Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.55
      1  1.55     lukem /*	$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71   1.1       mrg  */
     72   1.1       mrg 
     73   1.7     chuck /*
     74   1.7     chuck  * overview of kernel memory management:
     75   1.7     chuck  *
     76   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77   1.7     chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78   1.7     chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79   1.7     chuck  *
     80  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     81   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     85   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86   1.7     chuck  *
     87   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89   1.7     chuck  * chunks.
     90   1.7     chuck  *
     91   1.7     chuck  * the vm system has several standard kernel submaps, including:
     92   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95   1.7     chuck  *		at interrupt time ***
     96  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98   1.7     chuck  *   exec_map => used during exec to handle exec args
     99   1.7     chuck  *   etc...
    100   1.7     chuck  *
    101   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105   1.7     chuck  * object is equal to the size of kernel virtual address space (i.e. the
    106   1.7     chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107   1.7     chuck  *
    108   1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    109   1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    110  1.52       chs  * by splvm().  pages in these submaps are not assigned to an object.
    111   1.7     chuck  *
    112   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    113   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    114  1.47       chs  * large chunks of a kernel object's space go unused either because
    115  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    116   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    118   1.7     chuck  * offsets that are managed by the submap.
    119   1.7     chuck  *
    120   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    121   1.7     chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122   1.7     chuck  * example:
    123   1.7     chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    127  1.47       chs  *   mapped at 0xf8235000.
    128   1.7     chuck  *
    129   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    130   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    131   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    132   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    133   1.7     chuck  * and no need to save them after they are no longer referenced.
    134   1.7     chuck  */
    135  1.55     lukem 
    136  1.55     lukem #include <sys/cdefs.h>
    137  1.55     lukem __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $");
    138  1.55     lukem 
    139  1.55     lukem #include "opt_uvmhist.h"
    140   1.7     chuck 
    141   1.1       mrg #include <sys/param.h>
    142   1.1       mrg #include <sys/systm.h>
    143   1.1       mrg #include <sys/proc.h>
    144   1.1       mrg 
    145   1.1       mrg #include <uvm/uvm.h>
    146   1.1       mrg 
    147   1.1       mrg /*
    148   1.1       mrg  * global data structures
    149   1.1       mrg  */
    150   1.1       mrg 
    151  1.49       chs struct vm_map *kernel_map = NULL;
    152   1.1       mrg 
    153   1.1       mrg /*
    154   1.1       mrg  * local data structues
    155   1.1       mrg  */
    156   1.1       mrg 
    157   1.1       mrg static struct vm_map		kernel_map_store;
    158   1.1       mrg 
    159   1.1       mrg /*
    160   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    161   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    162   1.1       mrg  *
    163   1.1       mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    164   1.1       mrg  *    we assume that [min -> start] has already been allocated and that
    165   1.1       mrg  *    "end" is the end.
    166   1.1       mrg  */
    167   1.1       mrg 
    168   1.8       mrg void
    169   1.8       mrg uvm_km_init(start, end)
    170  1.14       eeh 	vaddr_t start, end;
    171   1.1       mrg {
    172  1.14       eeh 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    173  1.27   thorpej 
    174  1.27   thorpej 	/*
    175  1.27   thorpej 	 * next, init kernel memory objects.
    176   1.8       mrg 	 */
    177   1.1       mrg 
    178   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    179  1.34       chs 	uao_init();
    180   1.8       mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    181   1.3       chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    182   1.1       mrg 
    183  1.24   thorpej 	/*
    184  1.53       chs 	 * init the map and reserve already allocated kernel space
    185   1.8       mrg 	 * before installing.
    186   1.8       mrg 	 */
    187   1.1       mrg 
    188  1.25   thorpej 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    189   1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    190   1.8       mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    191  1.39   thorpej 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    192  1.43       chs 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
    193   1.8       mrg 		panic("uvm_km_init: could not reserve space for kernel");
    194  1.47       chs 
    195   1.8       mrg 	/*
    196   1.8       mrg 	 * install!
