uvm_km.c revision 1.61 1 1.61 thorpej /* $NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.61 thorpej * starts at virtual_avail and goes to virtual_end. note that virtual_avail
78 1.61 thorpej * is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.61 thorpej * object is equal to the size of managed kernel virtual address space (i.e.
106 1.61 thorpej * the value "virtual_end - virtual_avail").
107 1.7 chuck *
108 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
109 1.7 chuck * to this is for memory that belongs to submaps that must be protected
110 1.52 chs * by splvm(). pages in these submaps are not assigned to an object.
111 1.7 chuck *
112 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
113 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
114 1.47 chs * large chunks of a kernel object's space go unused either because
115 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
116 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
117 1.7 chuck * objects, the only part of the object that can ever be populated is the
118 1.7 chuck * offsets that are managed by the submap.
119 1.7 chuck *
120 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
121 1.61 thorpej * address minus virtual_avail (aka vm_map_min(kernel_map)).
122 1.7 chuck * example:
123 1.61 thorpej * suppose virtual_avail is 0xf8000000 and the kernel does a
124 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
127 1.47 chs * mapped at 0xf8235000.
128 1.7 chuck *
129 1.7 chuck * kernel object have one other special property: when the kernel virtual
130 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
131 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
132 1.7 chuck * this has to be done because there is no backing store for kernel pages
133 1.7 chuck * and no need to save them after they are no longer referenced.
134 1.7 chuck */
135 1.55 lukem
136 1.55 lukem #include <sys/cdefs.h>
137 1.61 thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $");
138 1.55 lukem
139 1.55 lukem #include "opt_uvmhist.h"
140 1.7 chuck
141 1.1 mrg #include <sys/param.h>
142 1.1 mrg #include <sys/systm.h>
143 1.1 mrg #include <sys/proc.h>
144 1.1 mrg
145 1.1 mrg #include <uvm/uvm.h>
146 1.1 mrg
147 1.1 mrg /*
148 1.1 mrg * global data structures
149 1.1 mrg */
150 1.1 mrg
151 1.61 thorpej vaddr_t virtual_avail; /* start of managed kernel virtual memory */
152 1.61 thorpej vaddr_t virtual_end; /* end of managed kernel virtual memory */
153 1.61 thorpej
154 1.49 chs struct vm_map *kernel_map = NULL;
155 1.1 mrg
156 1.1 mrg /*
157 1.1 mrg * local data structues
158 1.1 mrg */
159 1.1 mrg
160 1.1 mrg static struct vm_map kernel_map_store;
161 1.1 mrg
162 1.1 mrg /*
163 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
164 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
165 1.1 mrg *
166 1.61 thorpej * => KVM is defined by virtual_avail/virtual_end.
167 1.61 thorpej * we assume that any regions that have already been allocated from
168 1.61 thorpej * the total kernel address space have already been accounted for in
169 1.61 thorpej * the values of virtual_avail and virtual_end.
170 1.1 mrg */
171 1.1 mrg
172 1.8 mrg void
173 1.61 thorpej uvm_km_init(void)
174 1.1 mrg {
175 1.61 thorpej
176 1.61 thorpej /*
177 1.61 thorpej * virtual_avail and virtual_end should already be page-aligned.
178 1.61 thorpej */
179 1.61 thorpej
180 1.61 thorpej KASSERT((virtual_avail & PAGE_MASK) == 0);
181 1.61 thorpej KASSERT((virtual_end & PAGE_MASK) == 0);
182 1.27 thorpej
183 1.27 thorpej /*
184 1.27 thorpej * next, init kernel memory objects.
185 1.8 mrg */
186 1.1 mrg
187 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
188 1.34 chs uao_init();
189 1.61 thorpej uvm.kernel_object = uao_create(virtual_end - virtual_avail,
190 1.61 thorpej UAO_FLAG_KERNOBJ);
191 1.1 mrg
192 1.24 thorpej /*
193 1.56 thorpej * init the map and reserve any space that might already
194 1.56 thorpej * have been allocated kernel space before installing.
