Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.61
      1  1.61   thorpej /*	$NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71   1.1       mrg  */
     72   1.1       mrg 
     73   1.7     chuck /*
     74   1.7     chuck  * overview of kernel memory management:
     75   1.7     chuck  *
     76   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  1.61   thorpej  * starts at virtual_avail and goes to virtual_end.  note that virtual_avail
     78  1.61   thorpej  * is equal to vm_map_min(kernel_map).
     79   1.7     chuck  *
     80  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     81   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     85   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86   1.7     chuck  *
     87   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89   1.7     chuck  * chunks.
     90   1.7     chuck  *
     91   1.7     chuck  * the vm system has several standard kernel submaps, including:
     92   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95   1.7     chuck  *		at interrupt time ***
     96  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98   1.7     chuck  *   exec_map => used during exec to handle exec args
     99   1.7     chuck  *   etc...
    100   1.7     chuck  *
    101   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  1.61   thorpej  * object is equal to the size of managed kernel virtual address space (i.e.
    106  1.61   thorpej  * the value "virtual_end - virtual_avail").
    107   1.7     chuck  *
    108   1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    109   1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    110  1.52       chs  * by splvm().  pages in these submaps are not assigned to an object.
    111   1.7     chuck  *
    112   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    113   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    114  1.47       chs  * large chunks of a kernel object's space go unused either because
    115  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    116   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    118   1.7     chuck  * offsets that are managed by the submap.
    119   1.7     chuck  *
    120   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    121  1.61   thorpej  * address minus virtual_avail (aka vm_map_min(kernel_map)).
    122   1.7     chuck  * example:
    123  1.61   thorpej  *   suppose virtual_avail is 0xf8000000 and the kernel does a
    124   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    127  1.47       chs  *   mapped at 0xf8235000.
    128   1.7     chuck  *
    129   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    130   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    131   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    132   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    133   1.7     chuck  * and no need to save them after they are no longer referenced.
    134   1.7     chuck  */
    135  1.55     lukem 
    136  1.55     lukem #include <sys/cdefs.h>
    137  1.61   thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.61 2003/05/08 18:13:28 thorpej Exp $");
    138  1.55     lukem 
    139  1.55     lukem #include "opt_uvmhist.h"
    140   1.7     chuck 
    141   1.1       mrg #include <sys/param.h>
    142   1.1       mrg #include <sys/systm.h>
    143   1.1       mrg #include <sys/proc.h>
    144   1.1       mrg 
    145   1.1       mrg #include <uvm/uvm.h>
    146   1.1       mrg 
    147   1.1       mrg /*
    148   1.1       mrg  * global data structures
    149   1.1       mrg  */
    150   1.1       mrg 
    151  1.61   thorpej vaddr_t virtual_avail;		/* start of managed kernel virtual memory */
    152  1.61   thorpej vaddr_t virtual_end;		/* end of managed kernel virtual memory */
    153  1.61   thorpej 
    154  1.49       chs struct vm_map *kernel_map = NULL;
    155   1.1       mrg 
    156   1.1       mrg /*
    157   1.1       mrg  * local data structues
    158   1.1       mrg  */
    159   1.1       mrg 
    160   1.1       mrg static struct vm_map		kernel_map_store;
    161   1.1       mrg 
    162   1.1       mrg /*
    163   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    164   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    165   1.1       mrg  *
    166  1.61   thorpej  * => KVM is defined by virtual_avail/virtual_end.
    167  1.61   thorpej  *    we assume that any regions that have already been allocated from
    168  1.61   thorpej  *    the total kernel address space have already been accounted for in
    169  1.61   thorpej  *    the values of virtual_avail and virtual_end.
    170   1.1       mrg  */
    171   1.1       mrg 
    172   1.8       mrg void
    173  1.61   thorpej uvm_km_init(void)
    174   1.1       mrg {
    175  1.61   thorpej 
    176  1.61   thorpej 	/*
    177  1.61   thorpej 	 * virtual_avail and virtual_end should already be page-aligned.
