uvm_km.c revision 1.51 1 1.51 chris /* $NetBSD: uvm_km.c,v 1.51 2001/09/10 21:19:42 chris Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.6 mrg #include "opt_uvmhist.h"
70 1.1 mrg
71 1.1 mrg /*
72 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
73 1.1 mrg */
74 1.1 mrg
75 1.7 chuck /*
76 1.7 chuck * overview of kernel memory management:
77 1.7 chuck *
78 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
79 1.7 chuck * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
80 1.7 chuck * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
81 1.7 chuck *
82 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
83 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
84 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
85 1.7 chuck * are typically allocated at boot time and are never released. kernel
86 1.47 chs * virtual address space that is mapped by a submap is locked by the
87 1.7 chuck * submap's lock -- not the kernel_map's lock.
88 1.7 chuck *
89 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
90 1.7 chuck * up the locking and protection of the kernel address space into smaller
91 1.7 chuck * chunks.
92 1.7 chuck *
93 1.7 chuck * the vm system has several standard kernel submaps, including:
94 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
95 1.7 chuck * malloc. *** access to kmem_map must be protected
96 1.42 thorpej * by splvm() because we are allowed to call malloc()
97 1.7 chuck * at interrupt time ***
98 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
99 1.7 chuck * pager_map => used to map "buf" structures into kernel space
100 1.7 chuck * exec_map => used during exec to handle exec args
101 1.7 chuck * etc...
102 1.7 chuck *
103 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
104 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
105 1.7 chuck * are "special" and never die). all kernel objects should be thought of
106 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
107 1.7 chuck * object is equal to the size of kernel virtual address space (i.e. the
108 1.7 chuck * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
109 1.7 chuck *
110 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
111 1.7 chuck * to this is for memory that belongs to submaps that must be protected
112 1.47 chs * by splvm(). each of these submaps has their own private kernel
113 1.7 chuck * object (e.g. kmem_object, mb_object).
114 1.7 chuck *
115 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
116 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
117 1.47 chs * large chunks of a kernel object's space go unused either because
118 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
119 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
120 1.7 chuck * objects, the only part of the object that can ever be populated is the
121 1.7 chuck * offsets that are managed by the submap.
122 1.7 chuck *
123 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
124 1.7 chuck * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
125 1.7 chuck * example:
126 1.7 chuck * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
127 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
128 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
129 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
130 1.47 chs * mapped at 0xf8235000.
131 1.7 chuck *
132 1.7 chuck * note that the offsets in kmem_object and mb_object also follow this
133 1.7 chuck * rule. this means that the offsets for kmem_object must fall in the
134 1.7 chuck * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
135 1.7 chuck * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
136 1.7 chuck * in those objects will typically not start at zero.
137 1.7 chuck *
138 1.7 chuck * kernel object have one other special property: when the kernel virtual
139 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
140 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
141 1.7 chuck * this has to be done because there is no backing store for kernel pages
142 1.7 chuck * and no need to save them after they are no longer referenced.
143 1.7 chuck */
144 1.7 chuck
145 1.1 mrg #include <sys/param.h>
146 1.1 mrg #include <sys/systm.h>
147 1.1 mrg #include <sys/proc.h>
148 1.1 mrg
149 1.1 mrg #include <uvm/uvm.h>
150 1.1 mrg
151 1.1 mrg /*
152 1.1 mrg * global data structures
153 1.1 mrg */
154 1.1 mrg
155 1.49 chs struct vm_map *kernel_map = NULL;
156 1.1 mrg
157 1.1 mrg /*
158 1.1 mrg * local data structues
159 1.1 mrg */
160 1.1 mrg
161 1.1 mrg static struct vm_map kernel_map_store;
162 1.1 mrg static struct uvm_object kmem_object_store;
163 1.1 mrg static struct uvm_object mb_object_store;
164 1.1 mrg
165 1.1 mrg /*
166 1.28 thorpej * All pager operations here are NULL, but the object must have
167 1.28 thorpej * a pager ops vector associated with it; various places assume
168 1.28 thorpej * it to be so.