195 1.8 mrg */
196 1.1 mrg
197 1.61 thorpej uvm_map_setup(&kernel_map_store, virtual_avail, virtual_end,
198 1.61 thorpej VM_MAP_PAGEABLE);
199 1.8 mrg kernel_map_store.pmap = pmap_kernel();
200 1.47 chs
201 1.8 mrg /*
202 1.8 mrg * install!
203 1.8 mrg */
204 1.8 mrg
205 1.8 mrg kernel_map = &kernel_map_store;
206 1.1 mrg }
207 1.1 mrg
208 1.1 mrg /*
209 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
210 1.1 mrg * is allocated all references to that area of VM must go through it. this
211 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
212 1.1 mrg *
213 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
214 1.5 thorpej * by the submap must start
215 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
216 1.1 mrg * alloc a new map
217 1.1 mrg */
218 1.8 mrg struct vm_map *
219 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
220 1.8 mrg struct vm_map *map;
221 1.52 chs vaddr_t *min, *max; /* IN/OUT, OUT */
222 1.14 eeh vsize_t size;
223 1.25 thorpej int flags;
224 1.8 mrg boolean_t fixed;
225 1.8 mrg struct vm_map *submap;
226 1.8 mrg {
227 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
228 1.1 mrg
229 1.8 mrg size = round_page(size); /* round up to pagesize */
230 1.1 mrg
231 1.8 mrg /*
232 1.8 mrg * first allocate a blank spot in the parent map
233 1.8 mrg */
234 1.8 mrg
235 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
236 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
237 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
238 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
239 1.8 mrg }
240 1.8 mrg
241 1.8 mrg /*
242 1.8 mrg * set VM bounds (min is filled in by uvm_map)
243 1.8 mrg */
244 1.1 mrg
245 1.8 mrg *max = *min + size;
246 1.5 thorpej
247 1.8 mrg /*
248 1.8 mrg * add references to pmap and create or init the submap
249 1.8 mrg */
250 1.1 mrg
251 1.8 mrg pmap_reference(vm_map_pmap(map));
252 1.8 mrg if (submap == NULL) {
253 1.25 thorpej submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
254 1.8 mrg if (submap == NULL)
255 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
256 1.8 mrg } else {
257 1.25 thorpej uvm_map_setup(submap, *min, *max, flags);
258 1.8 mrg submap->pmap = vm_map_pmap(map);
259 1.8 mrg }
260 1.1 mrg
261 1.8 mrg /*
262 1.8 mrg * now let uvm_map_submap plug in it...
263 1.8 mrg */
264 1.1 mrg
265 1.43 chs if (uvm_map_submap(map, *min, *max, submap) != 0)
266 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
267 1.1 mrg
268 1.8 mrg return(submap);
269 1.1 mrg }
270 1.1 mrg
271 1.1 mrg /*
272 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
273 1.1 mrg *
274 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
275 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
276 1.1 mrg */
277 1.1 mrg
278 1.8 mrg void
279 1.8 mrg uvm_km_pgremove(uobj, start, end)
280 1.8 mrg struct uvm_object *uobj;
281 1.14 eeh vaddr_t start, end;
282 1.1 mrg {
283 1.53 chs struct vm_page *pg;
284 1.52 chs voff_t curoff, nextoff;
285 1.53 chs int swpgonlydelta = 0;
286 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
287 1.1 mrg
288 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
289 1.40 chs simple_lock(&uobj->vmobjlock);
290 1.3 chs
291 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
292 1.52 chs nextoff = curoff + PAGE_SIZE;
293 1.52 chs pg = uvm_pagelookup(uobj, curoff);
294 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
295 1.52 chs pg->flags |= PG_WANTED;
296 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
297 1.52 chs "km_pgrm", 0);
298 1.52 chs simple_lock(&uobj->vmobjlock);
299 1.52 chs nextoff = curoff;
300 1.8 mrg continue;
301 1.52 chs }
302 1.8 mrg
303 1.52 chs /*
304 1.52 chs * free the swap slot, then the page.