    197   1.8       mrg 	 */
    198   1.8       mrg 
    199   1.8       mrg 	kernel_map = &kernel_map_store;
    200   1.1       mrg }
    201   1.1       mrg 
    202   1.1       mrg /*
    203   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    204   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    205   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    206   1.1       mrg  *
    207   1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    208   1.5   thorpej  *      by the submap must start
    209   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    210   1.1       mrg  *	alloc a new map
    211   1.1       mrg  */
    212   1.8       mrg struct vm_map *
    213  1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    214   1.8       mrg 	struct vm_map *map;
    215  1.52       chs 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    216  1.14       eeh 	vsize_t size;
    217  1.25   thorpej 	int flags;
    218   1.8       mrg 	boolean_t fixed;
    219   1.8       mrg 	struct vm_map *submap;
    220   1.8       mrg {
    221   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    222   1.1       mrg 
    223   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    224   1.1       mrg 
    225   1.8       mrg 	/*
    226   1.8       mrg 	 * first allocate a blank spot in the parent map
    227   1.8       mrg 	 */
    228   1.8       mrg 
    229  1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    230   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    231  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    232   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    233   1.8       mrg 	}
    234   1.8       mrg 
    235   1.8       mrg 	/*
    236   1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    237   1.8       mrg 	 */
    238   1.1       mrg 
    239   1.8       mrg 	*max = *min + size;
    240   1.5   thorpej 
    241   1.8       mrg 	/*
    242   1.8       mrg 	 * add references to pmap and create or init the submap
    243   1.8       mrg 	 */
    244   1.1       mrg 
    245   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    246   1.8       mrg 	if (submap == NULL) {
    247  1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    248   1.8       mrg 		if (submap == NULL)
    249   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    250   1.8       mrg 	} else {
    251  1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    252   1.8       mrg 		submap->pmap = vm_map_pmap(map);
    253   1.8       mrg 	}
    254   1.1       mrg 
    255   1.8       mrg 	/*
    256   1.8       mrg 	 * now let uvm_map_submap plug in it...
    257   1.8       mrg 	 */
    258   1.1       mrg 
    259  1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    260   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    261   1.1       mrg 
    262   1.8       mrg 	return(submap);
    263   1.1       mrg }
    264   1.1       mrg 
    265   1.1       mrg /*
    266   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    267   1.1       mrg  *
    268   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    269   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    270   1.1       mrg  */
    271   1.1       mrg 
    272   1.8       mrg void
    273   1.8       mrg uvm_km_pgremove(uobj, start, end)
    274   1.8       mrg 	struct uvm_object *uobj;
    275  1.14       eeh 	vaddr_t start, end;
    276   1.1       mrg {
    277  1.53       chs 	struct vm_page *pg;
    278  1.52       chs 	voff_t curoff, nextoff;
    279  1.53       chs 	int swpgonlydelta = 0;
    280   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    281   1.1       mrg 
    282  1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    283  1.40       chs 	simple_lock(&uobj->vmobjlock);
    284   1.3       chs 
    285  1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    286  1.52       chs 		nextoff = curoff + PAGE_SIZE;
    287  1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    288  1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    289  1.52       chs 			pg->flags |= PG_WANTED;
    290  1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    291  1.52       chs 				    "km_pgrm", 0);
    292  1.52       chs 			simple_lock(&uobj->vmobjlock);
    293  1.52       chs 			nextoff = curoff;
    294   1.8       mrg 			continue;
    295  1.52       chs 		}
    296   1.8       mrg 
    297  1.52       chs 		/*
    298  1.52       chs 		 * free the swap slot, then the page.
    299  1.52       chs 		 */
    300   1.8       mrg 
    301  1.53       chs 		if (pg == NULL &&
    302  1.53       chs 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    303  1.53       chs 			swpgonlydelta++;
    304  1.53       chs 		}
    305  1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    306  1.53       chs 		if (pg != NULL) {
    307  1.53       chs 			uvm_lock_pageq();
    308  1.53       chs 			uvm_pagefree(pg);
    309  1.53       chs 			uvm_unlock_pageq();
    310  1.53       chs 		}
    311   1.8       mrg 	}
    312   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    313   1.8       mrg 
    314  1.54       chs 	if (swpgonlydelta > 0) {
    315  1.54       chs 		simple_lock(&uvm.swap_data_lock);
    316  1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    317  1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    318  1.54       chs 		simple_unlock(&uvm.swap_data_lock);
    319  1.54       chs 	}
    320  1.24   thorpej }
    321  1.24   thorpej 
    322  1.24   thorpej 
    323  1.24   thorpej /*
    324  1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    325  1.52       chs  *    maps
    326  1.24   thorpej  *
    327  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    328  1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    329  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    330  1.52       chs  *    be on the active or inactive queues (because they have no object).