    178  1.61   thorpej 	 */
    179  1.61   thorpej 
    180  1.61   thorpej 	KASSERT((virtual_avail & PAGE_MASK) == 0);
    181  1.61   thorpej 	KASSERT((virtual_end & PAGE_MASK) == 0);
    182  1.27   thorpej 
    183  1.27   thorpej 	/*
    184  1.27   thorpej 	 * next, init kernel memory objects.
    185   1.8       mrg 	 */
    186   1.1       mrg 
    187   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    188  1.34       chs 	uao_init();
    189  1.61   thorpej 	uvm.kernel_object = uao_create(virtual_end - virtual_avail,
    190  1.61   thorpej 				       UAO_FLAG_KERNOBJ);
    191   1.1       mrg 
    192  1.24   thorpej 	/*
    193  1.56   thorpej 	 * init the map and reserve any space that might already
    194  1.56   thorpej 	 * have been allocated kernel space before installing.
    195   1.8       mrg 	 */
    196   1.1       mrg 
    197  1.61   thorpej 	uvm_map_setup(&kernel_map_store, virtual_avail, virtual_end,
    198  1.61   thorpej 		      VM_MAP_PAGEABLE);
    199   1.8       mrg 	kernel_map_store.pmap = pmap_kernel();
    200  1.47       chs 
    201   1.8       mrg 	/*
    202   1.8       mrg 	 * install!
    203   1.8       mrg 	 */
    204   1.8       mrg 
    205   1.8       mrg 	kernel_map = &kernel_map_store;
    206   1.1       mrg }
    207   1.1       mrg 
    208   1.1       mrg /*
    209   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    210   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    211   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    212   1.1       mrg  *
    213   1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    214   1.5   thorpej  *      by the submap must start
    215   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    216   1.1       mrg  *	alloc a new map
    217   1.1       mrg  */
    218   1.8       mrg struct vm_map *
    219  1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    220   1.8       mrg 	struct vm_map *map;
    221  1.52       chs 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    222  1.14       eeh 	vsize_t size;
    223  1.25   thorpej 	int flags;
    224   1.8       mrg 	boolean_t fixed;
    225   1.8       mrg 	struct vm_map *submap;
    226   1.8       mrg {
    227   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    228   1.1       mrg 
    229   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    230   1.1       mrg 
    231   1.8       mrg 	/*
    232   1.8       mrg 	 * first allocate a blank spot in the parent map
    233   1.8       mrg 	 */
    234   1.8       mrg 
    235  1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    236   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    237  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    238   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    239   1.8       mrg 	}
    240   1.8       mrg 
    241   1.8       mrg 	/*
    242   1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    243   1.8       mrg 	 */
    244   1.1       mrg 
    245   1.8       mrg 	*max = *min + size;
    246   1.5   thorpej 
    247   1.8       mrg 	/*
    248   1.8       mrg 	 * add references to pmap and create or init the submap
    249   1.8       mrg 	 */
    250   1.1       mrg 
    251   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    252   1.8       mrg 	if (submap == NULL) {
    253  1.25   thorpej 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
    254   1.8       mrg 		if (submap == NULL)
    255   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    256   1.8       mrg 	} else {
    257  1.25   thorpej 		uvm_map_setup(submap, *min, *max, flags);
    258   1.8       mrg 		submap->pmap = vm_map_pmap(map);
    259   1.8       mrg 	}
    260   1.1       mrg 
    261   1.8       mrg 	/*
    262   1.8       mrg 	 * now let uvm_map_submap plug in it...