169 1.1 mrg */
170 1.28 thorpej static struct uvm_pagerops km_pager;
171 1.1 mrg
172 1.1 mrg /*
173 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
174 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
175 1.1 mrg *
176 1.1 mrg * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
177 1.1 mrg * we assume that [min -> start] has already been allocated and that
178 1.1 mrg * "end" is the end.
179 1.1 mrg */
180 1.1 mrg
181 1.8 mrg void
182 1.8 mrg uvm_km_init(start, end)
183 1.14 eeh vaddr_t start, end;
184 1.1 mrg {
185 1.14 eeh vaddr_t base = VM_MIN_KERNEL_ADDRESS;
186 1.27 thorpej
187 1.27 thorpej /*
188 1.27 thorpej * next, init kernel memory objects.
189 1.8 mrg */
190 1.1 mrg
191 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
192 1.34 chs uao_init();
193 1.8 mrg uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
194 1.3 chs VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
195 1.1 mrg
196 1.24 thorpej /*
197 1.24 thorpej * kmem_object: for use by the kernel malloc(). Memory is always
198 1.24 thorpej * wired, and this object (and the kmem_map) can be accessed at
199 1.24 thorpej * interrupt time.
200 1.24 thorpej */
201 1.8 mrg simple_lock_init(&kmem_object_store.vmobjlock);
202 1.8 mrg kmem_object_store.pgops = &km_pager;
203 1.8 mrg TAILQ_INIT(&kmem_object_store.memq);
204 1.8 mrg kmem_object_store.uo_npages = 0;
205 1.8 mrg /* we are special. we never die */
206 1.47 chs kmem_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
207 1.8 mrg uvmexp.kmem_object = &kmem_object_store;
208 1.8 mrg
209 1.24 thorpej /*
210 1.24 thorpej * mb_object: for mbuf cluster pages on platforms which use the
211 1.24 thorpej * mb_map. Memory is always wired, and this object (and the mb_map)
212 1.24 thorpej * can be accessed at interrupt time.
213 1.24 thorpej */
214 1.8 mrg simple_lock_init(&mb_object_store.vmobjlock);
215 1.8 mrg mb_object_store.pgops = &km_pager;
216 1.8 mrg TAILQ_INIT(&mb_object_store.memq);
217 1.8 mrg mb_object_store.uo_npages = 0;
218 1.8 mrg /* we are special. we never die */
219 1.47 chs mb_object_store.uo_refs = UVM_OBJ_KERN_INTRSAFE;
220 1.8 mrg uvmexp.mb_object = &mb_object_store;
221 1.8 mrg
222 1.8 mrg /*
223 1.47 chs * init the map and reserve allready allocated kernel space
224 1.8 mrg * before installing.
225 1.8 mrg */
226 1.1 mrg
227 1.25 thorpej uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
228 1.8 mrg kernel_map_store.pmap = pmap_kernel();
229 1.8 mrg if (uvm_map(&kernel_map_store, &base, start - base, NULL,
230 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
231 1.43 chs UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
232 1.8 mrg panic("uvm_km_init: could not reserve space for kernel");
233 1.47 chs
234 1.8 mrg /*
235 1.8 mrg * install!
