Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.51
      1  1.51     chris /*	$NetBSD: uvm_km.c,v 1.51 2001/09/10 21:19:42 chris Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.6       mrg #include "opt_uvmhist.h"
     70   1.1       mrg 
     71   1.1       mrg /*
     72   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     73   1.1       mrg  */
     74   1.1       mrg 
     75   1.7     chuck /*
     76   1.7     chuck  * overview of kernel memory management:
     77   1.7     chuck  *
     78   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79   1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80   1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81   1.7     chuck  *
     82  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     83   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     84   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     85   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     86  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     87   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     88   1.7     chuck  *
     89   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     90   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     91   1.7     chuck  * chunks.
     92   1.7     chuck  *
     93   1.7     chuck  * the vm system has several standard kernel submaps, including:
     94   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     95   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     96  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     97   1.7     chuck  *		at interrupt time ***
     98  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     99   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
    100   1.7     chuck  *   exec_map => used during exec to handle exec args
    101   1.7     chuck  *   etc...
    102   1.7     chuck  *
    103   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    104   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    106  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107   1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    108   1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109   1.7     chuck  *
    110   1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    111   1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    112  1.47       chs  * by splvm().    each of these submaps has their own private kernel
    113   1.7     chuck  * object (e.g. kmem_object, mb_object).
    114   1.7     chuck  *
    115   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    116   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    117  1.47       chs  * large chunks of a kernel object's space go unused either because
    118  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    119   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    120   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    121   1.7     chuck  * offsets that are managed by the submap.
    122   1.7     chuck  *
    123   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    124   1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    125   1.7     chuck  * example:
    126   1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    127   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    128   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    129   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    130  1.47       chs  *   mapped at 0xf8235000.
    131   1.7     chuck  *
    132   1.7     chuck  * note that the offsets in kmem_object and mb_object also follow this
    133   1.7     chuck  * rule.   this means that the offsets for kmem_object must fall in the
    134   1.7     chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    135   1.7     chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    136   1.7     chuck  * in those objects will typically not start at zero.
    137   1.7     chuck  *
    138   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    139   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    140   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    141   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    142   1.7     chuck  * and no need to save them after they are no longer referenced.
    143   1.7     chuck  */
    144   1.7     chuck 
    145   1.1       mrg #include <sys/param.h>
    146   1.1       mrg #include <sys/systm.h>
    147   1.1       mrg #include <sys/proc.h>
    148   1.1       mrg 
    149   1.1       mrg #include <uvm/uvm.h>
    150   1.1       mrg 
    151   1.1       mrg /*
    152   1.1       mrg  * global data structures
    153   1.1       mrg  */
    154   1.1       mrg 
    155  1.49       chs struct vm_map *kernel_map = NULL;
    156   1.1       mrg 
    157   1.1       mrg /*
    158   1.1       mrg  * local data structues
    159   1.1       mrg  */
    160   1.1       mrg 
    161   1.1       mrg static struct vm_map		kernel_map_store;
    162   1.1       mrg static struct uvm_object	kmem_object_store;
    163   1.1       mrg static struct uvm_object	mb_object_store;
    164   1.1       mrg 
    165   1.1       mrg /*
    166  1.28   thorpej  * All pager operations here are NULL, but the object must have
    167  1.28   thorpej  * a pager ops vector associated with it; various places assume
    168  1.28   thorpej  * it to be so.
    169   1.1       mrg  */
    170  1.28   thorpej static struct uvm_pagerops	km_pager;
    171   1.1       mrg 
    172   1.1       mrg /*
    173   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    174   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    175   1.1       mrg  *
    176   1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    177   1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    178   1.1       mrg  *    "end" is the end.
    179   1.1       mrg  */
    180   1.1       mrg 
    181   1.8       mrg void
    182   1.8       mrg uvm_km_init(start, end)
    183  1.14       eeh 	vaddr_t start, end;
    184   1.1       mrg {
    185  1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    186  1.27   thorpej 
    187  1.27   thorpej 	/*
    188  1.27   thorpej 	 * next, init kernel memory objects.