    263   1.8       mrg 	 */
    264   1.1       mrg 
    265  1.43       chs 	if (uvm_map_submap(map, *min, *max, submap) != 0)
    266   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    267   1.1       mrg 
    268   1.8       mrg 	return(submap);
    269   1.1       mrg }
    270   1.1       mrg 
    271   1.1       mrg /*
    272   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    273   1.1       mrg  *
    274   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    275   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    276   1.1       mrg  */
    277   1.1       mrg 
    278   1.8       mrg void
    279   1.8       mrg uvm_km_pgremove(uobj, start, end)
    280   1.8       mrg 	struct uvm_object *uobj;
    281  1.14       eeh 	vaddr_t start, end;
    282   1.1       mrg {
    283  1.53       chs 	struct vm_page *pg;
    284  1.52       chs 	voff_t curoff, nextoff;
    285  1.53       chs 	int swpgonlydelta = 0;
    286   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    287   1.1       mrg 
    288  1.40       chs 	KASSERT(uobj->pgops == &aobj_pager);
    289  1.40       chs 	simple_lock(&uobj->vmobjlock);
    290   1.3       chs 
    291  1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    292  1.52       chs 		nextoff = curoff + PAGE_SIZE;
    293  1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    294  1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    295  1.52       chs 			pg->flags |= PG_WANTED;
    296  1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    297  1.52       chs 				    "km_pgrm", 0);
    298  1.52       chs 			simple_lock(&uobj->vmobjlock);
    299  1.52       chs 			nextoff = curoff;
    300   1.8       mrg 			continue;
    301  1.52       chs 		}
    302   1.8       mrg 
    303  1.52       chs 		/*
    304  1.52       chs 		 * free the swap slot, then the page.
    305  1.52       chs 		 */
    306   1.8       mrg 
    307  1.53       chs 		if (pg == NULL &&
    308  1.53       chs 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
    309  1.53       chs 			swpgonlydelta++;
    310  1.53       chs 		}
    311  1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    312  1.53       chs 		if (pg != NULL) {
    313  1.53       chs 			uvm_lock_pageq();
    314  1.53       chs 			uvm_pagefree(pg);
    315  1.53       chs 			uvm_unlock_pageq();
    316  1.53       chs 		}
    317   1.8       mrg 	}
    318   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    319   1.8       mrg 
    320  1.54       chs 	if (swpgonlydelta > 0) {
    321  1.54       chs 		simple_lock(&uvm.swap_data_lock);
    322  1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    323  1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    324  1.54       chs 		simple_unlock(&uvm.swap_data_lock);
    325  1.54       chs 	}
    326  1.24   thorpej }
    327  1.24   thorpej 
    328  1.24   thorpej 
    329  1.24   thorpej /*
    330  1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    331  1.52       chs  *    maps
    332  1.24   thorpej  *
    333  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    334  1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    335  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    336  1.52       chs  *    be on the active or inactive queues (because they have no object).
    337  1.24   thorpej  */
    338  1.24   thorpej 
    339  1.24   thorpej void
    340  1.52       chs uvm_km_pgremove_intrsafe(start, end)
    341  1.24   thorpej 	vaddr_t start, end;
    342  1.24   thorpej {
    343  1.52       chs 	struct vm_page *pg;
    344  1.52       chs 	paddr_t pa;
    345  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    346  1.24   thorpej 
    347  1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    348  1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    349  1.24   thorpej 			continue;
    350  1.40       chs 		}
    351  1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    352  1.52       chs 		KASSERT(pg);
    353  1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    354  1.52       chs 		uvm_pagefree(pg);
    355  1.24   thorpej 	}
    356   1.1       mrg }
    357   1.1       mrg 
    358   1.1       mrg 
    359   1.1       mrg /*
    360   1.1       mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    361   1.1       mrg  *
    362   1.1       mrg  * => we map wired memory into the specified map using the obj passed in
    363   1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    364   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    365   1.1       mrg  *	this case.