    331  1.24   thorpej  */
    332  1.24   thorpej 
    333  1.24   thorpej void
    334  1.52       chs uvm_km_pgremove_intrsafe(start, end)
    335  1.24   thorpej 	vaddr_t start, end;
    336  1.24   thorpej {
    337  1.52       chs 	struct vm_page *pg;
    338  1.52       chs 	paddr_t pa;
    339  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    340  1.24   thorpej 
    341  1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    342  1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    343  1.24   thorpej 			continue;
    344  1.40       chs 		}
    345  1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    346  1.52       chs 		KASSERT(pg);
    347  1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    348  1.52       chs 		uvm_pagefree(pg);
    349  1.24   thorpej 	}
    350   1.1       mrg }
    351   1.1       mrg 
    352   1.1       mrg 
    353   1.1       mrg /*
    354   1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    355   1.1       mrg  *
    356   1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    357   1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    358   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    359   1.1       mrg  *	this case.
    360   1.1       mrg  * => we return KVA of memory allocated
    361   1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    362   1.1       mrg  *	lock the map
    363   1.1       mrg  */
    364   1.1       mrg 
    365  1.14       eeh vaddr_t
    366   1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    367  1.49       chs 	struct vm_map *map;
    368   1.8       mrg 	struct uvm_object *obj;
    369  1.14       eeh 	vsize_t size;
    370   1.8       mrg 	int flags;
    371   1.1       mrg {
    372  1.14       eeh 	vaddr_t kva, loopva;
    373  1.14       eeh 	vaddr_t offset;
    374  1.44   thorpej 	vsize_t loopsize;
    375   1.8       mrg 	struct vm_page *pg;
    376   1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    377   1.1       mrg 
    378   1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    379  1.40       chs 		    map, obj, size, flags);
    380  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    381   1.1       mrg 
    382   1.8       mrg 	/*
    383   1.8       mrg 	 * setup for call
    384   1.8       mrg 	 */
    385   1.8       mrg 
    386   1.8       mrg 	size = round_page(size);
    387   1.8       mrg 	kva = vm_map_min(map);	/* hint */
    388   1.1       mrg 
    389   1.8       mrg 	/*
    390   1.8       mrg 	 * allocate some virtual space
    391   1.8       mrg 	 */
    392   1.8       mrg 
    393  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    394  1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    395  1.47       chs 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    396  1.43       chs 			!= 0)) {
    397   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    398   1.8       mrg 		return(0);
    399   1.8       mrg 	}
    400   1.8       mrg 
    401   1.8       mrg 	/*
    402   1.8       mrg 	 * if all we wanted was VA, return now
    403   1.8       mrg 	 */
    404   1.8       mrg 
    405   1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    406   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    407   1.8       mrg 		return(kva);
    408   1.8       mrg 	}
    409  1.40       chs 
    410   1.8       mrg 	/*
    411   1.8       mrg 	 * recover object offset from virtual address
    412   1.8       mrg 	 */
    413   1.8       mrg 
    414   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    415   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    416   1.8       mrg 
    417   1.8       mrg 	/*
    418   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    419   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    420   1.8       mrg 	 */
    421   1.8       mrg 
    422   1.8       mrg 	loopva = kva;
    423  1.44   thorpej 	loopsize = size;
    424  1.44   thorpej 	while (loopsize) {
    425  1.52       chs 		if (obj) {
    426  1.52       chs 			simple_lock(&obj->vmobjlock);
    427  1.52       chs 		}
    428  1.52       chs 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    429  1.45   thorpej 		if (__predict_true(pg != NULL)) {
    430   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    431   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    432   1.8       mrg 		}
    433  1.52       chs 		if (obj) {
    434  1.52       chs 			simple_unlock(&obj->vmobjlock);
    435  1.52       chs 		}
    436  1.47       chs 
    437   1.8       mrg 		/*
    438   1.8       mrg 		 * out of memory?