236 1.8 mrg */
237 1.8 mrg
238 1.8 mrg kernel_map = &kernel_map_store;
239 1.1 mrg }
240 1.1 mrg
241 1.1 mrg /*
242 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
243 1.1 mrg * is allocated all references to that area of VM must go through it. this
244 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
245 1.1 mrg *
246 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
247 1.5 thorpej * by the submap must start
248 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
249 1.1 mrg * alloc a new map
250 1.1 mrg */
251 1.8 mrg struct vm_map *
252 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
253 1.8 mrg struct vm_map *map;
254 1.14 eeh vaddr_t *min, *max; /* OUT, OUT */
255 1.14 eeh vsize_t size;
256 1.25 thorpej int flags;
257 1.8 mrg boolean_t fixed;
258 1.8 mrg struct vm_map *submap;
259 1.8 mrg {
260 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
261 1.1 mrg
262 1.8 mrg size = round_page(size); /* round up to pagesize */
263 1.1 mrg
264 1.8 mrg /*
265 1.8 mrg * first allocate a blank spot in the parent map
266 1.8 mrg */
267 1.8 mrg
268 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
269 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
270 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
271 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
272 1.8 mrg }
273 1.8 mrg
274 1.8 mrg /*
275 1.8 mrg * set VM bounds (min is filled in by uvm_map)
276 1.8 mrg */
277 1.1 mrg
278 1.8 mrg *max = *min + size;
279 1.5 thorpej
280 1.8 mrg /*
281 1.8 mrg * add references to pmap and create or init the submap
282 1.8 mrg */
283 1.1 mrg
284 1.8 mrg pmap_reference(vm_map_pmap(map));
285 1.8 mrg if (submap == NULL) {
286 1.25 thorpej submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
287 1.8 mrg if (submap == NULL)
288 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
289 1.8 mrg } else {
290 1.25 thorpej uvm_map_setup(submap, *min, *max, flags);
291 1.8 mrg submap->pmap = vm_map_pmap(map);
292 1.8 mrg }
293 1.1 mrg
294 1.8 mrg /*
295 1.8 mrg * now let uvm_map_submap plug in it...
296 1.8 mrg */
297 1.1 mrg
298 1.43 chs if (uvm_map_submap(map, *min, *max, submap) != 0)
299 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
300 1.1 mrg
301 1.8 mrg return(submap);
302 1.1 mrg }
303 1.1 mrg
304 1.1 mrg /*
305 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
306 1.1 mrg *
307 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
308 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
309 1.1 mrg */
310 1.1 mrg
311 1.1 mrg #define UKM_HASH_PENALTY 4 /* a guess */
312 1.1 mrg
313 1.8 mrg void
314 1.8 mrg uvm_km_pgremove(uobj, start, end)
315 1.8 mrg struct uvm_object *uobj;
316 1.14 eeh vaddr_t start, end;
317 1.1 mrg {
318 1.24 thorpej boolean_t by_list;
319 1.8 mrg struct vm_page *pp, *ppnext;
320 1.14 eeh vaddr_t curoff;
321 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
322 1.1 mrg
323 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
324 1.40 chs simple_lock(&uobj->vmobjlock);
325 1.3 chs
326 1.8 mrg /* choose cheapest traversal */
327 1.8 mrg by_list = (uobj->uo_npages <=
328 1.18 chs ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
329 1.47 chs
330 1.8 mrg if (by_list)
331 1.8 mrg goto loop_by_list;
332 1.1 mrg
333 1.8 mrg /* by hash */
334 1.1 mrg
335 1.8 mrg for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
336 1.8 mrg pp = uvm_pagelookup(uobj, curoff);
337 1.8 mrg if (pp == NULL)
338 1.8 mrg continue;
339 1.8 mrg
340 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
341 1.8 mrg pp->flags & PG_BUSY, 0, 0);
342 1.24 thorpej
343 1.8 mrg /* now do the actual work */
344 1.24 thorpej if (pp->flags & PG_BUSY) {
345 1.8 mrg /* owner must check for this when done */
346 1.8 mrg pp->flags |= PG_RELEASED;
347 1.24 thorpej } else {
348 1.24 thorpej /* free the swap slot... */
349 1.24 thorpej uao_dropswap(uobj, curoff >> PAGE_SHIFT);
350 1.8 mrg
351 1.8 mrg /*
352 1.24 thorpej * ...and free the page; note it may be on the
353 1.24 thorpej * active or inactive queues.
354 1.8 mrg */
355 1.8 mrg uvm_lock_pageq();
356 1.8 mrg uvm_pagefree(pp);
357 1.8 mrg uvm_unlock_pageq();
358 1.8 mrg }
359 1.8 mrg }
360 1.8 mrg simple_unlock(&uobj->vmobjlock);
361 1.8 mrg return;
362 1.1 mrg
363 1.1 mrg loop_by_list:
364 1.1 mrg
365 1.40 chs for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
366 1.40 chs ppnext = TAILQ_NEXT(pp, listq);
367 1.8 mrg if (pp->offset < start || pp->offset >= end) {
368 1.8 mrg continue;
369 1.8 mrg }
370 1.8 mrg
371 1.8 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
372 1.8 mrg pp->flags & PG_BUSY, 0, 0);
373 1.24 thorpej
374 1.24 thorpej if (pp->flags & PG_BUSY) {
375 1.8 mrg /* owner must check for this when done */
376 1.8 mrg pp->flags |= PG_RELEASED;
377 1.24 thorpej } else {
378 1.24 thorpej /* free the swap slot... */
379 1.24 thorpej uao_dropswap(uobj, pp->offset >> PAGE_SHIFT);
380 1.8 mrg
381 1.8 mrg /*
382 1.24 thorpej * ...and free the page; note it may be on the
383 1.24 thorpej * active or inactive queues.
