1       mrg 
    154       1.1       mrg static struct vm_map		kernel_map_store;
    155       1.1       mrg 
    156       1.1       mrg /*
    157       1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    158       1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    159       1.1       mrg  *
    160       1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    161       1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    162       1.1       mrg  *    "end" is the end.
    163       1.1       mrg  */
    164       1.1       mrg 
    165       1.8       mrg void
    166       1.8       mrg uvm_km_init(start, end)
    167      1.14       eeh 	vaddr_t start, end;
    168       1.1       mrg {
    169      1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    170      1.27   thorpej 
    171      1.27   thorpej 	/*
    172      1.27   thorpej 	 * next, init kernel memory objects.
    173       1.8       mrg 	 */
    174       1.1       mrg 
    175       1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    176      1.34       chs 	uao_init();
    177       1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    178       1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    179       1.1       mrg 
    180      1.24   thorpej 	/*
    181      1.47       chs 	 * init the map and reserve allready allocated kernel space
    182       1.8       mrg 	 * before installing.
    183       1.8       mrg 	 */
    184       1.1       mrg 
    185      1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    186       1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    187       1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    188      1.39   thorpej 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    189      1.43       chs 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    190       1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    191      1.47       chs 
    192       1.8       mrg 	/*
    193       1.8       mrg 	 * install!
    194       1.8       mrg 	 */
    195       1.8       mrg 
    196       1.8       mrg 	kernel_map = &kernel_map_store;
    197       1.1       mrg }
    198       1.1       mrg 
    199       1.1       mrg /*
    200       1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    201       1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    202       1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    203       1.1       mrg  *
    204       1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    205       1.5   thorpej  *      by the submap must start
    206       1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    207       1.1       mrg  *	alloc a new map
    208       1.1       mrg  */
    209       1.8       mrg struct vm_map *
    210      1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    211       1.8       mrg 	struct vm_map *map;
    212  1.50.4.1      fvdl 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    213      1.14       eeh 	vsize_t size;
    214      1.25   thorpej 	int flags;
    215       1.8       mrg 	boolean_t fixed;
    216       1.8       mrg 	struct vm_map *submap;
    217       1.8       mrg {
    218       1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    219       1.1       mrg 
    220       1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    221       1.1       mrg 
    222       1.8       mrg 	/*
    223       1.8       mrg 	 * first allocate a blank spot in the parent map
    224       1.8       mrg 	 */
    225       1.8       mrg 
    226      1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    227       1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    228      1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    229       1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    230       1.8       mrg 	}
    231       1.8       mrg 
    232       1.8       mrg 	/*
    233       1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    234       1.8       mrg 	 */
    235       1.1       mrg 
    236       1.8       mrg 	*max = *min + size;
    237       1.5   thorpej 
    238       1.8       mrg 	/*
    239       1.8       mrg 	 * add references to pmap and create or init the submap
    240       1.8       mrg 	 */
    241       1.1       mrg 
    242       1.8       mrg 	pmap_reference(vm_map_pmap(map));
    243       1.8       mrg 	if (submap == NULL) {
    244      1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    245       1.8       mrg 		if (submap == NULL)
    246       1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    247       1.8       mrg 	} else {
    248      1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    249       1.8       mrg 		submap->pmap = vm_map_pmap(map);
    250       1.8       mrg 	}
    251       1.1       mrg 
    252       1.8       mrg 	/*
    253       1.8       mrg 	 * now let uvm_map_submap plug in it...