305 1.52 chs */
306 1.8 mrg
307 1.53 chs if (pg == NULL &&
308 1.53 chs uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
309 1.53 chs swpgonlydelta++;
310 1.53 chs }
311 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
312 1.53 chs if (pg != NULL) {
313 1.53 chs uvm_lock_pageq();
314 1.53 chs uvm_pagefree(pg);
315 1.53 chs uvm_unlock_pageq();
316 1.53 chs }
317 1.8 mrg }
318 1.8 mrg simple_unlock(&uobj->vmobjlock);
319 1.8 mrg
320 1.54 chs if (swpgonlydelta > 0) {
321 1.54 chs simple_lock(&uvm.swap_data_lock);
322 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
323 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
324 1.54 chs simple_unlock(&uvm.swap_data_lock);
325 1.54 chs }
326 1.24 thorpej }
327 1.24 thorpej
328 1.24 thorpej
329 1.24 thorpej /*
330 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
331 1.52 chs * maps
332 1.24 thorpej *
333 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
334 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
335 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
336 1.52 chs * be on the active or inactive queues (because they have no object).
337 1.24 thorpej */
338 1.24 thorpej
339 1.24 thorpej void
340 1.52 chs uvm_km_pgremove_intrsafe(start, end)
341 1.24 thorpej vaddr_t start, end;
342 1.24 thorpej {
343 1.52 chs struct vm_page *pg;
344 1.52 chs paddr_t pa;
345 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
346 1.24 thorpej
347 1.52 chs for (; start < end; start += PAGE_SIZE) {
348 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
349 1.24 thorpej continue;
350 1.40 chs }
351 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
352 1.52 chs KASSERT(pg);
353 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
354 1.52 chs uvm_pagefree(pg);
355 1.24 thorpej }
356 1.1 mrg }
357 1.1 mrg
358 1.1 mrg
359 1.1 mrg /*
360 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
361 1.1 mrg *
362 1.1 mrg * => we map wired memory into the specified map using the obj passed in
363 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
364 1.1 mrg * free VM space in the map... caller should be prepared to handle
365 1.1 mrg * this case.
366 1.1 mrg * => we return KVA of memory allocated
367 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
368 1.1 mrg * lock the map
369 1.1 mrg */
370 1.1 mrg
371 1.14 eeh vaddr_t
372 1.8 mrg uvm_km_kmemalloc(map, obj, size, flags)
373 1.49 chs struct vm_map *map;
374 1.8 mrg struct uvm_object *obj;
375 1.14 eeh vsize_t size;
376 1.8 mrg int flags;
377 1.1 mrg {
378 1.14 eeh vaddr_t kva, loopva;
379 1.14 eeh vaddr_t offset;
380 1.44 thorpej vsize_t loopsize;
381 1.8 mrg struct vm_page *pg;
382 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
383 1.1 mrg
384 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
385 1.40 chs map, obj, size, flags);
386 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
387 1.1 mrg
388 1.8 mrg /*
389 1.8 mrg * setup for call
390 1.8 mrg */
391 1.8 mrg
392 1.8 mrg size = round_page(size);
393 1.8 mrg kva = vm_map_min(map); /* hint */
394 1.1 mrg
395 1.8 mrg /*
396 1.8 mrg * allocate some virtual space
397 1.8 mrg */
398 1.8 mrg
399 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
400 1.39 thorpej 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
401 1.60 bouyer UVM_ADV_RANDOM,
402 1.60 bouyer (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
403 1.43 chs != 0)) {
404 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
405 1.8 mrg return(0);
406 1.8 mrg }
407 1.8 mrg
408 1.8 mrg /*
409 1.8 mrg * if all we wanted was VA, return now
410 1.8 mrg */
411 1.8 mrg
412 1.8 mrg if (flags & UVM_KMF_VALLOC) {
413 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
414 1.8 mrg return(kva);
415 1.8 mrg }
416 1.40 chs
417 1.8 mrg /*
418 1.8 mrg * recover object offset from virtual address
419 1.8 mrg */
420 1.8 mrg
421 1.8 mrg offset = kva - vm_map_min(kernel_map);
422 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
423 1.8 mrg
424 1.8 mrg /*
425 1.8 mrg * now allocate and map in the memory... note that we are the only ones
426 1.8 mrg * whom should ever get a handle on this area of VM.