384 1.8 mrg */
385 1.8 mrg uvm_lock_pageq();
386 1.8 mrg uvm_pagefree(pp);
387 1.8 mrg uvm_unlock_pageq();
388 1.8 mrg }
389 1.24 thorpej }
390 1.24 thorpej simple_unlock(&uobj->vmobjlock);
391 1.24 thorpej }
392 1.24 thorpej
393 1.24 thorpej
394 1.24 thorpej /*
395 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
396 1.24 thorpej * objects
397 1.24 thorpej *
398 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
399 1.24 thorpej * the pages right away. (this gets called from uvm_unmap_...).
400 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
401 1.24 thorpej * be on the active or inactive queues (because these objects are
402 1.24 thorpej * never allowed to "page").
403 1.24 thorpej */
404 1.24 thorpej
405 1.24 thorpej void
406 1.24 thorpej uvm_km_pgremove_intrsafe(uobj, start, end)
407 1.24 thorpej struct uvm_object *uobj;
408 1.24 thorpej vaddr_t start, end;
409 1.24 thorpej {
410 1.24 thorpej boolean_t by_list;
411 1.24 thorpej struct vm_page *pp, *ppnext;
412 1.24 thorpej vaddr_t curoff;
413 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
414 1.24 thorpej
415 1.40 chs KASSERT(UVM_OBJ_IS_INTRSAFE_OBJECT(uobj));
416 1.24 thorpej simple_lock(&uobj->vmobjlock); /* lock object */
417 1.24 thorpej
418 1.24 thorpej /* choose cheapest traversal */
419 1.24 thorpej by_list = (uobj->uo_npages <=
420 1.24 thorpej ((end - start) >> PAGE_SHIFT) * UKM_HASH_PENALTY);
421 1.47 chs
422 1.24 thorpej if (by_list)
423 1.24 thorpej goto loop_by_list;
424 1.24 thorpej
425 1.24 thorpej /* by hash */
426 1.24 thorpej
427 1.24 thorpej for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
428 1.24 thorpej pp = uvm_pagelookup(uobj, curoff);
429 1.40 chs if (pp == NULL) {
430 1.24 thorpej continue;
431 1.40 chs }
432 1.24 thorpej
433 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
434 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
435 1.40 chs KASSERT((pp->flags & PG_BUSY) == 0);
436 1.40 chs KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
437 1.40 chs KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
438 1.24 thorpej uvm_pagefree(pp);
439 1.24 thorpej }
440 1.24 thorpej simple_unlock(&uobj->vmobjlock);
441 1.24 thorpej return;
442 1.24 thorpej
443 1.24 thorpej loop_by_list:
444 1.1 mrg
445 1.40 chs for (pp = TAILQ_FIRST(&uobj->memq); pp != NULL; pp = ppnext) {
446 1.40 chs ppnext = TAILQ_NEXT(pp, listq);
447 1.24 thorpej if (pp->offset < start || pp->offset >= end) {
448 1.24 thorpej continue;
449 1.24 thorpej }
450 1.24 thorpej
451 1.24 thorpej UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,
452 1.24 thorpej pp->flags & PG_BUSY, 0, 0);
453 1.40 chs KASSERT((pp->flags & PG_BUSY) == 0);
454 1.40 chs KASSERT((pp->pqflags & PQ_ACTIVE) == 0);
455 1.40 chs KASSERT((pp->pqflags & PQ_INACTIVE) == 0);
456 1.24 thorpej uvm_pagefree(pp);
457 1.8 mrg }
458 1.8 mrg simple_unlock(&uobj->vmobjlock);
459 1.1 mrg }
460 1.1 mrg
461 1.1 mrg
462 1.1 mrg /*
463 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
464 1.1 mrg *
465 1.1 mrg * => we map wired memory into the specified map using the obj passed in
466 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
467 1.1 mrg * free VM space in the map... caller should be prepared to handle
468 1.1 mrg * this case.