    254       1.8       mrg 	 */
    255       1.1       mrg 
    256      1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    257       1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    258       1.1       mrg 
    259       1.8       mrg 	return(submap);
    260       1.1       mrg }
    261       1.1       mrg 
    262       1.1       mrg /*
    263       1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    264       1.1       mrg  *
    265       1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    266       1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    267       1.1       mrg  */
    268       1.1       mrg 
    269       1.8       mrg void
    270       1.8       mrg uvm_km_pgremove(uobj, start, end)
    271       1.8       mrg 	struct uvm_object *uobj;
    272      1.14       eeh 	vaddr_t start, end;
    273       1.1       mrg {
    274      1.24   thorpej 	boolean_t by_list;
    275  1.50.4.1      fvdl 	struct vm_page *pg, *nextpg;
    276  1.50.4.1      fvdl 	voff_t curoff, nextoff;
    277       1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    278       1.1       mrg 
    279      1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    280      1.40       chs 	simple_lock(&uobj->vmobjlock);
    281       1.3       chs 
    282       1.8       mrg 	/* choose cheapest traversal */
    283       1.8       mrg 	by_list = (uobj->uo_npages <=
    284  1.50.4.1      fvdl 	     ((end - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    285       1.8       mrg 	if (by_list)
    286       1.8       mrg 		goto loop_by_list;
    287       1.1       mrg 
    288  1.50.4.1      fvdl 	for (curoff = start; curoff < end; curoff = nextoff) {
    289  1.50.4.1      fvdl 		nextoff = curoff + PAGE_SIZE;
    290  1.50.4.1      fvdl 		pg = uvm_pagelookup(uobj, curoff);
    291  1.50.4.1      fvdl 		if (pg == NULL) {
    292       1.8       mrg 			continue;
    293  1.50.4.1      fvdl 		}
    294  1.50.4.1      fvdl 		if (pg->flags & PG_BUSY) {
    295  1.50.4.1      fvdl 			pg->flags |= PG_WANTED;
    296  1.50.4.1      fvdl 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    297  1.50.4.1      fvdl 				    "km_pgrm", 0);
    298  1.50.4.1      fvdl 			simple_lock(&uobj->vmobjlock);
    299  1.50.4.1      fvdl 			nextoff = curoff;
    300  1.50.4.1      fvdl 			continue;
    301  1.50.4.1      fvdl 		}
    302       1.8       mrg 
    303  1.50.4.1      fvdl 		/*
    304  1.50.4.1      fvdl 		 * free the swap slot, then the page.
    305  1.50.4.1      fvdl 		 */
    306       1.8       mrg 
    307  1.50.4.1      fvdl 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    308  1.50.4.1      fvdl 		uvm_lock_pageq();
    309  1.50.4.1      fvdl 		uvm_pagefree(pg);
    310  1.50.4.1      fvdl 		uvm_unlock_pageq();
    311       1.8       mrg 	}
    312       1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    313       1.8       mrg 	return;
    314       1.1       mrg 
    315       1.1       mrg loop_by_list:
    316  1.50.4.1      fvdl 	for (pg = TAILQ_FIRST(&uobj->memq); pg != NULL; pg = nextpg) {
    317  1.50.4.1      fvdl 		nextpg = TAILQ_NEXT(pg, listq);
    318  1.50.4.1      fvdl 		if (pg->offset < start || pg->offset >= end) {
    319  1.50.4.1      fvdl 			continue;
    320  1.50.4.1      fvdl 		}
    321  1.50.4.1      fvdl 		if (pg->flags & PG_BUSY) {
    322  1.50.4.1      fvdl 			pg->flags |= PG_WANTED;
    323  1.50.4.1      fvdl 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    324  1.50.4.1      fvdl 				    "km_pgrm", 0);
    325  1.50.4.1      fvdl 			simple_lock(&uobj->vmobjlock);
    326  1.50.4.1      fvdl 			nextpg = TAILQ_FIRST(&uobj->memq);
    327       1.8       mrg 			continue;
    328       1.8       mrg 		}
    329       1.8       mrg 
    330  1.50.4.1      fvdl 		/*
    331  1.50.4.1      fvdl 		 * free the swap slot, then the page.
    332  1.50.4.1      fvdl 		 */
    333       1.8       mrg 
    334  1.50.4.1      fvdl 		uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    335  1.50.4.1      fvdl 		uvm_lock_pageq();
    336  1.50.4.1      fvdl 		uvm_pagefree(pg);
    337  1.50.4.1      fvdl 		uvm_unlock_pageq();
    338      1.24   thorpej 	}
    339      1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    340      1.24   thorpej }
    341      1.24   thorpej 
    342      1.24   thorpej 
    343      1.24   thorpej /*
    344      1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    345  1.50.4.1      fvdl  *    maps
    346      1.24   thorpej  *
    347      1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    348  1.50.4.1      fvdl  *    the pages right away.    (this is called from uvm_unmap_...).
    349      1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    350  1.50.4.1      fvdl  *    be on the active or inactive queues (because they have no object).