    366   1.1       mrg  * => we return KVA of memory allocated
    367   1.1       mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    368   1.1       mrg  *	lock the map
    369   1.1       mrg  */
    370   1.1       mrg 
    371  1.14       eeh vaddr_t
    372   1.8       mrg uvm_km_kmemalloc(map, obj, size, flags)
    373  1.49       chs 	struct vm_map *map;
    374   1.8       mrg 	struct uvm_object *obj;
    375  1.14       eeh 	vsize_t size;
    376   1.8       mrg 	int flags;
    377   1.1       mrg {
    378  1.14       eeh 	vaddr_t kva, loopva;
    379  1.14       eeh 	vaddr_t offset;
    380  1.44   thorpej 	vsize_t loopsize;
    381   1.8       mrg 	struct vm_page *pg;
    382   1.8       mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    383   1.1       mrg 
    384   1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    385  1.40       chs 		    map, obj, size, flags);
    386  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    387   1.1       mrg 
    388   1.8       mrg 	/*
    389   1.8       mrg 	 * setup for call
    390   1.8       mrg 	 */
    391   1.8       mrg 
    392   1.8       mrg 	size = round_page(size);
    393   1.8       mrg 	kva = vm_map_min(map);	/* hint */
    394   1.1       mrg 
    395   1.8       mrg 	/*
    396   1.8       mrg 	 * allocate some virtual space
    397   1.8       mrg 	 */
    398   1.8       mrg 
    399  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    400  1.39   thorpej 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    401  1.60    bouyer 			  UVM_ADV_RANDOM,
    402  1.60    bouyer 			  (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
    403  1.43       chs 			!= 0)) {
    404   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    405   1.8       mrg 		return(0);
    406   1.8       mrg 	}
    407   1.8       mrg 
    408   1.8       mrg 	/*
    409   1.8       mrg 	 * if all we wanted was VA, return now
    410   1.8       mrg 	 */
    411   1.8       mrg 
    412   1.8       mrg 	if (flags & UVM_KMF_VALLOC) {
    413   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    414   1.8       mrg 		return(kva);
    415   1.8       mrg 	}
    416  1.40       chs 
    417   1.8       mrg 	/*
    418   1.8       mrg 	 * recover object offset from virtual address
    419   1.8       mrg 	 */
    420   1.8       mrg 
    421   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    422   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    423   1.8       mrg 
    424   1.8       mrg 	/*
    425   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    426   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    427   1.8       mrg 	 */
    428   1.8       mrg 
    429   1.8       mrg 	loopva = kva;
    430  1.44   thorpej 	loopsize = size;
    431  1.44   thorpej 	while (loopsize) {
    432  1.52       chs 		if (obj) {
    433  1.52       chs 			simple_lock(&obj->vmobjlock);
    434  1.52       chs 		}
    435  1.52       chs 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
    436  1.45   thorpej 		if (__predict_true(pg != NULL)) {
    437   1.8       mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    438   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    439   1.8       mrg 		}
    440  1.52       chs 		if (obj) {
    441  1.52       chs 			simple_unlock(&obj->vmobjlock);
    442  1.52       chs 		}
    443  1.47       chs 
    444   1.8       mrg 		/*
    445   1.8       mrg 		 * out of memory?
    446   1.8       mrg 		 */
    447   1.8       mrg 
    448  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    449  1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    450  1.58       chs 			    ((flags & UVM_KMF_CANFAIL) &&
    451  1.58       chs 			     uvmexp.swpgonly == uvmexp.swpages)) {
    452   1.8       mrg 				/* free everything! */
    453  1.17     chuck 				uvm_unmap(map, kva, kva + size);
    454  1.58       chs 				return (0);
    455   1.8       mrg 			} else {
    456   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    457   1.8       mrg 				continue;
    458   1.8       mrg 			}
    459   1.8       mrg 		}
    460  1.47       chs 
    461   1.8       mrg 		/*
    462  1.52       chs 		 * map it in
    463   1.8       mrg 		 */
    464  1.40       chs 
    465  1.52       chs 		if (obj == NULL) {
    466  1.24   thorpej 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    467  1.57   thorpej 			    VM_PROT_READ | VM_PROT_WRITE);
    468  1.24   thorpej 		} else {
    469  1.24   thorpej 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    470  1.33   thorpej 			    UVM_PROT_ALL,
    471  1.33   thorpej 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    472  1.24   thorpej 		}
    473   1.8       mrg 		loopva += PAGE_SIZE;
    474   1.8       mrg 		offset += PAGE_SIZE;
    475  1.44   thorpej 		loopsize -= PAGE_SIZE;
    476   1.8       mrg 	}
    477  1.51     chris 
    478  1.51     chris        	pmap_update(pmap_kernel());
    479  1.51     chris 
    480   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    481   1.8       mrg 	return(kva);
    482   1.1       mrg }
    483   1.1       mrg 
    484   1.1       mrg /*
    485   1.1       mrg  * uvm_km_free: free an area of kernel memory
    486   1.1       mrg  */
    487   1.1       mrg 
    488   1.8       mrg void
    489   1.8       mrg uvm_km_free(map, addr, size)
    490  1.49       chs 	struct vm_map *map;
    491  1.14       eeh 	vaddr_t addr;
    492  1.14       eeh 	vsize_t size;
    493   1.8       mrg {
    494  1.17     chuck 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
    495   1.1       mrg }
    496   1.1       mrg 
    497   1.1       mrg /*
    498   1.1       mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    499   1.1       mrg  * anyone waiting for vm space.