427 1.8 mrg */
428 1.8 mrg
429 1.8 mrg loopva = kva;
430 1.44 thorpej loopsize = size;
431 1.44 thorpej while (loopsize) {
432 1.52 chs if (obj) {
433 1.52 chs simple_lock(&obj->vmobjlock);
434 1.52 chs }
435 1.52 chs pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
436 1.45 thorpej if (__predict_true(pg != NULL)) {
437 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
438 1.8 mrg UVM_PAGE_OWN(pg, NULL);
439 1.8 mrg }
440 1.52 chs if (obj) {
441 1.52 chs simple_unlock(&obj->vmobjlock);
442 1.52 chs }
443 1.47 chs
444 1.8 mrg /*
445 1.8 mrg * out of memory?
446 1.8 mrg */
447 1.8 mrg
448 1.35 thorpej if (__predict_false(pg == NULL)) {
449 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
450 1.58 chs ((flags & UVM_KMF_CANFAIL) &&
451 1.58 chs uvmexp.swpgonly == uvmexp.swpages)) {
452 1.8 mrg /* free everything! */
453 1.17 chuck uvm_unmap(map, kva, kva + size);
454 1.58 chs return (0);
455 1.8 mrg } else {
456 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
457 1.8 mrg continue;
458 1.8 mrg }
459 1.8 mrg }
460 1.47 chs
461 1.8 mrg /*
462 1.52 chs * map it in
463 1.8 mrg */
464 1.40 chs
465 1.52 chs if (obj == NULL) {
466 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
467 1.57 thorpej VM_PROT_READ | VM_PROT_WRITE);
468 1.24 thorpej } else {
469 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
470 1.33 thorpej UVM_PROT_ALL,
471 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
472 1.24 thorpej }
473 1.8 mrg loopva += PAGE_SIZE;
474 1.8 mrg offset += PAGE_SIZE;
475 1.44 thorpej loopsize -= PAGE_SIZE;
476 1.8 mrg }
477 1.51 chris
478 1.51 chris pmap_update(pmap_kernel());
479 1.51 chris
480 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
481 1.8 mrg return(kva);
482 1.1 mrg }
483 1.1 mrg
484 1.1 mrg /*
485 1.1 mrg * uvm_km_free: free an area of kernel memory
486 1.1 mrg */
487 1.1 mrg
488 1.8 mrg void
489 1.8 mrg uvm_km_free(map, addr, size)
490 1.49 chs struct vm_map *map;
491 1.14 eeh vaddr_t addr;
492 1.14 eeh vsize_t size;
493 1.8 mrg {
494 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
495 1.1 mrg }
496 1.1 mrg
497 1.1 mrg /*
498 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
499 1.1 mrg * anyone waiting for vm space.
500 1.1 mrg *
501 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
502 1.1 mrg */
503 1.1 mrg
504 1.8 mrg void
505 1.8 mrg uvm_km_free_wakeup(map, addr, size)
506 1.49 chs struct vm_map *map;
507 1.14 eeh vaddr_t addr;
508 1.14 eeh vsize_t size;
509 1.1 mrg {
510 1.49 chs struct vm_map_entry *dead_entries;
511 1.1 mrg
512 1.8 mrg vm_map_lock(map);
513 1.47 chs uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
514 1.43 chs &dead_entries);
515 1.31 thorpej wakeup(map);
516 1.8 mrg vm_map_unlock(map);
517 1.8 mrg if (dead_entries != NULL)
518 1.8 mrg uvm_unmap_detach(dead_entries, 0);
519 1.1 mrg }
520 1.1 mrg
521 1.1 mrg /*
522 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
523 1.1 mrg *
524 1.1 mrg * => we can sleep if needed
525 1.1 mrg */
526 1.1 mrg
527 1.14 eeh vaddr_t
528 1.8 mrg uvm_km_alloc1(map, size, zeroit)
529 1.49 chs struct vm_map *map;
530 1.14 eeh vsize_t size;
531 1.8 mrg boolean_t zeroit;
532 1.1 mrg {
533 1.14 eeh vaddr_t kva, loopva, offset;
534 1.8 mrg struct vm_page *pg;
535 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
536 1.1 mrg
537 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
538 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
539 1.1 mrg
540 1.8 mrg size = round_page(size);
541 1.8 mrg kva = vm_map_min(map); /* hint */
542 1.1 mrg
543 1.8 mrg /*
544 1.8 mrg * allocate some virtual space
545 1.8 mrg */
546 1.1 mrg
547 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
548 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
549 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
550 1.43 chs 0)) != 0)) {
551 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
552 1.8 mrg return(0);
553 1.8 mrg }
554 1.8 mrg
555 1.8 mrg /*
556 1.8 mrg * recover object offset from virtual address
557 1.8 mrg */
558 1.8 mrg
559 1.8 mrg offset = kva - vm_map_min(kernel_map);
560 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
561 1.8 mrg
562 1.8 mrg /*
563 1.52 chs * now allocate the memory.