    351      1.24   thorpej  */
    352      1.24   thorpej 
    353      1.24   thorpej void
    354  1.50.4.1      fvdl uvm_km_pgremove_intrsafe(start, end)
    355      1.24   thorpej 	vaddr_t start, end;
    356      1.24   thorpej {
    357  1.50.4.1      fvdl 	struct vm_page *pg;
    358  1.50.4.1      fvdl 	paddr_t pa;
    359      1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    360      1.24   thorpej 
    361  1.50.4.1      fvdl 	for (; start < end; start += PAGE_SIZE) {
    362  1.50.4.1      fvdl 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    363      1.24   thorpej 			continue;
    364      1.40       chs 		}
    365  1.50.4.1      fvdl 		pg = PHYS_TO_VM_PAGE(pa);
    366  1.50.4.1      fvdl 		KASSERT(pg);
    367  1.50.4.1      fvdl 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    368  1.50.4.1      fvdl 		uvm_pagefree(pg);
    369      1.24   thorpej 	}
    370       1.1       mrg }
    371       1.1       mrg 
    372       1.1       mrg 
    373       1.1       mrg /*
    374       1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    375       1.1       mrg  *
    376       1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    377       1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    378       1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    379       1.1       mrg  *	this case.
    380       1.1       mrg  * => we return KVA of memory allocated
    381       1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    382       1.1       mrg  *	lock the map
    383       1.1       mrg  */
    384       1.1       mrg 
    385      1.14       eeh vaddr_t
    386       1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    387      1.49       chs 	struct vm_map *map;
    388       1.8       mrg 	struct uvm_object *obj;
    389      1.14       eeh 	vsize_t size;
    390       1.8       mrg 	int flags;
    391       1.1       mrg {
    392      1.14       eeh 	vaddr_t kva, loopva;
    393      1.14       eeh 	vaddr_t offset;
    394      1.44   thorpej 	vsize_t loopsize;
    395       1.8       mrg 	struct vm_page *pg;
    396       1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    397       1.1       mrg 
    398       1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    399      1.40       chs 		    map, obj, size, flags);
    400      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    401       1.1       mrg 
    402       1.8       mrg 	/*
    403       1.8       mrg 	 * setup for call
    404       1.8       mrg 	 */
    405       1.8       mrg 
    406       1.8       mrg 	size = round_page(size);
    407       1.8       mrg 	kva = vm_map_min(map);	/* hint */
    408       1.1       mrg 
    409       1.8       mrg 	/*
    410       1.8       mrg 	 * allocate some virtual space
    411       1.8       mrg 	 */
    412       1.8       mrg 
    413      1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    414      1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    415      1.47       chs 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    416      1.43       chs 			!= 0)) {
    417       1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    418       1.8       mrg 		return(0);
    419       1.8       mrg 	}
    420       1.8       mrg 
    421       1.8       mrg 	/*
    422       1.8       mrg 	 * if all we wanted was VA, return now
    423       1.8       mrg 	 */
    424       1.8       mrg 
    425       1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    426       1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    427       1.8       mrg 		return(kva);
    428       1.8       mrg 	}
    429      1.40       chs 
    430       1.8       mrg 	/*
    431       1.8       mrg 	 * recover object offset from virtual address
    432       1.8       mrg 	 */
    433       1.8       mrg 
    434       1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    435       1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    436       1.8       mrg 
    437       1.8       mrg 	/*
    438       1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    439       1.8       mrg 	 * whom should ever get a handle on this area of VM.
    440       1.8       mrg 	 */
    441       1.8       mrg 
    442       1.8       mrg 	loopva = kva;
    443      1.44   thorpej 	loopsize = size;
    444      1.44   thorpej 	while (loopsize) {
    445  1.50.4.1      fvdl 		if (obj) {
    446  1.50.4.1      fvdl 			simple_lock(&obj->vmobjlock);
    447  1.50.4.1      fvdl 		}
    448  1.50.4.1      fvdl 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    449      1.45   thorpej 		if (__predict_true(pg != NULL)) {
    450       1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    451       1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    452       1.8       mrg 		}
    453  1.50.4.1      fvdl 		if (obj) {
    454  1.50.4.1      fvdl 			simple_unlock(&obj->vmobjlock);
    455  1.50.4.1      fvdl 		}
    456      1.47       chs 
    457       1.8       mrg 		/*
    458       1.8       mrg 		 * out of memory?