    189   1.8       mrg 	 */
    190   1.1       mrg 
    191   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    192  1.34       chs 	uao_init();
    193   1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    194   1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    195   1.1       mrg 
    196  1.24   thorpej 	/*
    197  1.24   thorpej 	 * kmem_object: for use by the kernel malloc().  Memory is always
    198  1.24   thorpej 	 * wired, and this object (and the kmem_map) can be accessed at
    199  1.24   thorpej 	 * interrupt time.
    200  1.24   thorpej 	 */
    201   1.8       mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    202   1.8       mrg 	kmem_object_store.pgops = &km_pager;
    203   1.8       mrg 	TAILQ_INIT(&kmem_object_store.memq);
    204   1.8       mrg 	kmem_object_store.uo_npages = 0;
    205   1.8       mrg 	/* we are special.  we never die */
    206  1.47       chs 	kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    207   1.8       mrg 	uvmexp.kmem_object = &kmem_object_store;
    208   1.8       mrg 
    209  1.24   thorpej 	/*
    210  1.24   thorpej 	 * mb_object: for mbuf cluster pages on platforms which use the
    211  1.24   thorpej 	 * mb_map.  Memory is always wired, and this object (and the mb_map)
    212  1.24   thorpej 	 * can be accessed at interrupt time.
    213  1.24   thorpej 	 */
    214   1.8       mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    215   1.8       mrg 	mb_object_store.pgops = &km_pager;
    216   1.8       mrg 	TAILQ_INIT(&mb_object_store.memq);
    217   1.8       mrg 	mb_object_store.uo_npages = 0;
    218   1.8       mrg 	/* we are special.  we never die */
    219  1.47       chs 	mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
    220   1.8       mrg 	uvmexp.mb_object = &mb_object_store;
    221   1.8       mrg 
    222   1.8       mrg 	/*
    223  1.47       chs 	 * init the map and reserve allready allocated kernel space
    224   1.8       mrg 	 * before installing.
    225   1.8       mrg 	 */
    226   1.1       mrg 
    227  1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    228   1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    229   1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    230  1.39   thorpej 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    231  1.43       chs 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    232   1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    233  1.47       chs 
    234   1.8       mrg 	/*
    235   1.8       mrg 	 * install!
    236   1.8       mrg 	 */
    237   1.8       mrg 
    238   1.8       mrg 	kernel_map = &kernel_map_store;
    239   1.1       mrg }
    240   1.1       mrg 
    241   1.1       mrg /*
    242   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    243   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    244   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    245   1.1       mrg  *
    246   1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    247   1.5   thorpej  *      by the submap must start
    248   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    249   1.1       mrg  *	alloc a new map
    250   1.1       mrg  */
    251   1.8       mrg struct vm_map *
    252  1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    253   1.8       mrg 	struct vm_map *map;
    254  1.14       eeh 	vaddr_t *min, *max;		/* OUT, OUT */
    255  1.14       eeh 	vsize_t size;
    256  1.25   thorpej 	int flags;
    257   1.8       mrg 	boolean_t fixed;
    258   1.8       mrg 	struct vm_map *submap;
    259   1.8       mrg {
    260   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    261   1.1       mrg 
    262   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    263   1.1       mrg 
    264   1.8       mrg 	/*
    265   1.8       mrg 	 * first allocate a blank spot in the parent map
    266   1.8       mrg 	 */
    267   1.8       mrg 
    268  1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    269   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    270  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    271   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    272   1.8       mrg 	}
    273   1.8       mrg 
    274   1.8       mrg 	/*
    275   1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    276   1.8       mrg 	 */
    277   1.1       mrg 
    278   1.8       mrg 	*max = *min + size;
    279   1.5   thorpej 
    280   1.8       mrg 	/*
    281   1.8       mrg 	 * add references to pmap and create or init the submap
    282   1.8       mrg 	 */
    283   1.1       mrg 
    284   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    285   1.8       mrg 	if (submap == NULL) {
    286  1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    287   1.8       mrg 		if (submap == NULL)
    288   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    289   1.8       mrg 	} else {
    290  1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    291   1.8       mrg 		submap->pmap = vm_map_pmap(map);
    292   1.8       mrg 	}
    293   1.1       mrg 
    294   1.8       mrg 	/*
    295   1.8       mrg 	 * now let uvm_map_submap plug in it...
