Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.53
      1  1.53       chs /*	$NetBSD: uvm_km.c,v 1.53 2001/11/06 08:07:50 chs Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.6       mrg #include "opt_uvmhist.h"
     70   1.1       mrg 
     71   1.1       mrg /*
     72   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     73   1.1       mrg  */
     74   1.1       mrg 
     75   1.7     chuck /*
     76   1.7     chuck  * overview of kernel memory management:
     77   1.7     chuck  *
     78   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     79   1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     80   1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     81   1.7     chuck  *
     82  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     83   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     84   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     85   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     86  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     87   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     88   1.7     chuck  *
     89   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     90   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     91   1.7     chuck  * chunks.
     92   1.7     chuck  *
     93   1.7     chuck  * the vm system has several standard kernel submaps, including:
     94   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     95   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     96  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     97   1.7     chuck  *		at interrupt time ***
     98  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     99   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
    100   1.7     chuck  *   exec_map => used during exec to handle exec args
    101   1.7     chuck  *   etc...
    102   1.7     chuck  *
    103   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    104   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    105   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    106  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    107   1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    108   1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    109   1.7     chuck  *
    110   1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    111   1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    112  1.52       chs  * by splvm().  pages in these submaps are not assigned to an object.
    113   1.7     chuck  *
    114   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    115   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    116  1.47       chs  * large chunks of a kernel object's space go unused either because
    117  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    118   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    119   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    120   1.7     chuck  * offsets that are managed by the submap.
    121   1.7     chuck  *
    122   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    123   1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    124   1.7     chuck  * example:
    125   1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    126   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    127   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    128   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    129  1.47       chs  *   mapped at 0xf8235000.
    130   1.7     chuck  *
    131   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    132   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    133   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    134   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    135   1.7     chuck  * and no need to save them after they are no longer referenced.
    136   1.7     chuck  */
    137   1.7     chuck 
    138   1.1       mrg #include <sys/param.h>
    139   1.1       mrg #include <sys/systm.h>
    140   1.1       mrg #include <sys/proc.h>
    141   1.1       mrg 
    142   1.1       mrg #include <uvm/uvm.h>
    143   1.1       mrg 
    144   1.1       mrg /*
    145   1.1       mrg  * global data structures
    146   1.1       mrg  */
    147   1.1       mrg 
    148  1.49       chs struct vm_map *kernel_map = NULL;
    149   1.1       mrg 
    150   1.1       mrg /*
    151   1.1       mrg  * local data structues
    152   1.1       mrg  */
    153   1.1       mrg 
    154   1.1       mrg static struct vm_map		kernel_map_store;
    155   1.1       mrg 
    156   1.1       mrg /*
    157   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    158   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    159   1.1       mrg  *
    160   1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    161   1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    162   1.1       mrg  *    "end" is the end.
    163   1.1       mrg  */
    164   1.1       mrg 
    165   1.8       mrg void
    166   1.8       mrg uvm_km_init(start, end)
    167  1.14       eeh 	vaddr_t start, end;
    168   1.1       mrg {
    169  1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    170  1.27   thorpej 
    171  1.27   thorpej 	/*
    172  1.27   thorpej 	 * next, init kernel memory objects.
    173   1.8       mrg 	 */
    174   1.1       mrg 
    175   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    176  1.34       chs 	uao_init();
    177   1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    178   1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    179   1.1       mrg 
    180  1.24   thorpej 	/*
    181  1.53       chs 	 * init the map and reserve already allocated kernel space
    182   1.8       mrg 	 * before installing.
    183   1.8       mrg 	 */
    184   1.1       mrg 
    185  1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    186   1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    187   1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    188  1.39   thorpej 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    189  1.43       chs 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    190   1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    191  1.47       chs 
    192   1.8       mrg 	/*
    193   1.8       mrg 	 * install!
