Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.7
      1  1.7    chuck /*	$NetBSD: uvm_km.c,v 1.7 1998/02/24 15:58:09 chuck Exp $	*/
      2  1.1      mrg 
      3  1.1      mrg /*
      4  1.1      mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  1.1      mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  1.1      mrg  */
      7  1.1      mrg /*
      8  1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  1.1      mrg  *
     11  1.1      mrg  * All rights reserved.
     12  1.1      mrg  *
     13  1.1      mrg  * This code is derived from software contributed to Berkeley by
     14  1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15  1.1      mrg  *
     16  1.1      mrg  * Redistribution and use in source and binary forms, with or without
     17  1.1      mrg  * modification, are permitted provided that the following conditions
     18  1.1      mrg  * are met:
     19  1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     20  1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     21  1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     23  1.1      mrg  *    documentation and/or other materials provided with the distribution.
     24  1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     25  1.1      mrg  *    must display the following acknowledgement:
     26  1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     27  1.1      mrg  *      Washington University, the University of California, Berkeley and
     28  1.1      mrg  *      its contributors.
     29  1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     30  1.1      mrg  *    may be used to endorse or promote products derived from this software
     31  1.1      mrg  *    without specific prior written permission.
     32  1.1      mrg  *
     33  1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  1.1      mrg  * SUCH DAMAGE.
     44  1.1      mrg  *
     45  1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     46  1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     47  1.1      mrg  *
     48  1.1      mrg  *
     49  1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  1.1      mrg  * All rights reserved.
     51  1.1      mrg  *
     52  1.1      mrg  * Permission to use, copy, modify and distribute this software and
     53  1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     54  1.1      mrg  * notice and this permission notice appear in all copies of the
     55  1.1      mrg  * software, derivative works or modified versions, and any portions
     56  1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     57  1.1      mrg  *
     58  1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  1.1      mrg  *
     62  1.1      mrg  * Carnegie Mellon requests users of this software to return to
     63  1.1      mrg  *
     64  1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  1.1      mrg  *  School of Computer Science
     66  1.1      mrg  *  Carnegie Mellon University
     67  1.1      mrg  *  Pittsburgh PA 15213-3890
     68  1.1      mrg  *
     69  1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     70  1.1      mrg  * rights to redistribute these changes.
     71  1.1      mrg  */
     72  1.6      mrg 
     73  1.6      mrg #include "opt_uvmhist.h"
     74  1.6      mrg #include "opt_pmap_new.h"
     75  1.1      mrg 
     76  1.1      mrg /*
     77  1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     78  1.1      mrg  */
     79  1.1      mrg 
     80  1.7    chuck /*
     81  1.7    chuck  * overview of kernel memory management:
     82  1.7    chuck  *
     83  1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     84  1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     85  1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     86  1.7    chuck  *
     87  1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     88  1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     89  1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     90  1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     91  1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     92  1.7    chuck  * submap's lock -- not the kernel_map's lock.
     93  1.7    chuck  *
     94  1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     95  1.7    chuck  * up the locking and protection of the kernel address space into smaller
     96  1.7    chuck  * chunks.
     97  1.7    chuck  *
     98  1.7    chuck  * the vm system has several standard kernel submaps, including:
     99  1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
    100  1.7    chuck  *		malloc.   *** access to kmem_map must be protected
    101  1.7    chuck  *		by splimp() because we are allowed to call malloc()
    102  1.7    chuck  *		at interrupt time ***
    103  1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    104  1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    105  1.7    chuck  *   exec_map => used during exec to handle exec args
    106  1.7    chuck  *   etc...
    107  1.7    chuck  *
    108  1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    109  1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    110  1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    111  1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    112  1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    113  1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    114  1.7    chuck  *
    115  1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    116  1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    117  1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    118  1.7    chuck  * object (e.g. kmem_object, mb_object).
    119  1.7    chuck  *
    120  1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    121  1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    122  1.7    chuck  * large chunks of a kernel object's space go unused either because
    123  1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    124  1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    125  1.7    chuck  * objects, the only part of the object that can ever be populated is the
    126  1.7    chuck  * offsets that are managed by the submap.
    127  1.7    chuck  *
    128  1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    129  1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    130  1.7    chuck  * example:
    131  1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    132  1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    133  1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    134  1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    135  1.7    chuck  *   mapped at 0xf8235000.
    136  1.7    chuck  *
    137  1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    138  1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    139  1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    140  1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    141  1.7    chuck  * in those objects will typically not start at zero.
    142  1.7    chuck  *
    143  1.7    chuck  * kernel object have one other special property: when the kernel virtual
    144  1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    145  1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    146  1.7    chuck  * this has to be done because there is no backing store for kernel pages
    147  1.7    chuck  * and no need to save them after they are no longer referenced.