    296   1.8       mrg 	 */
    297   1.1       mrg 
    298  1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    299   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    300   1.1       mrg 
    301   1.8       mrg 	return(submap);
    302   1.1       mrg }
    303   1.1       mrg 
    304   1.1       mrg /*
    305   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    306   1.1       mrg  *
    307   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    308   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    309   1.1       mrg  */
    310   1.1       mrg 
    311   1.1       mrg #define UKM_HASH_PENALTY 4      /* a guess */
    312   1.1       mrg 
    313   1.8       mrg void
    314   1.8       mrg uvm_km_pgremove(uobj, start, end)
    315   1.8       mrg 	struct uvm_object *uobj;
    316  1.14       eeh 	vaddr_t start, end;
    317   1.1       mrg {
    318  1.24   thorpej 	boolean_t by_list;
    319   1.8       mrg 	struct vm_page *pp, *ppnext;
    320  1.14       eeh 	vaddr_t curoff;
    321   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    322   1.1       mrg 
    323  1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    324  1.40       chs 	simple_lock(&uobj->vmobjlock);
    325   1.3       chs 
    326   1.8       mrg 	/* choose cheapest traversal */
    327   1.8       mrg 	by_list = (uobj->uo_npages <=
    328  1.18       chs 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    329  1.47       chs 
    330   1.8       mrg 	if (by_list)
    331   1.8       mrg 		goto loop_by_list;
    332   1.1       mrg 
    333   1.8       mrg 	/* by hash */
    334   1.1       mrg 
    335   1.8       mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    336   1.8       mrg 		pp = uvm_pagelookup(uobj, curoff);
    337   1.8       mrg 		if (pp == NULL)
    338   1.8       mrg 			continue;
    339   1.8       mrg 
    340   1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    341   1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    342  1.24   thorpej 
    343   1.8       mrg 		/* now do the actual work */
    344  1.24   thorpej 		if (pp->flags & PG_BUSY) {
    345   1.8       mrg 			/* owner must check for this when done */
    346   1.8       mrg 			pp->flags |= PG_RELEASED;
    347  1.24   thorpej 		} else {
    348  1.24   thorpej 			/* free the swap slot... */
    349  1.24   thorpej 			uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    350   1.8       mrg 
    351   1.8       mrg 			/*
    352  1.24   thorpej 			 * ...and free the page; note it may be on the
    353  1.24   thorpej 			 * active or inactive queues.
    354   1.8       mrg 			 */
    355   1.8       mrg 			uvm_lock_pageq();
    356   1.8       mrg 			uvm_pagefree(pp);
    357   1.8       mrg 			uvm_unlock_pageq();
    358   1.8       mrg 		}
    359   1.8       mrg 	}
    360   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    361   1.8       mrg 	return;
    362   1.1       mrg 
    363   1.1       mrg loop_by_list:
    364   1.1       mrg 
    365  1.40       chs 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    366  1.40       chs 		ppnext = TAILQ_NEXT(pp, listq);
    367   1.8       mrg 		if (pp->offset < start || pp->offset >= end) {
    368   1.8       mrg 			continue;
    369   1.8       mrg 		}
    370   1.8       mrg 
    371   1.8       mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    372   1.8       mrg 		    pp->flags & PG_BUSY, 0, 0);
    373  1.24   thorpej 
    374  1.24   thorpej 		if (pp->flags & PG_BUSY) {
    375   1.8       mrg 			/* owner must check for this when done */
    376   1.8       mrg 			pp->flags |= PG_RELEASED;
    377  1.24   thorpej 		} else {
    378  1.24   thorpej 			/* free the swap slot... */
    379  1.24   thorpej 			uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
    380   1.8       mrg 
    381   1.8       mrg 			/*
    382  1.24   thorpej 			 * ...and free the page; note it may be on the
    383  1.24   thorpej 			 * active or inactive queues.