    194   1.8       mrg 	 */
    195   1.8       mrg 
    196   1.8       mrg 	kernel_map = &kernel_map_store;
    197   1.1       mrg }
    198   1.1       mrg 
    199   1.1       mrg /*
    200   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    201   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    202   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    203   1.1       mrg  *
    204   1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    205   1.5   thorpej  *      by the submap must start
    206   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    207   1.1       mrg  *	alloc a new map
    208   1.1       mrg  */
    209   1.8       mrg struct vm_map *
    210  1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    211   1.8       mrg 	struct vm_map *map;
    212  1.52       chs 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    213  1.14       eeh 	vsize_t size;
    214  1.25   thorpej 	int flags;
    215   1.8       mrg 	boolean_t fixed;
    216   1.8       mrg 	struct vm_map *submap;
    217   1.8       mrg {
    218   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    219   1.1       mrg 
    220   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    221   1.1       mrg 
    222   1.8       mrg 	/*
    223   1.8       mrg 	 * first allocate a blank spot in the parent map
    224   1.8       mrg 	 */
    225   1.8       mrg 
    226  1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    227   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    228  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    229   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    230   1.8       mrg 	}
    231   1.8       mrg 
    232   1.8       mrg 	/*
    233   1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    234   1.8       mrg 	 */
    235   1.1       mrg 
    236   1.8       mrg 	*max = *min + size;
    237   1.5   thorpej 
    238   1.8       mrg 	/*
    239   1.8       mrg 	 * add references to pmap and create or init the submap
    240   1.8       mrg 	 */
    241   1.1       mrg 
    242   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    243   1.8       mrg 	if (submap == NULL) {
    244  1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    245   1.8       mrg 		if (submap == NULL)
    246   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    247   1.8       mrg 	} else {
    248  1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    249   1.8       mrg 		submap->pmap = vm_map_pmap(map);
    250   1.8       mrg 	}
    251   1.1       mrg 
    252   1.8       mrg 	/*
    253   1.8       mrg 	 * now let uvm_map_submap plug in it...
    254   1.8       mrg 	 */
    255   1.1       mrg 
    256  1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    257   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    258   1.1       mrg 
    259   1.8       mrg 	return(submap);
    260   1.1       mrg }
    261   1.1       mrg 
    262   1.1       mrg /*
    263   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    264   1.1       mrg  *
    265   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    266   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    267   1.1       mrg  */
    268   1.1       mrg 
    269   1.8       mrg void
    270   1.8       mrg uvm_km_pgremove(uobj, start, end)
    271   1.8       mrg 	struct uvm_object *uobj;
    272  1.14       eeh 	vaddr_t start, end;
    273   1.1       mrg {
    274  1.53       chs 	struct vm_page *pg;
    275  1.52       chs 	voff_t curoff, nextoff;
    276  1.53       chs 	int swpgonlydelta = 0;
    277   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    278   1.1       mrg 
    279  1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    280  1.40       chs 	simple_lock(&uobj->vmobjlock);
    281   1.3       chs 
    282  1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    283  1.52       chs 		nextoff = curoff + PAGE_SIZE;
    284  1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    285  1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    286  1.52       chs 			pg->flags |= PG_WANTED;
    287  1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    288  1.52       chs 				    "km_pgrm", 0);
    289  1.52       chs 			simple_lock(&uobj->vmobjlock);
    290  1.52       chs 			nextoff = curoff;
    291   1.8       mrg 			continue;
    292  1.52       chs 		}
    293   1.8       mrg 
    294  1.52       chs 		/*
    295  1.52       chs 		 * free the swap slot, then the page.
    296  1.52       chs 		 */
    297   1.8       mrg 
    298  1.53       chs 		if (pg == NULL &&
    299  1.53       chs 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    300  1.53       chs 			swpgonlydelta++;
    301  1.53       chs 		}
    302  1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    303  1.53       chs 		if (pg != NULL) {
    304  1.53       chs 			uvm_lock_pageq();
    305  1.53       chs 			uvm_pagefree(pg);
    306  1.53       chs 			uvm_unlock_pageq();
    307  1.53       chs 		}
    308   1.8       mrg 	}
    309   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    310   1.8       mrg 
    311  1.53       chs 	simple_lock(&uvm.swap_data_lock);
    312  1.53       chs 	KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    313  1.53       chs 	uvmexp.swpgonly -= swpgonlydelta;
    314  1.53       chs 	simple_unlock(&uvm.swap_data_lock);
    315  1.24   thorpej }
    316  1.24   thorpej 
    317  1.24   thorpej 
    318  1.24   thorpej /*
    319  1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    320  1.52       chs  *    maps
    321  1.24   thorpej  *
    322  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    323  1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    324  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    325  1.52       chs  *    be on the active or inactive queues (because they have no object).