469 1.1 mrg * => we return KVA of memory allocated
470 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
471 1.1 mrg * lock the map
472 1.1 mrg */
473 1.1 mrg
474 1.14 eeh vaddr_t
475 1.8 mrg uvm_km_kmemalloc(map, obj, size, flags)
476 1.49 chs struct vm_map *map;
477 1.8 mrg struct uvm_object *obj;
478 1.14 eeh vsize_t size;
479 1.8 mrg int flags;
480 1.1 mrg {
481 1.14 eeh vaddr_t kva, loopva;
482 1.14 eeh vaddr_t offset;
483 1.44 thorpej vsize_t loopsize;
484 1.8 mrg struct vm_page *pg;
485 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
486 1.1 mrg
487 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
488 1.40 chs map, obj, size, flags);
489 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
490 1.1 mrg
491 1.8 mrg /*
492 1.8 mrg * setup for call
493 1.8 mrg */
494 1.8 mrg
495 1.8 mrg size = round_page(size);
496 1.8 mrg kva = vm_map_min(map); /* hint */
497 1.1 mrg
498 1.8 mrg /*
499 1.8 mrg * allocate some virtual space
500 1.8 mrg */
501 1.8 mrg
502 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
503 1.39 thorpej 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
504 1.47 chs UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
505 1.43 chs != 0)) {
506 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
507 1.8 mrg return(0);
508 1.8 mrg }
509 1.8 mrg
510 1.8 mrg /*
511 1.8 mrg * if all we wanted was VA, return now
512 1.8 mrg */
513 1.8 mrg
514 1.8 mrg if (flags & UVM_KMF_VALLOC) {
515 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
516 1.8 mrg return(kva);
517 1.8 mrg }
518 1.40 chs
519 1.8 mrg /*
520 1.8 mrg * recover object offset from virtual address
521 1.8 mrg */
522 1.8 mrg
523 1.8 mrg offset = kva - vm_map_min(kernel_map);
524 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
525 1.8 mrg
526 1.8 mrg /*
527 1.8 mrg * now allocate and map in the memory... note that we are the only ones
528 1.8 mrg * whom should ever get a handle on this area of VM.
529 1.8 mrg */
530 1.8 mrg
531 1.8 mrg loopva = kva;
532 1.44 thorpej loopsize = size;
533 1.44 thorpej while (loopsize) {
534 1.8 mrg simple_lock(&obj->vmobjlock);
535 1.23 chs pg = uvm_pagealloc(obj, offset, NULL, 0);
536 1.45 thorpej if (__predict_true(pg != NULL)) {
537 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
538 1.8 mrg UVM_PAGE_OWN(pg, NULL);
539 1.8 mrg }
540 1.8 mrg simple_unlock(&obj->vmobjlock);
541 1.47 chs
542 1.8 mrg /*
543 1.8 mrg * out of memory?
544 1.8 mrg */
545 1.8 mrg
546 1.35 thorpej if (__predict_false(pg == NULL)) {
547 1.8 mrg if (flags & UVM_KMF_NOWAIT) {
548 1.8 mrg /* free everything! */
549 1.17 chuck uvm_unmap(map, kva, kva + size);
550 1.8 mrg return(0);
551 1.8 mrg } else {
552 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
553 1.8 mrg continue;
554 1.8 mrg }
555 1.8 mrg }
556 1.47 chs
557 1.8 mrg /*
558 1.8 mrg * map it in: note that we call pmap_enter with the map and
559 1.8 mrg * object unlocked in case we are kmem_map/kmem_object
560 1.8 mrg * (because if pmap_enter wants to allocate out of kmem_object
561 1.8 mrg * it will need to lock it itself!)