    439   1.8       mrg 		 */
    440   1.8       mrg 
    441  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    442   1.8       mrg 			if (flags & UVM_KMF_NOWAIT) {
    443   1.8       mrg 				/* free everything! */
    444  1.17     chuck 				uvm_unmap(map, kva, kva + size);
    445   1.8       mrg 				return(0);
    446   1.8       mrg 			} else {
    447   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    448   1.8       mrg 				continue;
    449   1.8       mrg 			}
    450   1.8       mrg 		}
    451  1.47       chs 
    452   1.8       mrg 		/*
    453  1.52       chs 		 * map it in
    454   1.8       mrg 		 */
    455  1.40       chs 
    456  1.52       chs 		if (obj == NULL) {
    457  1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    458  1.24   thorpej 			    VM_PROT_ALL);
    459  1.24   thorpej 		} else {
    460  1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    461  1.33   thorpej 			    UVM_PROT_ALL,
    462  1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    463  1.24   thorpej 		}
    464   1.8       mrg 		loopva += PAGE_SIZE;
    465   1.8       mrg 		offset += PAGE_SIZE;
    466  1.44   thorpej 		loopsize -= PAGE_SIZE;
    467   1.8       mrg 	}
    468  1.51     chris 
    469  1.51     chris        	pmap_update(pmap_kernel());
    470  1.51     chris 
    471   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    472   1.8       mrg 	return(kva);
    473   1.1       mrg }
    474   1.1       mrg 
    475   1.1       mrg /*
    476   1.1       mrg  * uvm_km_free: free an area of kernel memory
    477   1.1       mrg  */
    478   1.1       mrg 
    479   1.8       mrg void
    480   1.8       mrg uvm_km_free(map, addr, size)
    481  1.49       chs 	struct vm_map *map;
    482  1.14       eeh 	vaddr_t addr;
    483  1.14       eeh 	vsize_t size;
    484   1.8       mrg {
    485  1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    486   1.1       mrg }
    487   1.1       mrg 
    488   1.1       mrg /*
    489   1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    490   1.1       mrg  * anyone waiting for vm space.
    491   1.1       mrg  *
    492   1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    493   1.1       mrg  */
    494   1.1       mrg 
    495   1.8       mrg void
    496   1.8       mrg uvm_km_free_wakeup(map, addr, size)
    497  1.49       chs 	struct vm_map *map;
    498  1.14       eeh 	vaddr_t addr;
    499  1.14       eeh 	vsize_t size;
    500   1.1       mrg {
    501  1.49       chs 	struct vm_map_entry *dead_entries;
    502   1.1       mrg 
    503   1.8       mrg 	vm_map_lock(map);
    504  1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    505  1.43       chs 	    &dead_entries);
    506  1.31   thorpej 	wakeup(map);
    507   1.8       mrg 	vm_map_unlock(map);
    508   1.8       mrg 	if (dead_entries != NULL)
    509   1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    510   1.1       mrg }
    511   1.1       mrg 
    512   1.1       mrg /*
    513   1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    514   1.1       mrg  *
    515   1.1       mrg  * => we can sleep if needed
    516   1.1       mrg  */
    517   1.1       mrg 
    518  1.14       eeh vaddr_t
    519   1.8       mrg uvm_km_alloc1(map, size, zeroit)
    520  1.49       chs 	struct vm_map *map;
    521  1.14       eeh 	vsize_t size;
    522   1.8       mrg 	boolean_t zeroit;
    523   1.1       mrg {
    524  1.14       eeh 	vaddr_t kva, loopva, offset;
    525   1.8       mrg 	struct vm_page *pg;
    526   1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    527   1.1       mrg 
    528   1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    529  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    530   1.1       mrg 
    531   1.8       mrg 	size = round_page(size);
    532   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    533   1.1       mrg 
    534   1.8       mrg 	/*
    535   1.8       mrg 	 * allocate some virtual space
    536   1.8       mrg 	 */
    537   1.1       mrg 
    538  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    539  1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    540  1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    541  1.43       chs 					      0)) != 0)) {
    542   1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    543   1.8       mrg 		return(0);
    544   1.8       mrg 	}
    545   1.8       mrg 
    546   1.8       mrg 	/*
    547   1.8       mrg 	 * recover object offset from virtual address
    548   1.8       mrg 	 */
    549   1.8       mrg 
    550   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    551   1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    552   1.8       mrg 
    553   1.8       mrg 	/*
    554  1.52       chs 	 * now allocate the memory.