    326  1.24   thorpej  */
    327  1.24   thorpej 
    328  1.24   thorpej void
    329  1.52       chs uvm_km_pgremove_intrsafe(start, end)
    330  1.24   thorpej 	vaddr_t start, end;
    331  1.24   thorpej {
    332  1.52       chs 	struct vm_page *pg;
    333  1.52       chs 	paddr_t pa;
    334  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    335  1.24   thorpej 
    336  1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    337  1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    338  1.24   thorpej 			continue;
    339  1.40       chs 		}
    340  1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    341  1.52       chs 		KASSERT(pg);
    342  1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    343  1.52       chs 		uvm_pagefree(pg);
    344  1.24   thorpej 	}
    345   1.1       mrg }
    346   1.1       mrg 
    347   1.1       mrg 
    348   1.1       mrg /*
    349   1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    350   1.1       mrg  *
    351   1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    352   1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    353   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    354   1.1       mrg  *	this case.
    355   1.1       mrg  * => we return KVA of memory allocated
    356   1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    357   1.1       mrg  *	lock the map
    358   1.1       mrg  */
    359   1.1       mrg 
    360  1.14       eeh vaddr_t
    361   1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    362  1.49       chs 	struct vm_map *map;
    363   1.8       mrg 	struct uvm_object *obj;
    364  1.14       eeh 	vsize_t size;
    365   1.8       mrg 	int flags;
    366   1.1       mrg {
    367  1.14       eeh 	vaddr_t kva, loopva;
    368  1.14       eeh 	vaddr_t offset;
    369  1.44   thorpej 	vsize_t loopsize;
    370   1.8       mrg 	struct vm_page *pg;
    371   1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    372   1.1       mrg 
    373   1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    374  1.40       chs 		    map, obj, size, flags);
    375  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    376   1.1       mrg 
    377   1.8       mrg 	/*
    378   1.8       mrg 	 * setup for call
    379   1.8       mrg 	 */
    380   1.8       mrg 
    381   1.8       mrg 	size = round_page(size);
    382   1.8       mrg 	kva = vm_map_min(map);	/* hint */
    383   1.1       mrg 
    384   1.8       mrg 	/*
    385   1.8       mrg 	 * allocate some virtual space
    386   1.8       mrg 	 */
    387   1.8       mrg 
    388  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    389  1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    390  1.47       chs 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    391  1.43       chs 			!= 0)) {
    392   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    393   1.8       mrg 		return(0);
    394   1.8       mrg 	}
    395   1.8       mrg 
    396   1.8       mrg 	/*
    397   1.8       mrg 	 * if all we wanted was VA, return now
    398   1.8       mrg 	 */
    399   1.8       mrg 
    400   1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    401   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    402   1.8       mrg 		return(kva);
    403   1.8       mrg 	}
    404  1.40       chs 
    405   1.8       mrg 	/*
    406   1.8       mrg 	 * recover object offset from virtual address
    407   1.8       mrg 	 */
    408   1.8       mrg 
    409   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    410   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    411   1.8       mrg 
    412   1.8       mrg 	/*
    413   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    414   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    415   1.8       mrg 	 */
    416   1.8       mrg 
    417   1.8       mrg 	loopva = kva;
    418  1.44   thorpej 	loopsize = size;
    419  1.44   thorpej 	while (loopsize) {
    420  1.52       chs 		if (obj) {
    421  1.52       chs 			simple_lock(&obj->vmobjlock);
    422  1.52       chs 		}
    423  1.52       chs 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    424  1.45   thorpej 		if (__predict_true(pg != NULL)) {
    425   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    426   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    427   1.8       mrg 		}
    428  1.52       chs 		if (obj) {
    429  1.52       chs 			simple_unlock(&obj->vmobjlock);
    430  1.52       chs 		}
    431  1.47       chs 
    432   1.8       mrg 		/*
    433   1.8       mrg 		 * out of memory?