    459       1.8       mrg 		 */
    460       1.8       mrg 
    461      1.35   thorpej 		if (__predict_false(pg == NULL)) {
    462       1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    463       1.8       mrg 				/* free everything! */
    464      1.17     chuck 				uvm_unmap(map, kva, kva + size);
    465       1.8       mrg 				return(0);
    466       1.8       mrg 			} else {
    467       1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    468       1.8       mrg 				continue;
    469       1.8       mrg 			}
    470       1.8       mrg 		}
    471      1.47       chs 
    472       1.8       mrg 		/*
    473  1.50.4.1      fvdl 		 * map it in
    474       1.8       mrg 		 */
    475      1.40       chs 
    476  1.50.4.1      fvdl 		if (obj == NULL) {
    477      1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    478      1.24   thorpej 			    VM_PROT_ALL);
    479      1.24   thorpej 		} else {
    480      1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    481      1.33   thorpej 			    UVM_PROT_ALL,
    482      1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    483      1.24   thorpej 		}
    484       1.8       mrg 		loopva += PAGE_SIZE;
    485       1.8       mrg 		offset += PAGE_SIZE;
    486      1.44   thorpej 		loopsize -= PAGE_SIZE;
    487       1.8       mrg 	}
    488  1.50.4.1      fvdl 
    489  1.50.4.1      fvdl        	pmap_update(pmap_kernel());
    490  1.50.4.1      fvdl 
    491       1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    492       1.8       mrg 	return(kva);
    493       1.1       mrg }
    494       1.1       mrg 
    495       1.1       mrg /*
    496       1.1       mrg  * uvm_km_free: free an area of kernel memory
    497       1.1       mrg  */
    498       1.1       mrg 
    499       1.8       mrg void
    500       1.8       mrg uvm_km_free(map, addr, size)
    501      1.49       chs 	struct vm_map *map;
    502      1.14       eeh 	vaddr_t addr;
    503      1.14       eeh 	vsize_t size;
    504       1.8       mrg {
    505      1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    506       1.1       mrg }
    507       1.1       mrg 
    508       1.1       mrg /*
    509       1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    510       1.1       mrg  * anyone waiting for vm space.
    511       1.1       mrg  *
    512       1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    513       1.1       mrg  */
    514       1.1       mrg 
    515       1.8       mrg void
    516       1.8       mrg uvm_km_free_wakeup(map, addr, size)
    517      1.49       chs 	struct vm_map *map;
    518      1.14       eeh 	vaddr_t addr;
    519      1.14       eeh 	vsize_t size;
    520       1.1       mrg {
    521      1.49       chs 	struct vm_map_entry *dead_entries;
    522       1.1       mrg 
    523       1.8       mrg 	vm_map_lock(map);
    524      1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    525      1.43       chs 	    &dead_entries);
    526      1.31   thorpej 	wakeup(map);
    527       1.8       mrg 	vm_map_unlock(map);
    528       1.8       mrg 	if (dead_entries != NULL)
    529       1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    530       1.1       mrg }
    531       1.1       mrg 
    532       1.1       mrg /*
    533       1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    534       1.1       mrg  *
    535       1.1       mrg  * => we can sleep if needed
    536       1.1       mrg  */
    537       1.1       mrg 
    538      1.14       eeh vaddr_t
    539       1.8       mrg uvm_km_alloc1(map, size, zeroit)
    540      1.49       chs 	struct vm_map *map;
    541      1.14       eeh 	vsize_t size;
    542       1.8       mrg 	boolean_t zeroit;
    543       1.1       mrg {
    544      1.14       eeh 	vaddr_t kva, loopva, offset;
    545       1.8       mrg 	struct vm_page *pg;
    546       1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    547       1.1       mrg 
    548       1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    549      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    550       1.1       mrg 
    551       1.8       mrg 	size = round_page(size);
    552       1.8       mrg 	kva = vm_map_min(map);		/* hint */
    553       1.1       mrg 
    554       1.8       mrg 	/*
    555       1.8       mrg 	 * allocate some virtual space
    556       1.8       mrg 	 */
    557       1.1       mrg 
    558      1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    559      1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    560      1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    561      1.43       chs 					      0)) != 0)) {
    562       1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    563       1.8       mrg 		return(0);
    564       1.8       mrg 	}
    565       1.8       mrg 
    566       1.8       mrg 	/*
    567       1.8       mrg 	 * recover object offset from virtual address
    568       1.8       mrg 	 */
    569       1.8       mrg 
    570       1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    571       1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    572       1.8       mrg 
    573       1.8       mrg 	/*
    574  1.50.4.1      fvdl 	 * now allocate the memory.