564 1.8 mrg */
565 1.8 mrg
566 1.8 mrg loopva = kva;
567 1.8 mrg while (size) {
568 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
569 1.52 chs KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
570 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
571 1.8 mrg if (pg) {
572 1.52 chs pg->flags &= ~PG_BUSY;
573 1.8 mrg UVM_PAGE_OWN(pg, NULL);
574 1.8 mrg }
575 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
576 1.52 chs if (pg == NULL) {
577 1.52 chs uvm_wait("km_alloc1w");
578 1.8 mrg continue;
579 1.8 mrg }
580 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
581 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
582 1.8 mrg loopva += PAGE_SIZE;
583 1.8 mrg offset += PAGE_SIZE;
584 1.8 mrg size -= PAGE_SIZE;
585 1.8 mrg }
586 1.51 chris pmap_update(map->pmap);
587 1.46 thorpej
588 1.8 mrg /*
589 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
590 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
591 1.8 mrg */
592 1.1 mrg
593 1.8 mrg if (zeroit)
594 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
595 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
596 1.8 mrg return(kva);
597 1.1 mrg }
598 1.1 mrg
599 1.1 mrg /*
600 1.1 mrg * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
601 1.1 mrg *
602 1.1 mrg * => memory is not allocated until fault time
603 1.1 mrg */
604 1.1 mrg
605 1.14 eeh vaddr_t
606 1.8 mrg uvm_km_valloc(map, size)
607 1.49 chs struct vm_map *map;
608 1.14 eeh vsize_t size;
609 1.1 mrg {
610 1.41 nisimura return(uvm_km_valloc_align(map, size, 0));
611 1.41 nisimura }
612 1.41 nisimura
613 1.41 nisimura vaddr_t
614 1.41 nisimura uvm_km_valloc_align(map, size, align)
615 1.49 chs struct vm_map *map;
616 1.41 nisimura vsize_t size;
617 1.41 nisimura vsize_t align;
618 1.41 nisimura {
619 1.14 eeh vaddr_t kva;
620 1.8 mrg UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
621 1.1 mrg
622 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
623 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
624 1.1 mrg
625 1.8 mrg size = round_page(size);
626 1.8 mrg kva = vm_map_min(map); /* hint */
627 1.1 mrg
628 1.8 mrg /*
629 1.8 mrg * allocate some virtual space. will be demand filled by kernel_object.
630 1.8 mrg */
631 1.1 mrg
632 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
633 1.41 nisimura UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
634 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
635 1.43 chs 0)) != 0)) {
636 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
637 1.8 mrg return(0);
638 1.8 mrg }
639 1.1 mrg
640 1.8 mrg UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
641 1.8 mrg return(kva);
642 1.1 mrg }
643 1.1 mrg
644 1.1 mrg /*
645 1.1 mrg * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
646 1.1 mrg *
647 1.1 mrg * => memory is not allocated until fault time
648 1.1 mrg * => if no room in map, wait for space to free, unless requested size
649 1.1 mrg * is larger than map (in which case we return 0)
650 1.1 mrg */
651 1.1 mrg
652 1.14 eeh vaddr_t
653 1.38 jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
654 1.49 chs struct vm_map *map;
655 1.14 eeh vsize_t size;
656 1.38 jeffs voff_t prefer;
657 1.1 mrg {
658 1.14 eeh vaddr_t kva;
659 1.38 jeffs UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
660 1.1 mrg
661 1.8 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
662 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
663 1.1 mrg
664 1.8 mrg size = round_page(size);
665 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
666 1.8 mrg return(0);
667 1.8 mrg
668 1.52 chs for (;;) {
669 1.8 mrg kva = vm_map_min(map); /* hint */
670 1.8 mrg
671 1.8 mrg /*
672 1.8 mrg * allocate some virtual space. will be demand filled
673 1.8 mrg * by kernel_object.