    434   1.8       mrg 		 */
    435   1.8       mrg 
    436  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    437   1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    438   1.8       mrg 				/* free everything! */
    439  1.17     chuck 				uvm_unmap(map, kva, kva + size);
    440   1.8       mrg 				return(0);
    441   1.8       mrg 			} else {
    442   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    443   1.8       mrg 				continue;
    444   1.8       mrg 			}
    445   1.8       mrg 		}
    446  1.47       chs 
    447   1.8       mrg 		/*
    448  1.52       chs 		 * map it in
    449   1.8       mrg 		 */
    450  1.40       chs 
    451  1.52       chs 		if (obj == NULL) {
    452  1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    453  1.24   thorpej 			    VM_PROT_ALL);
    454  1.24   thorpej 		} else {
    455  1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    456  1.33   thorpej 			    UVM_PROT_ALL,
    457  1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    458  1.24   thorpej 		}
    459   1.8       mrg 		loopva += PAGE_SIZE;
    460   1.8       mrg 		offset += PAGE_SIZE;
    461  1.44   thorpej 		loopsize -= PAGE_SIZE;
    462   1.8       mrg 	}
    463  1.51     chris 
    464  1.51     chris        	pmap_update(pmap_kernel());
    465  1.51     chris 
    466   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    467   1.8       mrg 	return(kva);
    468   1.1       mrg }
    469   1.1       mrg 
    470   1.1       mrg /*
    471   1.1       mrg  * uvm_km_free: free an area of kernel memory
    472   1.1       mrg  */
    473   1.1       mrg 
    474   1.8       mrg void
    475   1.8       mrg uvm_km_free(map, addr, size)
    476  1.49       chs 	struct vm_map *map;
    477  1.14       eeh 	vaddr_t addr;
    478  1.14       eeh 	vsize_t size;
    479   1.8       mrg {
    480  1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    481   1.1       mrg }
    482   1.1       mrg 
    483   1.1       mrg /*
    484   1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    485   1.1       mrg  * anyone waiting for vm space.
    486   1.1       mrg  *
    487   1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    488   1.1       mrg  */
    489   1.1       mrg 
    490   1.8       mrg void
    491   1.8       mrg uvm_km_free_wakeup(map, addr, size)
    492  1.49       chs 	struct vm_map *map;
    493  1.14       eeh 	vaddr_t addr;
    494  1.14       eeh 	vsize_t size;
    495   1.1       mrg {
    496  1.49       chs 	struct vm_map_entry *dead_entries;
    497   1.1       mrg 
    498   1.8       mrg 	vm_map_lock(map);
    499  1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    500  1.43       chs 	    &dead_entries);
    501  1.31   thorpej 	wakeup(map);
    502   1.8       mrg 	vm_map_unlock(map);
    503   1.8       mrg 	if (dead_entries != NULL)
    504   1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    505   1.1       mrg }
    506   1.1       mrg 
    507   1.1       mrg /*
    508   1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    509   1.1       mrg  *
    510   1.1       mrg  * => we can sleep if needed
    511   1.1       mrg  */
    512   1.1       mrg 
    513  1.14       eeh vaddr_t
    514   1.8       mrg uvm_km_alloc1(map, size, zeroit)
    515  1.49       chs 	struct vm_map *map;
    516  1.14       eeh 	vsize_t size;
    517   1.8       mrg 	boolean_t zeroit;
    518   1.1       mrg {
    519  1.14       eeh 	vaddr_t kva, loopva, offset;
    520   1.8       mrg 	struct vm_page *pg;
    521   1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    522   1.1       mrg 
    523   1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    524  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    525   1.1       mrg 
    526   1.8       mrg 	size = round_page(size);
    527   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    528   1.1       mrg 
    529   1.8       mrg 	/*
    530   1.8       mrg 	 * allocate some virtual space
    531   1.8       mrg 	 */
    532   1.1       mrg 
    533  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    534  1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    535  1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    536  1.43       chs 					      0)) != 0)) {
    537   1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    538   1.8       mrg 		return(0);
    539   1.8       mrg 	}
    540   1.8       mrg 
    541   1.8       mrg 	/*
    542   1.8       mrg 	 * recover object offset from virtual address
    543   1.8       mrg 	 */
    544   1.8       mrg 
    545   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    546   1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    547   1.8       mrg 
    548   1.8       mrg 	/*
    549  1.52       chs 	 * now allocate the memory.