    575       1.8       mrg 	 */
    576       1.8       mrg 
    577       1.8       mrg 	loopva = kva;
    578       1.8       mrg 	while (size) {
    579       1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    580  1.50.4.1      fvdl 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    581      1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    582       1.8       mrg 		if (pg) {
    583  1.50.4.1      fvdl 			pg->flags &= ~PG_BUSY;
    584       1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    585       1.8       mrg 		}
    586       1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    587  1.50.4.1      fvdl 		if (pg == NULL) {
    588  1.50.4.1      fvdl 			uvm_wait("km_alloc1w");
    589       1.8       mrg 			continue;
    590       1.8       mrg 		}
    591       1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    592      1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    593       1.8       mrg 		loopva += PAGE_SIZE;
    594       1.8       mrg 		offset += PAGE_SIZE;
    595       1.8       mrg 		size -= PAGE_SIZE;
    596       1.8       mrg 	}
    597  1.50.4.1      fvdl 	pmap_update(map->pmap);
    598      1.46   thorpej 
    599       1.8       mrg 	/*
    600       1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    601       1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    602       1.8       mrg 	 */
    603       1.1       mrg 
    604       1.8       mrg 	if (zeroit)
    605      1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    606       1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    607       1.8       mrg 	return(kva);
    608       1.1       mrg }
    609       1.1       mrg 
    610       1.1       mrg /*
    611       1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    612       1.1       mrg  *
    613       1.1       mrg  * => memory is not allocated until fault time
    614       1.1       mrg  */
    615       1.1       mrg 
    616      1.14       eeh vaddr_t
    617       1.8       mrg uvm_km_valloc(map, size)
    618      1.49       chs 	struct vm_map *map;
    619      1.14       eeh 	vsize_t size;
    620       1.1       mrg {
    621      1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    622      1.41  nisimura }
    623      1.41  nisimura 
    624      1.41  nisimura vaddr_t
    625      1.41  nisimura uvm_km_valloc_align(map, size, align)
    626      1.49       chs 	struct vm_map *map;
    627      1.41  nisimura 	vsize_t size;
    628      1.41  nisimura 	vsize_t align;
    629      1.41  nisimura {
    630      1.14       eeh 	vaddr_t kva;
    631       1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    632       1.1       mrg 
    633       1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    634      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    635       1.1       mrg 
    636       1.8       mrg 	size = round_page(size);
    637       1.8       mrg 	kva = vm_map_min(map);		/* hint */
    638       1.1       mrg 
    639       1.8       mrg 	/*
    640       1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    641       1.8       mrg 	 */
    642       1.1       mrg 
    643      1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    644      1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    645      1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    646      1.43       chs 					    0)) != 0)) {
    647       1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    648       1.8       mrg 		return(0);
    649       1.8       mrg 	}
    650       1.1       mrg 
    651       1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    652       1.8       mrg 	return(kva);
    653       1.1       mrg }
    654       1.1       mrg 
    655       1.1       mrg /*
    656       1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    657       1.1       mrg  *
    658       1.1       mrg  * => memory is not allocated until fault time
    659       1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    660       1.1       mrg  *    is larger than map (in which case we return 0)
    661       1.1       mrg  */
    662       1.1       mrg 
    663      1.14       eeh vaddr_t
    664      1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    665      1.49       chs 	struct vm_map *map;
    666      1.14       eeh 	vsize_t size;
    667      1.38     jeffs 	voff_t prefer;
    668       1.1       mrg {
    669      1.14       eeh 	vaddr_t kva;
    670      1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    671       1.1       mrg 
    672       1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    673      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    674       1.1       mrg 
    675       1.8       mrg 	size = round_page(size);
    676       1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    677       1.8       mrg 		return(0);
    678       1.8       mrg 
    679  1.50.4.1      fvdl 	for (;;) {
    680       1.8       mrg 		kva = vm_map_min(map);		/* hint */
    681       1.8       mrg 
    682       1.8       mrg 		/*
    683       1.8       mrg 		 * allocate some virtual space.   will be demand filled
    684       1.8       mrg 		 * by kernel_object.