    500   1.1       mrg  *
    501   1.1       mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    502   1.1       mrg  */
    503   1.1       mrg 
    504   1.8       mrg void
    505   1.8       mrg uvm_km_free_wakeup(map, addr, size)
    506  1.49       chs 	struct vm_map *map;
    507  1.14       eeh 	vaddr_t addr;
    508  1.14       eeh 	vsize_t size;
    509   1.1       mrg {
    510  1.49       chs 	struct vm_map_entry *dead_entries;
    511   1.1       mrg 
    512   1.8       mrg 	vm_map_lock(map);
    513  1.47       chs 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
    514  1.43       chs 	    &dead_entries);
    515  1.31   thorpej 	wakeup(map);
    516   1.8       mrg 	vm_map_unlock(map);
    517   1.8       mrg 	if (dead_entries != NULL)
    518   1.8       mrg 		uvm_unmap_detach(dead_entries, 0);
    519   1.1       mrg }
    520   1.1       mrg 
    521   1.1       mrg /*
    522   1.1       mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    523   1.1       mrg  *
    524   1.1       mrg  * => we can sleep if needed
    525   1.1       mrg  */
    526   1.1       mrg 
    527  1.14       eeh vaddr_t
    528   1.8       mrg uvm_km_alloc1(map, size, zeroit)
    529  1.49       chs 	struct vm_map *map;
    530  1.14       eeh 	vsize_t size;
    531   1.8       mrg 	boolean_t zeroit;
    532   1.1       mrg {
    533  1.14       eeh 	vaddr_t kva, loopva, offset;
    534   1.8       mrg 	struct vm_page *pg;
    535   1.8       mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    536   1.1       mrg 
    537   1.8       mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    538  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    539   1.1       mrg 
    540   1.8       mrg 	size = round_page(size);
    541   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    542   1.1       mrg 
    543   1.8       mrg 	/*
    544   1.8       mrg 	 * allocate some virtual space
    545   1.8       mrg 	 */
    546   1.1       mrg 
    547  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    548  1.39   thorpej 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    549  1.35   thorpej 					      UVM_INH_NONE, UVM_ADV_RANDOM,
    550  1.43       chs 					      0)) != 0)) {
    551   1.8       mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    552   1.8       mrg 		return(0);
    553   1.8       mrg 	}
    554   1.8       mrg 
    555   1.8       mrg 	/*
    556   1.8       mrg 	 * recover object offset from virtual address
    557   1.8       mrg 	 */
    558   1.8       mrg 
    559   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    560   1.8       mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    561   1.8       mrg 
    562   1.8       mrg 	/*
    563  1.52       chs 	 * now allocate the memory.