    550   1.8       mrg 	 */
    551   1.8       mrg 
    552   1.8       mrg 	loopva = kva;
    553   1.8       mrg 	while (size) {
    554   1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    555  1.52       chs 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    556  1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    557   1.8       mrg 		if (pg) {
    558  1.52       chs 			pg->flags &= ~PG_BUSY;
    559   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    560   1.8       mrg 		}
    561   1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    562  1.52       chs 		if (pg == NULL) {
    563  1.52       chs 			uvm_wait("km_alloc1w");
    564   1.8       mrg 			continue;
    565   1.8       mrg 		}
    566   1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    567  1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    568   1.8       mrg 		loopva += PAGE_SIZE;
    569   1.8       mrg 		offset += PAGE_SIZE;
    570   1.8       mrg 		size -= PAGE_SIZE;
    571   1.8       mrg 	}
    572  1.51     chris 	pmap_update(map->pmap);
    573  1.46   thorpej 
    574   1.8       mrg 	/*
    575   1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    576   1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    577   1.8       mrg 	 */
    578   1.1       mrg 
    579   1.8       mrg 	if (zeroit)
    580  1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    581   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    582   1.8       mrg 	return(kva);
    583   1.1       mrg }
    584   1.1       mrg 
    585   1.1       mrg /*
    586   1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    587   1.1       mrg  *
    588   1.1       mrg  * => memory is not allocated until fault time
    589   1.1       mrg  */
    590   1.1       mrg 
    591  1.14       eeh vaddr_t
    592   1.8       mrg uvm_km_valloc(map, size)
    593  1.49       chs 	struct vm_map *map;
    594  1.14       eeh 	vsize_t size;
    595   1.1       mrg {
    596  1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    597  1.41  nisimura }
    598  1.41  nisimura 
    599  1.41  nisimura vaddr_t
    600  1.41  nisimura uvm_km_valloc_align(map, size, align)
    601  1.49       chs 	struct vm_map *map;
    602  1.41  nisimura 	vsize_t size;
    603  1.41  nisimura 	vsize_t align;
    604  1.41  nisimura {
    605  1.14       eeh 	vaddr_t kva;
    606   1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    607   1.1       mrg 
    608   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    609  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    610   1.1       mrg 
    611   1.8       mrg 	size = round_page(size);
    612   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    613   1.1       mrg 
    614   1.8       mrg 	/*
    615   1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    616   1.8       mrg 	 */
    617   1.1       mrg 
    618  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    619  1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    620  1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    621  1.43       chs 					    0)) != 0)) {
    622   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    623   1.8       mrg 		return(0);
    624   1.8       mrg 	}
    625   1.1       mrg 
    626   1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    627   1.8       mrg 	return(kva);
    628   1.1       mrg }
    629   1.1       mrg 
    630   1.1       mrg /*
    631   1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    632   1.1       mrg  *
    633   1.1       mrg  * => memory is not allocated until fault time
    634   1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    635   1.1       mrg  *    is larger than map (in which case we return 0)
    636   1.1       mrg  */
    637   1.1       mrg 
    638  1.14       eeh vaddr_t
    639  1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    640  1.49       chs 	struct vm_map *map;
    641  1.14       eeh 	vsize_t size;
    642  1.38     jeffs 	voff_t prefer;
    643   1.1       mrg {
    644  1.14       eeh 	vaddr_t kva;
    645  1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    646   1.1       mrg 
    647   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    648  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    649   1.1       mrg 
    650   1.8       mrg 	size = round_page(size);
    651   1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    652   1.8       mrg 		return(0);
    653   1.8       mrg 
    654  1.52       chs 	for (;;) {
    655   1.8       mrg 		kva = vm_map_min(map);		/* hint */
    656   1.8       mrg 
    657   1.8       mrg 		/*
    658   1.8       mrg 		 * allocate some virtual space.   will be demand filled
    659   1.8       mrg 		 * by kernel_object.