    384   1.8       mrg 			 */
    385   1.8       mrg 			uvm_lock_pageq();
    386   1.8       mrg 			uvm_pagefree(pp);
    387   1.8       mrg 			uvm_unlock_pageq();
    388   1.8       mrg 		}
    389  1.24   thorpej 	}
    390  1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    391  1.24   thorpej }
    392  1.24   thorpej 
    393  1.24   thorpej 
    394  1.24   thorpej /*
    395  1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    396  1.24   thorpej  *    objects
    397  1.24   thorpej  *
    398  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    399  1.24   thorpej  *    the pages right away.    (this gets called from uvm_unmap_...).
    400  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    401  1.24   thorpej  *    be on the active or inactive queues (because these objects are
    402  1.24   thorpej  *    never allowed to "page").
    403  1.24   thorpej  */
    404  1.24   thorpej 
    405  1.24   thorpej void
    406  1.24   thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
    407  1.24   thorpej 	struct uvm_object *uobj;
    408  1.24   thorpej 	vaddr_t start, end;
    409  1.24   thorpej {
    410  1.24   thorpej 	boolean_t by_list;
    411  1.24   thorpej 	struct vm_page *pp, *ppnext;
    412  1.24   thorpej 	vaddr_t curoff;
    413  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    414  1.24   thorpej 
    415  1.40       chs 	KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
    416  1.24   thorpej 	simple_lock(&uobj->vmobjlock);		/* lock object */
    417  1.24   thorpej 
    418  1.24   thorpej 	/* choose cheapest traversal */
    419  1.24   thorpej 	by_list = (uobj->uo_npages <=
    420  1.24   thorpej 	     ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
    421  1.47       chs 
    422  1.24   thorpej 	if (by_list)
    423  1.24   thorpej 		goto loop_by_list;
    424  1.24   thorpej 
    425  1.24   thorpej 	/* by hash */
    426  1.24   thorpej 
    427  1.24   thorpej 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    428  1.24   thorpej 		pp = uvm_pagelookup(uobj, curoff);
    429  1.40       chs 		if (pp == NULL) {
    430  1.24   thorpej 			continue;
    431  1.40       chs 		}
    432  1.24   thorpej 
    433  1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    434  1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    435  1.40       chs 		KASSERT((pp->flags & PG_BUSY) == 0);
    436  1.40       chs 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    437  1.40       chs 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    438  1.24   thorpej 		uvm_pagefree(pp);
    439  1.24   thorpej 	}
    440  1.24   thorpej 	simple_unlock(&uobj->vmobjlock);
    441  1.24   thorpej 	return;
    442  1.24   thorpej 
    443  1.24   thorpej loop_by_list:
    444   1.1       mrg 
    445  1.40       chs 	for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
    446  1.40       chs 		ppnext = TAILQ_NEXT(pp, listq);
    447  1.24   thorpej 		if (pp->offset < start || pp->offset >= end) {
    448  1.24   thorpej 			continue;
    449  1.24   thorpej 		}
    450  1.24   thorpej 
    451  1.24   thorpej 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    452  1.24   thorpej 		    pp->flags & PG_BUSY, 0, 0);
    453  1.40       chs 		KASSERT((pp->flags & PG_BUSY) == 0);
    454  1.40       chs 		KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
    455  1.40       chs 		KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
    456  1.24   thorpej 		uvm_pagefree(pp);
    457   1.8       mrg 	}
    458   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    459   1.1       mrg }
    460   1.1       mrg 
    461   1.1       mrg 
    462   1.1       mrg /*
    463   1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    464   1.1       mrg  *
    465   1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    466   1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    467   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    468   1.1       mrg  *	this case.