562 1.8 mrg */
563 1.40 chs
564 1.24 thorpej if (UVM_OBJ_IS_INTRSAFE_OBJECT(obj)) {
565 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
566 1.24 thorpej VM_PROT_ALL);
567 1.24 thorpej } else {
568 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
569 1.33 thorpej UVM_PROT_ALL,
570 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
571 1.24 thorpej }
572 1.8 mrg loopva += PAGE_SIZE;
573 1.8 mrg offset += PAGE_SIZE;
574 1.44 thorpej loopsize -= PAGE_SIZE;
575 1.8 mrg }
576 1.51 chris
577 1.51 chris pmap_update(pmap_kernel());
578 1.51 chris
579 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
580 1.8 mrg return(kva);
581 1.1 mrg }
582 1.1 mrg
583 1.1 mrg /*
584 1.1 mrg * uvm_km_free: free an area of kernel memory
585 1.1 mrg */
586 1.1 mrg
587 1.8 mrg void
588 1.8 mrg uvm_km_free(map, addr, size)
589 1.49 chs struct vm_map *map;
590 1.14 eeh vaddr_t addr;
591 1.14 eeh vsize_t size;
592 1.8 mrg {
593 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
594 1.1 mrg }
595 1.1 mrg
596 1.1 mrg /*
597 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
598 1.1 mrg * anyone waiting for vm space.
599 1.1 mrg *
600 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
601 1.1 mrg */
602 1.1 mrg
603 1.8 mrg void
604 1.8 mrg uvm_km_free_wakeup(map, addr, size)
605 1.49 chs struct vm_map *map;
606 1.14 eeh vaddr_t addr;
607 1.14 eeh vsize_t size;
608 1.1 mrg {
609 1.49 chs struct vm_map_entry *dead_entries;
610 1.1 mrg
611 1.8 mrg vm_map_lock(map);
612 1.47 chs uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
613 1.43 chs &dead_entries);
614 1.31 thorpej wakeup(map);
615 1.8 mrg vm_map_unlock(map);
616 1.8 mrg if (dead_entries != NULL)
617 1.8 mrg uvm_unmap_detach(dead_entries, 0);
618 1.1 mrg }
619 1.1 mrg
620 1.1 mrg /*
621 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
622 1.1 mrg *
623 1.1 mrg * => we can sleep if needed
624 1.1 mrg */
625 1.1 mrg
626 1.14 eeh vaddr_t
627 1.8 mrg uvm_km_alloc1(map, size, zeroit)
628 1.49 chs struct vm_map *map;
629 1.14 eeh vsize_t size;
630 1.8 mrg boolean_t zeroit;
631 1.1 mrg {
632 1.14 eeh vaddr_t kva, loopva, offset;
633 1.8 mrg struct vm_page *pg;
634 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
635 1.1 mrg
636 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
637 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
638 1.1 mrg
639 1.8 mrg size = round_page(size);
640 1.8 mrg kva = vm_map_min(map); /* hint */
641 1.1 mrg
642 1.8 mrg /*
643 1.8 mrg * allocate some virtual space
644 1.8 mrg */
645 1.1 mrg
646 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
647 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
648 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
649 1.43 chs 0)) != 0)) {
650 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
651 1.8 mrg return(0);
652 1.8 mrg }
653 1.8 mrg
654 1.8 mrg /*
655 1.8 mrg * recover object offset from virtual address
656 1.8 mrg */
657 1.8 mrg
658 1.8 mrg offset = kva - vm_map_min(kernel_map);
659 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
660 1.8 mrg
661 1.8 mrg /*
662 1.8 mrg * now allocate the memory. we must be careful about released pages.