    555   1.8       mrg 	 */
    556   1.8       mrg 
    557   1.8       mrg 	loopva = kva;
    558   1.8       mrg 	while (size) {
    559   1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    560  1.52       chs 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    561  1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    562   1.8       mrg 		if (pg) {
    563  1.52       chs 			pg->flags &= ~PG_BUSY;
    564   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    565   1.8       mrg 		}
    566   1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    567  1.52       chs 		if (pg == NULL) {
    568  1.52       chs 			uvm_wait("km_alloc1w");
    569   1.8       mrg 			continue;
    570   1.8       mrg 		}
    571   1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    572  1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    573   1.8       mrg 		loopva += PAGE_SIZE;
    574   1.8       mrg 		offset += PAGE_SIZE;
    575   1.8       mrg 		size -= PAGE_SIZE;
    576   1.8       mrg 	}
    577  1.51     chris 	pmap_update(map->pmap);
    578  1.46   thorpej 
    579   1.8       mrg 	/*
    580   1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    581   1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    582   1.8       mrg 	 */
    583   1.1       mrg 
    584   1.8       mrg 	if (zeroit)
    585  1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    586   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    587   1.8       mrg 	return(kva);
    588   1.1       mrg }
    589   1.1       mrg 
    590   1.1       mrg /*
    591   1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    592   1.1       mrg  *
    593   1.1       mrg  * => memory is not allocated until fault time
    594   1.1       mrg  */
    595   1.1       mrg 
    596  1.14       eeh vaddr_t
    597   1.8       mrg uvm_km_valloc(map, size)
    598  1.49       chs 	struct vm_map *map;
    599  1.14       eeh 	vsize_t size;
    600   1.1       mrg {
    601  1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    602  1.41  nisimura }
    603  1.41  nisimura 
    604  1.41  nisimura vaddr_t
    605  1.41  nisimura uvm_km_valloc_align(map, size, align)
    606  1.49       chs 	struct vm_map *map;
    607  1.41  nisimura 	vsize_t size;
    608  1.41  nisimura 	vsize_t align;
    609  1.41  nisimura {
    610  1.14       eeh 	vaddr_t kva;
    611   1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    612   1.1       mrg 
    613   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    614  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    615   1.1       mrg 
    616   1.8       mrg 	size = round_page(size);
    617   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    618   1.1       mrg 
    619   1.8       mrg 	/*
    620   1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    621   1.8       mrg 	 */
    622   1.1       mrg 
    623  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    624  1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    625  1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    626  1.43       chs 					    0)) != 0)) {
    627   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    628   1.8       mrg 		return(0);
    629   1.8       mrg 	}
    630   1.1       mrg 
    631   1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    632   1.8       mrg 	return(kva);
    633   1.1       mrg }
    634   1.1       mrg 
    635   1.1       mrg /*
    636   1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    637   1.1       mrg  *
    638   1.1       mrg  * => memory is not allocated until fault time
    639   1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    640   1.1       mrg  *    is larger than map (in which case we return 0)
    641   1.1       mrg  */
    642   1.1       mrg 
    643  1.14       eeh vaddr_t
    644  1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    645  1.49       chs 	struct vm_map *map;
    646  1.14       eeh 	vsize_t size;
    647  1.38     jeffs 	voff_t prefer;
    648   1.1       mrg {
    649  1.14       eeh 	vaddr_t kva;
    650  1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    651   1.1       mrg 
    652   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    653  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    654   1.1       mrg 
    655   1.8       mrg 	size = round_page(size);
    656   1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    657   1.8       mrg 		return(0);
    658   1.8       mrg 
    659  1.52       chs 	for (;;) {
    660   1.8       mrg 		kva = vm_map_min(map);		/* hint */
    661   1.8       mrg 
    662   1.8       mrg 		/*
    663   1.8       mrg 		 * allocate some virtual space.   will be demand filled
    664   1.8       mrg 		 * by kernel_object.