    469   1.1       mrg  * => we return KVA of memory allocated
    470   1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    471   1.1       mrg  *	lock the map
    472   1.1       mrg  */
    473   1.1       mrg 
    474  1.14       eeh vaddr_t
    475   1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    476  1.49       chs 	struct vm_map *map;
    477   1.8       mrg 	struct uvm_object *obj;
    478  1.14       eeh 	vsize_t size;
    479   1.8       mrg 	int flags;
    480   1.1       mrg {
    481  1.14       eeh 	vaddr_t kva, loopva;
    482  1.14       eeh 	vaddr_t offset;
    483  1.44   thorpej 	vsize_t loopsize;
    484   1.8       mrg 	struct vm_page *pg;
    485   1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    486   1.1       mrg 
    487   1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    488  1.40       chs 		    map, obj, size, flags);
    489  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    490   1.1       mrg 
    491   1.8       mrg 	/*
    492   1.8       mrg 	 * setup for call
    493   1.8       mrg 	 */
    494   1.8       mrg 
    495   1.8       mrg 	size = round_page(size);
    496   1.8       mrg 	kva = vm_map_min(map);	/* hint */
    497   1.1       mrg 
    498   1.8       mrg 	/*
    499   1.8       mrg 	 * allocate some virtual space
    500   1.8       mrg 	 */
    501   1.8       mrg 
    502  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    503  1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    504  1.47       chs 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    505  1.43       chs 			!= 0)) {
    506   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    507   1.8       mrg 		return(0);
    508   1.8       mrg 	}
    509   1.8       mrg 
    510   1.8       mrg 	/*
    511   1.8       mrg 	 * if all we wanted was VA, return now
    512   1.8       mrg 	 */
    513   1.8       mrg 
    514   1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    515   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    516   1.8       mrg 		return(kva);
    517   1.8       mrg 	}
    518  1.40       chs 
    519   1.8       mrg 	/*
    520   1.8       mrg 	 * recover object offset from virtual address
    521   1.8       mrg 	 */
    522   1.8       mrg 
    523   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    524   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    525   1.8       mrg 
    526   1.8       mrg 	/*
    527   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    528   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    529   1.8       mrg 	 */
    530   1.8       mrg 
    531   1.8       mrg 	loopva = kva;
    532  1.44   thorpej 	loopsize = size;
    533  1.44   thorpej 	while (loopsize) {
    534   1.8       mrg 		simple_lock(&obj->vmobjlock);
    535  1.23       chs 		pg = uvm_pagealloc(obj, offset, NULL, 0);
    536  1.45   thorpej 		if (__predict_true(pg != NULL)) {
    537   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    538   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    539   1.8       mrg 		}
    540   1.8       mrg 		simple_unlock(&obj->vmobjlock);
    541  1.47       chs 
    542   1.8       mrg 		/*
    543   1.8       mrg 		 * out of memory?
    544   1.8       mrg 		 */
    545   1.8       mrg 
    546  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    547   1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    548   1.8       mrg 				/* free everything! */
    549  1.17     chuck 				uvm_unmap(map, kva, kva + size);
    550   1.8       mrg 				return(0);
    551   1.8       mrg 			} else {
    552   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    553   1.8       mrg 				continue;
    554   1.8       mrg 			}
    555   1.8       mrg 		}
    556  1.47       chs 
    557   1.8       mrg 		/*
    558   1.8       mrg 		 * map it in: note that we call pmap_enter with the map and
    559   1.8       mrg 		 * object unlocked in case we are kmem_map/kmem_object
    560   1.8       mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    561   1.8       mrg 		 * it will need to lock it itself!)
    562   1.8       mrg 		 */
    563  1.40       chs 
    564  1.24   thorpej 		if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
    565  1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    566  1.24   thorpej 			    VM_PROT_ALL);
    567  1.24   thorpej 		} else {
    568  1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    569  1.33   thorpej 			    UVM_PROT_ALL,
    570  1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    571  1.24   thorpej 		}
    572   1.8       mrg 		loopva += PAGE_SIZE;
    573   1.8       mrg 		offset += PAGE_SIZE;
    574  1.44   thorpej 		loopsize -= PAGE_SIZE;
    575   1.8       mrg 	}
    576  1.51     chris 
    577  1.51     chris        	pmap_update(pmap_kernel());
    578  1.51     chris 
    579   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    580   1.8       mrg 	return(kva);
    581   1.1       mrg }
    582   1.1       mrg 
    583   1.1       mrg /*
    584   1.1       mrg  * uvm_km_free: free an area of kernel memory
    585   1.1       mrg  */
    586   1.1       mrg 
    587   1.8       mrg void
    588   1.8       mrg uvm_km_free(map, addr, size)
    589  1.49       chs 	struct vm_map *map;
    590  1.14       eeh 	vaddr_t addr;
    591  1.14       eeh 	vsize_t size;
    592   1.8       mrg {
    593  1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    594   1.1       mrg }
    595   1.1       mrg 
    596   1.1       mrg /*
    597   1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    598   1.1       mrg  * anyone waiting for vm space.