663 1.8 mrg */
664 1.8 mrg
665 1.8 mrg loopva = kva;
666 1.8 mrg while (size) {
667 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
668 1.8 mrg pg = uvm_pagelookup(uvm.kernel_object, offset);
669 1.8 mrg
670 1.8 mrg /*
671 1.8 mrg * if we found a page in an unallocated region, it must be
672 1.8 mrg * released
673 1.8 mrg */
674 1.8 mrg if (pg) {
675 1.8 mrg if ((pg->flags & PG_RELEASED) == 0)
676 1.8 mrg panic("uvm_km_alloc1: non-released page");
677 1.8 mrg pg->flags |= PG_WANTED;
678 1.8 mrg UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
679 1.30 thorpej FALSE, "km_alloc", 0);
680 1.8 mrg continue; /* retry */
681 1.8 mrg }
682 1.47 chs
683 1.8 mrg /* allocate ram */
684 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
685 1.8 mrg if (pg) {
686 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
687 1.8 mrg UVM_PAGE_OWN(pg, NULL);
688 1.8 mrg }
689 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
690 1.35 thorpej if (__predict_false(pg == NULL)) {
691 1.8 mrg uvm_wait("km_alloc1w"); /* wait for memory */
692 1.8 mrg continue;
693 1.8 mrg }
694 1.47 chs
695 1.24 thorpej /*
696 1.24 thorpej * map it in; note we're never called with an intrsafe
697 1.24 thorpej * object, so we always use regular old pmap_enter().
698 1.24 thorpej */
699 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
700 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
701 1.24 thorpej
702 1.8 mrg loopva += PAGE_SIZE;
703 1.8 mrg offset += PAGE_SIZE;
704 1.8 mrg size -= PAGE_SIZE;
705 1.8 mrg }
706 1.46 thorpej
707 1.51 chris pmap_update(map->pmap);
708 1.46 thorpej
709 1.8 mrg /*
710 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
711 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
712 1.8 mrg */
713 1.1 mrg
714 1.8 mrg if (zeroit)
715 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
716 1.1 mrg
717 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
718 1.8 mrg return(kva);
719 1.1 mrg }
720 1.1 mrg
721 1.1 mrg /*
722 1.1 mrg * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
723 1.1 mrg *
724 1.1 mrg * => memory is not allocated until fault time
725 1.1 mrg */
726 1.1 mrg
727 1.14 eeh vaddr_t
728 1.8 mrg uvm_km_valloc(map, size)
729 1.49 chs struct vm_map *map;
730 1.14 eeh vsize_t size;
731 1.1 mrg {
732 1.41 nisimura return(uvm_km_valloc_align(map, size, 0));
733 1.41 nisimura }
734 1.41 nisimura
735 1.41 nisimura vaddr_t
736 1.41 nisimura uvm_km_valloc_align(map, size, align)
737 1.49 chs struct vm_map *map;
738 1.41 nisimura vsize_t size;
739 1.41 nisimura vsize_t align;
740 1.41 nisimura {
741 1.14 eeh vaddr_t kva;
742 1.8 mrg UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
743 1.1 mrg
744 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
745 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
746 1.1 mrg
747 1.8 mrg size = round_page(size);
748 1.8 mrg kva = vm_map_min(map); /* hint */
749 1.1 mrg
750 1.8 mrg /*
751 1.8 mrg * allocate some virtual space. will be demand filled by kernel_object.
752 1.8 mrg */
753 1.1 mrg
754 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
755 1.41 nisimura UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
756 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
757 1.43 chs 0)) != 0)) {
758 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
759 1.8 mrg return(0);
760 1.8 mrg }
761 1.1 mrg
762 1.8 mrg UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
763 1.8 mrg return(kva);
764 1.1 mrg }
765 1.1 mrg
766 1.1 mrg /*
767 1.1 mrg * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
768 1.1 mrg *
769 1.1 mrg * => memory is not allocated until fault time
770 1.1 mrg * => if no room in map, wait for space to free, unless requested size
771 1.1 mrg * is larger than map (in which case we return 0)
772 1.1 mrg */
773 1.1 mrg
774 1.14 eeh vaddr_t
775 1.38 jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
776 1.49 chs struct vm_map *map;
777 1.14 eeh vsize_t size;
778 1.38 jeffs voff_t prefer;
779 1.1 mrg {
780 1.14 eeh vaddr_t kva;
781 1.38 jeffs UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
782 1.1 mrg
783 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
784 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
785 1.1 mrg
786 1.8 mrg size = round_page(size);
787 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
788 1.8 mrg return(0);
789 1.8 mrg
790 1.8 mrg while (1) {
791 1.8 mrg kva = vm_map_min(map); /* hint */
792 1.8 mrg
793 1.8 mrg /*
794 1.8 mrg * allocate some virtual space. will be demand filled
795 1.8 mrg * by kernel_object.