    564   1.8       mrg 	 */
    565   1.8       mrg 
    566   1.8       mrg 	loopva = kva;
    567   1.8       mrg 	while (size) {
    568   1.8       mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    569  1.52       chs 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
    570  1.23       chs 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
    571   1.8       mrg 		if (pg) {
    572  1.52       chs 			pg->flags &= ~PG_BUSY;
    573   1.8       mrg 			UVM_PAGE_OWN(pg, NULL);
    574   1.8       mrg 		}
    575   1.8       mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    576  1.52       chs 		if (pg == NULL) {
    577  1.52       chs 			uvm_wait("km_alloc1w");
    578   1.8       mrg 			continue;
    579   1.8       mrg 		}
    580   1.8       mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    581  1.33   thorpej 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
    582   1.8       mrg 		loopva += PAGE_SIZE;
    583   1.8       mrg 		offset += PAGE_SIZE;
    584   1.8       mrg 		size -= PAGE_SIZE;
    585   1.8       mrg 	}
    586  1.51     chris 	pmap_update(map->pmap);
    587  1.46   thorpej 
    588   1.8       mrg 	/*
    589   1.8       mrg 	 * zero on request (note that "size" is now zero due to the above loop
    590   1.8       mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    591   1.8       mrg 	 */
    592   1.1       mrg 
    593   1.8       mrg 	if (zeroit)
    594  1.13     perry 		memset((caddr_t)kva, 0, loopva - kva);
    595   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    596   1.8       mrg 	return(kva);
    597   1.1       mrg }
    598   1.1       mrg 
    599   1.1       mrg /*
    600   1.1       mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    601   1.1       mrg  *
    602   1.1       mrg  * => memory is not allocated until fault time
    603   1.1       mrg  */
    604   1.1       mrg 
    605  1.14       eeh vaddr_t
    606   1.8       mrg uvm_km_valloc(map, size)
    607  1.49       chs 	struct vm_map *map;
    608  1.14       eeh 	vsize_t size;
    609   1.1       mrg {
    610  1.41  nisimura 	return(uvm_km_valloc_align(map, size, 0));
    611  1.41  nisimura }
    612  1.41  nisimura 
    613  1.41  nisimura vaddr_t
    614  1.41  nisimura uvm_km_valloc_align(map, size, align)
    615  1.49       chs 	struct vm_map *map;
    616  1.41  nisimura 	vsize_t size;
    617  1.41  nisimura 	vsize_t align;
    618  1.41  nisimura {
    619  1.14       eeh 	vaddr_t kva;
    620   1.8       mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    621   1.1       mrg 
    622   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    623  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    624   1.1       mrg 
    625   1.8       mrg 	size = round_page(size);
    626   1.8       mrg 	kva = vm_map_min(map);		/* hint */
    627   1.1       mrg 
    628   1.8       mrg 	/*
    629   1.8       mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    630   1.8       mrg 	 */
    631   1.1       mrg 
    632  1.35   thorpej 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
    633  1.41  nisimura 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    634  1.35   thorpej 					    UVM_INH_NONE, UVM_ADV_RANDOM,
    635  1.43       chs 					    0)) != 0)) {
    636   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    637   1.8       mrg 		return(0);
    638   1.8       mrg 	}
    639   1.1       mrg 
    640   1.8       mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    641   1.8       mrg 	return(kva);
    642   1.1       mrg }
    643   1.1       mrg 
    644   1.1       mrg /*
    645   1.1       mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    646   1.1       mrg  *
    647   1.1       mrg  * => memory is not allocated until fault time
    648   1.1       mrg  * => if no room in map, wait for space to free, unless requested size
    649   1.1       mrg  *    is larger than map (in which case we return 0)
    650   1.1       mrg  */
    651   1.1       mrg 
    652  1.14       eeh vaddr_t
    653  1.38     jeffs uvm_km_valloc_prefer_wait(map, size, prefer)
    654  1.49       chs 	struct vm_map *map;
    655  1.14       eeh 	vsize_t size;
    656  1.38     jeffs 	voff_t prefer;
    657   1.1       mrg {
    658  1.14       eeh 	vaddr_t kva;
    659  1.38     jeffs 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
    660   1.1       mrg 
    661   1.8       mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    662  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    663   1.1       mrg 
    664   1.8       mrg 	size = round_page(size);
    665   1.8       mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    666   1.8       mrg 		return(0);
    667   1.8       mrg 
    668  1.52       chs 	for (;;) {
    669   1.8       mrg 		kva = vm_map_min(map);		/* hint */
    670   1.8       mrg 
    671   1.8       mrg 		/*
    672   1.8       mrg 		 * allocate some virtual space.   will be demand filled
    673   1.8       mrg 		 * by kernel_object.
    674   1.8       mrg 		 */
    675   1.8       mrg 
    676  1.35   thorpej 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
    677  1.39   thorpej 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
    678   1.8       mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    679  1.43       chs 		    == 0)) {
    680   1.8       mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    681   1.8       mrg 			return(kva);
    682   1.8       mrg 		}
    683   1.8       mrg 
    684   1.8       mrg 		/*
    685   1.8       mrg 		 * failed.  sleep for a while (on map)
    686   1.8       mrg 		 */
    687   1.8       mrg 
    688   1.8       mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    689   1.8       mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    690   1.8       mrg 	}
    691   1.8       mrg 	/*NOTREACHED*/
    692  1.38     jeffs }
    693  1.38     jeffs 
    694  1.38     jeffs vaddr_t
    695  1.38     jeffs uvm_km_valloc_wait(map, size)
    696  1.49       chs 	struct vm_map *map;
    697  1.38     jeffs 	vsize_t size;
    698  1.38     jeffs {
    699  1.38     jeffs 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
    700  1.10   thorpej }
    701  1.10   thorpej 
    702  1.10   thorpej /* Sanity; must specify both or none. */
    703  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    704  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    705  1.10   thorpej #error Must specify MAP and UNMAP together.