    599   1.1       mrg  *
    600   1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    601   1.1       mrg  */
    602   1.1       mrg 
    603   1.8       mrg void
    604   1.8       mrg uvm_km_free_wakeup(map, addr, size)
    605  1.49       chs 	struct vm_map *map;
    606  1.14       eeh 	vaddr_t addr;
    607  1.14       eeh 	vsize_t size;
    608   1.1       mrg {
    609  1.49       chs 	struct vm_map_entry *dead_entries;
    610   1.1       mrg 
    611   1.8       mrg 	vm_map_lock(map);
    612  1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    613  1.43       chs 	    &dead_entries);
    614  1.31   thorpej 	wakeup(map);
    615   1.8       mrg 	vm_map_unlock(map);
    616   1.8       mrg 	if (dead_entries != NULL)
    617   1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    618   1.1       mrg }
    619   1.1       mrg 
    620   1.1       mrg /*
    621   1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    622   1.1       mrg  *
    623   1.1       mrg  * => we can sleep if needed
    624   1.1       mrg  */
    625   1.1       mrg 
    626  1.14       eeh vaddr_t
    627   1.8       mrg uvm_km_alloc1(map, size, zeroit)
    628  1.49       chs 	struct vm_map *map;
    629  1.14       eeh 	vsize_t size;
    630   1.8       mrg 	boolean_t zeroit;
    631   1.1       mrg {
    632  1.14       eeh 	vaddr_t kva, loopva, offset;
    633   1.8       mrg 	struct vm_page *pg;
    634   1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    635   1.1       mrg 
    636   1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    637  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    638   1.1       mrg 
    639   1.8       mrg 	size = round_page(size);
    640   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    641   1.1       mrg 
    642   1.8       mrg 	/*
    643   1.8       mrg 	 * allocate some virtual space
    644   1.8       mrg 	 */
    645   1.1       mrg 
    646  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    647  1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    648  1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    649  1.43       chs 					      0)) != 0)) {
    650   1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    651   1.8       mrg 		return(0);
    652   1.8       mrg 	}
    653   1.8       mrg 
    654   1.8       mrg 	/*
    655   1.8       mrg 	 * recover object offset from virtual address
    656   1.8       mrg 	 */
    657   1.8       mrg 
    658   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    659   1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    660   1.8       mrg 
    661   1.8       mrg 	/*
    662   1.8       mrg 	 * now allocate the memory.  we must be careful about released pages.
    663   1.8       mrg 	 */
    664   1.8       mrg 
    665   1.8       mrg 	loopva = kva;
    666   1.8       mrg 	while (size) {
    667   1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    668   1.8       mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    669   1.8       mrg 
    670   1.8       mrg 		/*
    671   1.8       mrg 		 * if we found a page in an unallocated region, it must be
    672   1.8       mrg 		 * released
    673   1.8       mrg 		 */
    674   1.8       mrg 		if (pg) {
    675   1.8       mrg 			if ((pg->flags & PG_RELEASED) == 0)
    676   1.8       mrg 				panic("uvm_km_alloc1: non-released page");
    677   1.8       mrg 			pg->flags |= PG_WANTED;
    678   1.8       mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    679  1.30   thorpej 			    FALSE, "km_alloc", 0);
    680   1.8       mrg 			continue;   /* retry */
    681   1.8       mrg 		}
    682  1.47       chs 
    683   1.8       mrg 		/* allocate ram */
    684  1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    685   1.8       mrg 		if (pg) {
    686   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    687   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    688   1.8       mrg 		}
    689   1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    690  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    691   1.8       mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    692   1.8       mrg 			continue;
    693   1.8       mrg 		}
    694  1.47       chs 
    695  1.24   thorpej 		/*
    696  1.24   thorpej 		 * map it in; note we're never called with an intrsafe
    697  1.24   thorpej 		 * object, so we always use regular old pmap_enter().