796 1.8 mrg */
797 1.8 mrg
798 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
799 1.39 thorpej prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
800 1.8 mrg UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
801 1.43 chs == 0)) {
802 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
803 1.8 mrg return(kva);
804 1.8 mrg }
805 1.8 mrg
806 1.8 mrg /*
807 1.8 mrg * failed. sleep for a while (on map)
808 1.8 mrg */
809 1.8 mrg
810 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
811 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
812 1.8 mrg }
813 1.8 mrg /*NOTREACHED*/
814 1.38 jeffs }
815 1.38 jeffs
816 1.38 jeffs vaddr_t
817 1.38 jeffs uvm_km_valloc_wait(map, size)
818 1.49 chs struct vm_map *map;
819 1.38 jeffs vsize_t size;
820 1.38 jeffs {
821 1.38 jeffs return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
822 1.10 thorpej }
823 1.10 thorpej
824 1.10 thorpej /* Sanity; must specify both or none. */
825 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
826 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
827 1.10 thorpej #error Must specify MAP and UNMAP together.
828 1.10 thorpej #endif
829 1.10 thorpej
830 1.10 thorpej /*
831 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
832 1.10 thorpej *
833 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
834 1.10 thorpej */
835 1.10 thorpej
836 1.11 thorpej /* ARGSUSED */
837 1.14 eeh vaddr_t
838 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
839 1.49 chs struct vm_map *map;
840 1.12 thorpej struct uvm_object *obj;
841 1.15 thorpej boolean_t waitok;
842 1.10 thorpej {
843 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
844 1.10 thorpej struct vm_page *pg;
845 1.14 eeh vaddr_t va;
846 1.10 thorpej
847 1.15 thorpej again:
848 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
849 1.35 thorpej if (__predict_false(pg == NULL)) {
850 1.15 thorpej if (waitok) {
851 1.15 thorpej uvm_wait("plpg");
852 1.15 thorpej goto again;
853 1.15 thorpej } else
854 1.15 thorpej return (0);
855 1.15 thorpej }
856 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
857 1.35 thorpej if (__predict_false(va == 0))
858 1.10 thorpej uvm_pagefree(pg);
859 1.10 thorpej return (va);
860 1.10 thorpej #else
861 1.14 eeh vaddr_t va;
862 1.10 thorpej int s;
863 1.10 thorpej
864 1.16 thorpej /*
865 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
866 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
867 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
868 1.16 thorpej * accessed in interrupt context).
869 1.16 thorpej *
870 1.16 thorpej * XXX We may want to consider changing the interface to this
871 1.16 thorpej * XXX function.
872 1.16 thorpej */
873 1.16 thorpej
874 1.42 thorpej s = splvm();
875 1.15 thorpej va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
876 1.10 thorpej splx(s);
877 1.10 thorpej return (va);
878 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
879 1.10 thorpej }
880 1.10 thorpej
881 1.10 thorpej /*
882 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
883 1.10 thorpej *
884 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
885 1.10 thorpej */
886 1.10 thorpej
887 1.11 thorpej /* ARGSUSED */
888 1.10 thorpej void
889 1.11 thorpej uvm_km_free_poolpage1(map, addr)
890 1.49 chs struct vm_map *map;
891 1.14 eeh vaddr_t addr;
892 1.10 thorpej {
893 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
894 1.14 eeh paddr_t pa;
895 1.10 thorpej
896 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
897 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
898 1.10 thorpej #else
899 1.10 thorpej int s;
900 1.16 thorpej
901 1.16 thorpej /*
902 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
903 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
904 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
905 1.16 thorpej * accessed in interrupt context).
906 1.16 thorpej *
907 1.16 thorpej * XXX We may want to consider changing the interface to this
908 1.16 thorpej * XXX function.
909 1.16 thorpej */
910 1.10 thorpej
911 1.42 thorpej s = splvm();
912 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
913 1.10 thorpej splx(s);
914 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
915 1.1 mrg }
916