674 1.8 mrg */
675 1.8 mrg
676 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
677 1.39 thorpej prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
678 1.8 mrg UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
679 1.43 chs == 0)) {
680 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
681 1.8 mrg return(kva);
682 1.8 mrg }
683 1.8 mrg
684 1.8 mrg /*
685 1.8 mrg * failed. sleep for a while (on map)
686 1.8 mrg */
687 1.8 mrg
688 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
689 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
690 1.8 mrg }
691 1.8 mrg /*NOTREACHED*/
692 1.38 jeffs }
693 1.38 jeffs
694 1.38 jeffs vaddr_t
695 1.38 jeffs uvm_km_valloc_wait(map, size)
696 1.49 chs struct vm_map *map;
697 1.38 jeffs vsize_t size;
698 1.38 jeffs {
699 1.38 jeffs return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
700 1.10 thorpej }
701 1.10 thorpej
702 1.10 thorpej /* Sanity; must specify both or none. */
703 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
704 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
705 1.10 thorpej #error Must specify MAP and UNMAP together.
706 1.10 thorpej #endif
707 1.10 thorpej
708 1.10 thorpej /*
709 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
710 1.10 thorpej *
711 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
712 1.10 thorpej */
713 1.10 thorpej
714 1.11 thorpej /* ARGSUSED */
715 1.14 eeh vaddr_t
716 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
717 1.49 chs struct vm_map *map;
718 1.12 thorpej struct uvm_object *obj;
719 1.15 thorpej boolean_t waitok;
720 1.10 thorpej {
721 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
722 1.10 thorpej struct vm_page *pg;
723 1.14 eeh vaddr_t va;
724 1.10 thorpej
725 1.15 thorpej again:
726 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
727 1.35 thorpej if (__predict_false(pg == NULL)) {
728 1.15 thorpej if (waitok) {
729 1.15 thorpej uvm_wait("plpg");
730 1.15 thorpej goto again;
731 1.15 thorpej } else
732 1.15 thorpej return (0);
733 1.15 thorpej }
734 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
735 1.35 thorpej if (__predict_false(va == 0))
736 1.10 thorpej uvm_pagefree(pg);
737 1.10 thorpej return (va);
738 1.10 thorpej #else
739 1.14 eeh vaddr_t va;
740 1.10 thorpej int s;
741 1.10 thorpej
742 1.16 thorpej /*
743 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
744 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
745 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
746 1.16 thorpej * accessed in interrupt context).
747 1.16 thorpej *
748 1.16 thorpej * XXX We may want to consider changing the interface to this
749 1.16 thorpej * XXX function.
750 1.16 thorpej */
751 1.16 thorpej
752 1.42 thorpej s = splvm();
753 1.60 bouyer va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
754 1.60 bouyer waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
755 1.10 thorpej splx(s);
756 1.10 thorpej return (va);
757 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
758 1.10 thorpej }
759 1.10 thorpej
760 1.10 thorpej /*
761 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
762 1.10 thorpej *
763 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
764 1.10 thorpej */
765 1.10 thorpej
766 1.11 thorpej /* ARGSUSED */
767 1.10 thorpej void
768 1.11 thorpej uvm_km_free_poolpage1(map, addr)
769 1.49 chs struct vm_map *map;
770 1.14 eeh vaddr_t addr;
771 1.10 thorpej {
772 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
773 1.14 eeh paddr_t pa;
774 1.10 thorpej
775 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
776 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
777 1.10 thorpej #else
778 1.10 thorpej int s;
779 1.16 thorpej
780 1.16 thorpej /*
781 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
782 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
783 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
784 1.16 thorpej * accessed in interrupt context).
785 1.16 thorpej *
786 1.16 thorpej * XXX We may want to consider changing the interface to this
787 1.16 thorpej * XXX function.
788 1.16 thorpej */
789 1.10 thorpej
790 1.42 thorpej s = splvm();
791 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
792 1.10 thorpej splx(s);
793 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
794 1.1 mrg }
795