    706  1.10   thorpej #endif
    707  1.10   thorpej 
    708  1.10   thorpej /*
    709  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    710  1.10   thorpej  *
    711  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    712  1.10   thorpej  */
    713  1.10   thorpej 
    714  1.11   thorpej /* ARGSUSED */
    715  1.14       eeh vaddr_t
    716  1.15   thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
    717  1.49       chs 	struct vm_map *map;
    718  1.12   thorpej 	struct uvm_object *obj;
    719  1.15   thorpej 	boolean_t waitok;
    720  1.10   thorpej {
    721  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    722  1.10   thorpej 	struct vm_page *pg;
    723  1.14       eeh 	vaddr_t va;
    724  1.10   thorpej 
    725  1.15   thorpej  again:
    726  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    727  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    728  1.15   thorpej 		if (waitok) {
    729  1.15   thorpej 			uvm_wait("plpg");
    730  1.15   thorpej 			goto again;
    731  1.15   thorpej 		} else
    732  1.15   thorpej 			return (0);
    733  1.15   thorpej 	}
    734  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    735  1.35   thorpej 	if (__predict_false(va == 0))
    736  1.10   thorpej 		uvm_pagefree(pg);
    737  1.10   thorpej 	return (va);
    738  1.10   thorpej #else
    739  1.14       eeh 	vaddr_t va;
    740  1.10   thorpej 	int s;
    741  1.10   thorpej 
    742  1.16   thorpej 	/*
    743  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    744  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    745  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    746  1.16   thorpej 	 * accessed in interrupt context).
    747  1.16   thorpej 	 *
    748  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    749  1.16   thorpej 	 * XXX function.
    750  1.16   thorpej 	 */
    751  1.16   thorpej 
    752  1.42   thorpej 	s = splvm();
    753  1.60    bouyer 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
    754  1.60    bouyer 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
    755  1.10   thorpej 	splx(s);
    756  1.10   thorpej 	return (va);
    757  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    758  1.10   thorpej }
    759  1.10   thorpej 
    760  1.10   thorpej /*
    761  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    762  1.10   thorpej  *
    763  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    764  1.10   thorpej  */
    765  1.10   thorpej 
    766  1.11   thorpej /* ARGSUSED */
    767  1.10   thorpej void
    768  1.11   thorpej uvm_km_free_poolpage1(map, addr)
    769  1.49       chs 	struct vm_map *map;
    770  1.14       eeh 	vaddr_t addr;
    771  1.10   thorpej {
    772  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    773  1.14       eeh 	paddr_t pa;
    774  1.10   thorpej 
    775  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    776  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    777  1.10   thorpej #else
    778  1.10   thorpej 	int s;
    779  1.16   thorpej 
    780  1.16   thorpej 	/*
    781  1.42   thorpej 	 * NOTE: We may be called with a map that doens't require splvm
    782  1.16   thorpej 	 * protection (e.g. kernel_map).  However, it does not hurt to
    783  1.42   thorpej 	 * go to splvm in this case (since unprocted maps will never be
    784  1.16   thorpej 	 * accessed in interrupt context).
    785  1.16   thorpej 	 *
    786  1.16   thorpej 	 * XXX We may want to consider changing the interface to this
    787  1.16   thorpej 	 * XXX function.
    788  1.16   thorpej 	 */
    789  1.10   thorpej 
    790  1.42   thorpej 	s = splvm();
    791  1.11   thorpej 	uvm_km_free(map, addr, PAGE_SIZE);
    792  1.10   thorpej 	splx(s);
    793  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    794   1.1       mrg }
    795