    698  1.24   thorpej 		 */
    699   1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    700  1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    701  1.24   thorpej 
    702   1.8       mrg 		loopva += PAGE_SIZE;
    703   1.8       mrg 		offset += PAGE_SIZE;
    704   1.8       mrg 		size -= PAGE_SIZE;
    705   1.8       mrg 	}
    706  1.46   thorpej 
    707  1.51     chris 	pmap_update(map->pmap);
    708  1.46   thorpej 
    709   1.8       mrg 	/*
    710   1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    711   1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    712   1.8       mrg 	 */
    713   1.1       mrg 
    714   1.8       mrg 	if (zeroit)
    715  1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    716   1.1       mrg 
    717   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    718   1.8       mrg 	return(kva);
    719   1.1       mrg }
    720   1.1       mrg 
    721   1.1       mrg /*
    722   1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    723   1.1       mrg  *
    724   1.1       mrg  * => memory is not allocated until fault time
    725   1.1       mrg  */
    726   1.1       mrg 
    727  1.14       eeh vaddr_t
    728   1.8       mrg uvm_km_valloc(map, size)
    729  1.49       chs 	struct vm_map *map;
    730  1.14       eeh 	vsize_t size;
    731   1.1       mrg {
    732  1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    733  1.41  nisimura }
    734  1.41  nisimura 
    735  1.41  nisimura vaddr_t
    736  1.41  nisimura uvm_km_valloc_align(map, size, align)
    737  1.49       chs 	struct vm_map *map;
    738  1.41  nisimura 	vsize_t size;
    739  1.41  nisimura 	vsize_t align;
    740  1.41  nisimura {
    741  1.14       eeh 	vaddr_t kva;
    742   1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    743   1.1       mrg 
    744   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    745  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    746   1.1       mrg 
    747   1.8       mrg 	size = round_page(size);
    748   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    749   1.1       mrg 
    750   1.8       mrg 	/*
    751   1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    752   1.8       mrg 	 */
    753   1.1       mrg 
    754  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    755  1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    756  1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    757  1.43       chs 					    0)) != 0)) {
    758   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    759   1.8       mrg 		return(0);
    760   1.8       mrg 	}
    761   1.1       mrg 
    762   1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    763   1.8       mrg 	return(kva);
    764   1.1       mrg }
    765   1.1       mrg 
    766   1.1       mrg /*
    767   1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    768   1.1       mrg  *
    769   1.1       mrg  * => memory is not allocated until fault time
    770   1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    771   1.1       mrg  *    is larger than map (in which case we return 0)
    772   1.1       mrg  */
    773   1.1       mrg 
    774  1.14       eeh vaddr_t
    775  1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    776  1.49       chs 	struct vm_map *map;
    777  1.14       eeh 	vsize_t size;
    778  1.38     jeffs 	voff_t prefer;
    779   1.1       mrg {
    780  1.14       eeh 	vaddr_t kva;
    781  1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    782   1.1       mrg 
    783   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    784  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    785   1.1       mrg 
    786   1.8       mrg 	size = round_page(size);
    787   1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    788   1.8       mrg 		return(0);
    789   1.8       mrg 
    790   1.8       mrg 	while (1) {
    791   1.8       mrg 		kva = vm_map_min(map);		/* hint */
    792   1.8       mrg 
    793   1.8       mrg 		/*
    794   1.8       mrg 		 * allocate some virtual space.   will be demand filled
    795   1.8       mrg 		 * by kernel_object.