    685       1.8       mrg 		 */
    686       1.8       mrg 
    687      1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    688      1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    689       1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    690      1.43       chs 		    == 0)) {
    691       1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    692       1.8       mrg 			return(kva);
    693       1.8       mrg 		}
    694       1.8       mrg 
    695       1.8       mrg 		/*
    696       1.8       mrg 		 * failed.  sleep for a while (on map)
    697       1.8       mrg 		 */
    698       1.8       mrg 
    699       1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    700       1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    701       1.8       mrg 	}
    702       1.8       mrg 	/*NOTREACHED*/
    703      1.38     jeffs }
    704      1.38     jeffs 
    705      1.38     jeffs vaddr_t
    706      1.38     jeffs uvm_km_valloc_wait(map, size)
    707      1.49       chs 	struct vm_map *map;
    708      1.38     jeffs 	vsize_t size;
    709      1.38     jeffs {
    710      1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    711      1.10   thorpej }
    712      1.10   thorpej 
    713      1.10   thorpej /* Sanity; must specify both or none. */
    714      1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    715      1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    716      1.10   thorpej #error Must specify MAP and UNMAP together.
    717      1.10   thorpej #endif
    718      1.10   thorpej 
    719      1.10   thorpej /*
    720      1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    721      1.10   thorpej  *
    722      1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    723      1.10   thorpej  */
    724      1.10   thorpej 
    725      1.11   thorpej /* ARGSUSED */
    726      1.14       eeh vaddr_t
    727      1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    728      1.49       chs 	struct vm_map *map;
    729      1.12   thorpej 	struct uvm_object *obj;
    730      1.15   thorpej 	boolean_t waitok;
    731      1.10   thorpej {
    732      1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    733      1.10   thorpej 	struct vm_page *pg;
    734      1.14       eeh 	vaddr_t va;
    735      1.10   thorpej 
    736      1.15   thorpej  again:
    737      1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    738      1.35   thorpej 	if (__predict_false(pg == NULL)) {
    739      1.15   thorpej 		if (waitok) {
    740      1.15   thorpej 			uvm_wait("plpg");
    741      1.15   thorpej 			goto again;
    742      1.15   thorpej 		} else
    743      1.15   thorpej 			return (0);
    744      1.15   thorpej 	}
    745      1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    746      1.35   thorpej 	if (__predict_false(va == 0))
    747      1.10   thorpej 		uvm_pagefree(pg);
    748      1.10   thorpej 	return (va);
    749      1.10   thorpej #else
    750      1.14       eeh 	vaddr_t va;
    751      1.10   thorpej 	int s;
    752      1.10   thorpej 
    753      1.16   thorpej 	/*
    754      1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    755      1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    756      1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    757      1.16   thorpej 	 * accessed in interrupt context).
    758      1.16   thorpej 	 *
    759      1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    760      1.16   thorpej 	 * XXX function.
    761      1.16   thorpej 	 */
    762      1.16   thorpej 
    763      1.42   thorpej 	s = splvm();
    764      1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    765      1.10   thorpej 	splx(s);
    766      1.10   thorpej 	return (va);
    767      1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    768      1.10   thorpej }
    769      1.10   thorpej 
    770      1.10   thorpej /*
    771      1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    772      1.10   thorpej  *
    773      1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    774      1.10   thorpej  */
    775      1.10   thorpej 
    776      1.11   thorpej /* ARGSUSED */
    777      1.10   thorpej void
    778      1.11   thorpej uvm_km_free_poolpage1(map, addr)
    779      1.49       chs 	struct vm_map *map;
    780      1.14       eeh 	vaddr_t addr;
    781      1.10   thorpej {
    782      1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    783      1.14       eeh 	paddr_t pa;
    784      1.10   thorpej 
    785      1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    786      1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    787      1.10   thorpej #else
    788      1.10   thorpej 	int s;
    789      1.16   thorpej 
    790      1.16   thorpej 	/*
    791      1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    792      1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    793      1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    794      1.16   thorpej 	 * accessed in interrupt context).
    795      1.16   thorpej 	 *
    796      1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    797      1.16   thorpej 	 * XXX function.
    798      1.16   thorpej 	 */
    799      1.10   thorpej 
    800      1.42   thorpej 	s = splvm();
    801      1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    802      1.10   thorpej 	splx(s);
    803      1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    804       1.1       mrg }
    805