    660   1.8       mrg 		 */
    661   1.8       mrg 
    662  1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    663  1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    664   1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    665  1.43       chs 		    == 0)) {
    666   1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    667   1.8       mrg 			return(kva);
    668   1.8       mrg 		}
    669   1.8       mrg 
    670   1.8       mrg 		/*
    671   1.8       mrg 		 * failed.  sleep for a while (on map)
    672   1.8       mrg 		 */
    673   1.8       mrg 
    674   1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    675   1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    676   1.8       mrg 	}
    677   1.8       mrg 	/*NOTREACHED*/
    678  1.38     jeffs }
    679  1.38     jeffs 
    680  1.38     jeffs vaddr_t
    681  1.38     jeffs uvm_km_valloc_wait(map, size)
    682  1.49       chs 	struct vm_map *map;
    683  1.38     jeffs 	vsize_t size;
    684  1.38     jeffs {
    685  1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    686  1.10   thorpej }
    687  1.10   thorpej 
    688  1.10   thorpej /* Sanity; must specify both or none. */
    689  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    690  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    691  1.10   thorpej #error Must specify MAP and UNMAP together.
    692  1.10   thorpej #endif
    693  1.10   thorpej 
    694  1.10   thorpej /*
    695  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    696  1.10   thorpej  *
    697  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    698  1.10   thorpej  */
    699  1.10   thorpej 
    700  1.11   thorpej /* ARGSUSED */
    701  1.14       eeh vaddr_t
    702  1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    703  1.49       chs 	struct vm_map *map;
    704  1.12   thorpej 	struct uvm_object *obj;
    705  1.15   thorpej 	boolean_t waitok;
    706  1.10   thorpej {
    707  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    708  1.10   thorpej 	struct vm_page *pg;
    709  1.14       eeh 	vaddr_t va;
    710  1.10   thorpej 
    711  1.15   thorpej  again:
    712  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    713  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    714  1.15   thorpej 		if (waitok) {
    715  1.15   thorpej 			uvm_wait("plpg");
    716  1.15   thorpej 			goto again;
    717  1.15   thorpej 		} else
    718  1.15   thorpej 			return (0);
    719  1.15   thorpej 	}
    720  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    721  1.35   thorpej 	if (__predict_false(va == 0))
    722  1.10   thorpej 		uvm_pagefree(pg);
    723  1.10   thorpej 	return (va);
    724  1.10   thorpej #else
    725  1.14       eeh 	vaddr_t va;
    726  1.10   thorpej 	int s;
    727  1.10   thorpej 
    728  1.16   thorpej 	/*
    729  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    730  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    731  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    732  1.16   thorpej 	 * accessed in interrupt context).
    733  1.16   thorpej 	 *
    734  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    735  1.16   thorpej 	 * XXX function.
    736  1.16   thorpej 	 */
    737  1.16   thorpej 
    738  1.42   thorpej 	s = splvm();
    739  1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    740  1.10   thorpej 	splx(s);
    741  1.10   thorpej 	return (va);
    742  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    743  1.10   thorpej }
    744  1.10   thorpej 
    745  1.10   thorpej /*
    746  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    747  1.10   thorpej  *
    748  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    749  1.10   thorpej  */
    750  1.10   thorpej 
    751  1.11   thorpej /* ARGSUSED */
    752  1.10   thorpej void
    753  1.11   thorpej uvm_km_free_poolpage1(map, addr)
    754  1.49       chs 	struct vm_map *map;
    755  1.14       eeh 	vaddr_t addr;
    756  1.10   thorpej {
    757  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    758  1.14       eeh 	paddr_t pa;
    759  1.10   thorpej 
    760  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    761  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    762  1.10   thorpej #else
    763  1.10   thorpej 	int s;
    764  1.16   thorpej 
    765  1.16   thorpej 	/*
    766  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    767  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    768  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    769  1.16   thorpej 	 * accessed in interrupt context).
    770  1.16   thorpej 	 *
    771  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    772  1.16   thorpej 	 * XXX function.
    773  1.16   thorpej 	 */
    774  1.10   thorpej 
    775  1.42   thorpej 	s = splvm();
    776  1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    777  1.10   thorpej 	splx(s);
    778  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    779   1.1       mrg }
    780