    796   1.8       mrg 		 */
    797   1.8       mrg 
    798  1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    799  1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    800   1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    801  1.43       chs 		    == 0)) {
    802   1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    803   1.8       mrg 			return(kva);
    804   1.8       mrg 		}
    805   1.8       mrg 
    806   1.8       mrg 		/*
    807   1.8       mrg 		 * failed.  sleep for a while (on map)
    808   1.8       mrg 		 */
    809   1.8       mrg 
    810   1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    811   1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    812   1.8       mrg 	}
    813   1.8       mrg 	/*NOTREACHED*/
    814  1.38     jeffs }
    815  1.38     jeffs 
    816  1.38     jeffs vaddr_t
    817  1.38     jeffs uvm_km_valloc_wait(map, size)
    818  1.49       chs 	struct vm_map *map;
    819  1.38     jeffs 	vsize_t size;
    820  1.38     jeffs {
    821  1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    822  1.10   thorpej }
    823  1.10   thorpej 
    824  1.10   thorpej /* Sanity; must specify both or none. */
    825  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    826  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    827  1.10   thorpej #error Must specify MAP and UNMAP together.
    828  1.10   thorpej #endif
    829  1.10   thorpej 
    830  1.10   thorpej /*
    831  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    832  1.10   thorpej  *
    833  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    834  1.10   thorpej  */
    835  1.10   thorpej 
    836  1.11   thorpej /* ARGSUSED */
    837  1.14       eeh vaddr_t
    838  1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    839  1.49       chs 	struct vm_map *map;
    840  1.12   thorpej 	struct uvm_object *obj;
    841  1.15   thorpej 	boolean_t waitok;
    842  1.10   thorpej {
    843  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    844  1.10   thorpej 	struct vm_page *pg;
    845  1.14       eeh 	vaddr_t va;
    846  1.10   thorpej 
    847  1.15   thorpej  again:
    848  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    849  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    850  1.15   thorpej 		if (waitok) {
    851  1.15   thorpej 			uvm_wait("plpg");
    852  1.15   thorpej 			goto again;
    853  1.15   thorpej 		} else
    854  1.15   thorpej 			return (0);
    855  1.15   thorpej 	}
    856  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    857  1.35   thorpej 	if (__predict_false(va == 0))
    858  1.10   thorpej 		uvm_pagefree(pg);
    859  1.10   thorpej 	return (va);
    860  1.10   thorpej #else
    861  1.14       eeh 	vaddr_t va;
    862  1.10   thorpej 	int s;
    863  1.10   thorpej 
    864  1.16   thorpej 	/*
    865  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    866  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    867  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    868  1.16   thorpej 	 * accessed in interrupt context).
    869  1.16   thorpej 	 *
    870  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    871  1.16   thorpej 	 * XXX function.
    872  1.16   thorpej 	 */
    873  1.16   thorpej 
    874  1.42   thorpej 	s = splvm();
    875  1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    876  1.10   thorpej 	splx(s);
    877  1.10   thorpej 	return (va);
    878  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    879  1.10   thorpej }
    880  1.10   thorpej 
    881  1.10   thorpej /*
    882  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    883  1.10   thorpej  *
    884  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    885  1.10   thorpej  */
    886  1.10   thorpej 
    887  1.11   thorpej /* ARGSUSED */
    888  1.10   thorpej void
    889  1.11   thorpej uvm_km_free_poolpage1(map, addr)
    890  1.49       chs 	struct vm_map *map;
    891  1.14       eeh 	vaddr_t addr;
    892  1.10   thorpej {
    893  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    894  1.14       eeh 	paddr_t pa;
    895  1.10   thorpej 
    896  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    897  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    898  1.10   thorpej #else
    899  1.10   thorpej 	int s;
    900  1.16   thorpej 
    901  1.16   thorpej 	/*
    902  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    903  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    904  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    905  1.16   thorpej 	 * accessed in interrupt context).
    906  1.16   thorpej 	 *
    907  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    908  1.16   thorpej 	 * XXX function.
    909  1.16   thorpej 	 */
    910  1.10   thorpej 
    911  1.42   thorpej 	s = splvm();
    912  1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    913  1.10   thorpej 	splx(s);
    914  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    915   1.1       mrg }
    916