    665   1.8       mrg 		 */
    666   1.8       mrg 
    667  1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    668  1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    669   1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    670  1.43       chs 		    == 0)) {
    671   1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    672   1.8       mrg 			return(kva);
    673   1.8       mrg 		}
    674   1.8       mrg 
    675   1.8       mrg 		/*
    676   1.8       mrg 		 * failed.  sleep for a while (on map)
    677   1.8       mrg 		 */
    678   1.8       mrg 
    679   1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    680   1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    681   1.8       mrg 	}
    682   1.8       mrg 	/*NOTREACHED*/
    683  1.38     jeffs }
    684  1.38     jeffs 
    685  1.38     jeffs vaddr_t
    686  1.38     jeffs uvm_km_valloc_wait(map, size)
    687  1.49       chs 	struct vm_map *map;
    688  1.38     jeffs 	vsize_t size;
    689  1.38     jeffs {
    690  1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    691  1.10   thorpej }
    692  1.10   thorpej 
    693  1.10   thorpej /* Sanity; must specify both or none. */
    694  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    695  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    696  1.10   thorpej #error Must specify MAP and UNMAP together.
    697  1.10   thorpej #endif
    698  1.10   thorpej 
    699  1.10   thorpej /*
    700  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    701  1.10   thorpej  *
    702  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    703  1.10   thorpej  */
    704  1.10   thorpej 
    705  1.11   thorpej /* ARGSUSED */
    706  1.14       eeh vaddr_t
    707  1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    708  1.49       chs 	struct vm_map *map;
    709  1.12   thorpej 	struct uvm_object *obj;
    710  1.15   thorpej 	boolean_t waitok;
    711  1.10   thorpej {
    712  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    713  1.10   thorpej 	struct vm_page *pg;
    714  1.14       eeh 	vaddr_t va;
    715  1.10   thorpej 
    716  1.15   thorpej  again:
    717  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    718  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    719  1.15   thorpej 		if (waitok) {
    720  1.15   thorpej 			uvm_wait("plpg");
    721  1.15   thorpej 			goto again;
    722  1.15   thorpej 		} else
    723  1.15   thorpej 			return (0);
    724  1.15   thorpej 	}
    725  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    726  1.35   thorpej 	if (__predict_false(va == 0))
    727  1.10   thorpej 		uvm_pagefree(pg);
    728  1.10   thorpej 	return (va);
    729  1.10   thorpej #else
    730  1.14       eeh 	vaddr_t va;
    731  1.10   thorpej 	int s;
    732  1.10   thorpej 
    733  1.16   thorpej 	/*
    734  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    735  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    736  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    737  1.16   thorpej 	 * accessed in interrupt context).
    738  1.16   thorpej 	 *
    739  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    740  1.16   thorpej 	 * XXX function.
    741  1.16   thorpej 	 */
    742  1.16   thorpej 
    743  1.42   thorpej 	s = splvm();
    744  1.15   thorpej 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
    745  1.10   thorpej 	splx(s);
    746  1.10   thorpej 	return (va);
    747  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    748  1.10   thorpej }
    749  1.10   thorpej 
    750  1.10   thorpej /*
    751  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    752  1.10   thorpej  *
    753  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    754  1.10   thorpej  */
    755  1.10   thorpej 
    756  1.11   thorpej /* ARGSUSED */
    757  1.10   thorpej void
    758  1.11   thorpej uvm_km_free_poolpage1(map, addr)
    759  1.49       chs 	struct vm_map *map;
    760  1.14       eeh 	vaddr_t addr;
    761  1.10   thorpej {
    762  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    763  1.14       eeh 	paddr_t pa;
    764  1.10   thorpej 
    765  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    766  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    767  1.10   thorpej #else
    768  1.10   thorpej 	int s;
    769  1.16   thorpej 
    770  1.16   thorpej 	/*
    771  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    772  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    773  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    774  1.16   thorpej 	 * accessed in interrupt context).
    775  1.16   thorpej 	 *
    776  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    777  1.16   thorpej 	 * XXX function.
    778  1.16   thorpej 	 */
    779  1.10   thorpej 
    780  1.42   thorpej 	s = splvm();
    781  1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    782  1.10   thorpej 	splx(s);
    783  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    784   1.1       mrg }
    785