    148  1.7    chuck  */
    149  1.7    chuck 
    150  1.1      mrg #include <sys/param.h>
    151  1.1      mrg #include <sys/systm.h>
    152  1.1      mrg #include <sys/proc.h>
    153  1.1      mrg 
    154  1.1      mrg #include <vm/vm.h>
    155  1.1      mrg #include <vm/vm_page.h>
    156  1.1      mrg #include <vm/vm_kern.h>
    157  1.1      mrg 
    158  1.1      mrg #include <uvm/uvm.h>
    159  1.1      mrg 
    160  1.1      mrg /*
    161  1.1      mrg  * global data structures
    162  1.1      mrg  */
    163  1.1      mrg 
    164  1.1      mrg vm_map_t kernel_map = NULL;
    165  1.1      mrg 
    166  1.1      mrg /*
    167  1.1      mrg  * local functions
    168  1.1      mrg  */
    169  1.1      mrg 
    170  1.1      mrg static int uvm_km_get __P((struct uvm_object *, vm_offset_t,
    171  1.1      mrg                            vm_page_t *, int *, int, vm_prot_t, int, int));
    172  1.1      mrg /*
    173  1.1      mrg  * local data structues
    174  1.1      mrg  */
    175  1.1      mrg 
    176  1.1      mrg static struct vm_map		kernel_map_store;
    177  1.1      mrg static struct uvm_object	kmem_object_store;
    178  1.1      mrg static struct uvm_object	mb_object_store;
    179  1.1      mrg 
    180  1.1      mrg static struct uvm_pagerops km_pager = {
    181  1.1      mrg   NULL,	/* init */
    182  1.1      mrg   NULL, /* attach */
    183  1.1      mrg   NULL, /* reference */
    184  1.1      mrg   NULL, /* detach */
    185  1.1      mrg   NULL, /* fault */
    186  1.1      mrg   NULL, /* flush */
    187  1.1      mrg   uvm_km_get, /* get */
    188  1.1      mrg   /* ... rest are NULL */
    189  1.1      mrg };
    190  1.1      mrg 
    191  1.1      mrg /*
    192  1.1      mrg  * uvm_km_get: pager get function for kernel objects
    193  1.1      mrg  *
    194  1.1      mrg  * => currently we do not support pageout to the swap area, so this
    195  1.1      mrg  *    pager is very simple.    eventually we may want an anonymous
    196  1.1      mrg  *    object pager which will do paging.
    197  1.7    chuck  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    198  1.1      mrg  */
    199  1.1      mrg 
    200  1.1      mrg 
    201  1.1      mrg static int uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type,
    202  1.1      mrg         	      advice, flags)
    203  1.1      mrg 
    204  1.1      mrg struct uvm_object *uobj;
    205  1.1      mrg vm_offset_t offset;
    206  1.1      mrg struct vm_page **pps;
    207  1.1      mrg int *npagesp;
    208  1.1      mrg int centeridx, advice, flags;
    209  1.1      mrg vm_prot_t access_type;
    210  1.1      mrg 
    211  1.1      mrg {
    212  1.1      mrg   vm_offset_t current_offset;
    213  1.1      mrg   vm_page_t ptmp;
    214  1.1      mrg   int lcv, gotpages, maxpages;
    215  1.1      mrg   boolean_t done;
    216  1.1      mrg   UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    217  1.1      mrg 
    218  1.1      mrg   UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    219  1.1      mrg 
    220  1.1      mrg   /*
    221  1.1      mrg    * get number of pages
    222  1.1      mrg    */
    223  1.1      mrg 
    224  1.1      mrg   maxpages = *npagesp;
    225  1.1      mrg 
    226  1.1      mrg   /*
    227  1.1      mrg    * step 1: handled the case where fault data structures are locked.
    228  1.1      mrg    */
    229  1.1      mrg 
    230  1.1      mrg   if (flags & PGO_LOCKED) {
    231  1.1      mrg 
    232  1.1      mrg     /*
    233  1.1      mrg      * step 1a: get pages that are already resident.   only do this
    234  1.1      mrg      * if the data structures are locked (i.e. the first time through).
    235  1.1      mrg      */
    236  1.1      mrg 
    237  1.1      mrg     done = TRUE;	/* be optimistic */
    238  1.1      mrg     gotpages = 0;	/* # of pages we got so far */
    239  1.1      mrg 
    240  1.1      mrg     for (lcv = 0, current_offset = offset ;
    241  1.1      mrg 	 lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    242  1.1      mrg 
    243  1.1      mrg       /* do we care about this page?  if not, skip it */
    244  1.1      mrg       if (pps[lcv] == PGO_DONTCARE)
    245  1.1      mrg 	continue;
    246  1.1      mrg 
    247  1.1      mrg       /* lookup page */
    248  1.1      mrg       ptmp = uvm_pagelookup(uobj, current_offset);
    249  1.1      mrg 
    250  1.1      mrg       /* null?  attempt to allocate the page */
    251  1.1      mrg       if (ptmp == NULL) {
    252  1.1      mrg 	ptmp = uvm_pagealloc(uobj, current_offset, NULL);
    253  1.1      mrg 	if (ptmp) {
    254  1.1      mrg 	  ptmp->flags &= ~(PG_BUSY|PG_FAKE);	/* new page */
    255  1.1      mrg           UVM_PAGE_OWN(ptmp, NULL);
    256  1.1      mrg 	  ptmp->wire_count = 1;		/* XXX: prevents pageout attempts */
    257  1.1      mrg 	  uvm_pagezero(ptmp);
    258  1.1      mrg 	}
    259  1.1      mrg       }
    260  1.1      mrg 
    261  1.1      mrg       /* to be useful must get a non-busy, non-released page */
    262  1.1      mrg       if (ptmp == NULL || (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    263  1.1      mrg 	if (lcv == centeridx || (flags & PGO_ALLPAGES) != 0)
    264  1.1      mrg 	  done = FALSE;		/* need to do a wait or I/O! */
    265  1.1      mrg 	continue;
    266  1.1      mrg       }
    267  1.1      mrg 
    268  1.1      mrg       /* useful page: busy/lock it and plug it in our result array */
    269  1.1      mrg       ptmp->flags |= PG_BUSY;		/* caller must un-busy this page */
    270  1.1      mrg       UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    271  1.1      mrg       pps[lcv] = ptmp;
    272  1.1      mrg       gotpages++;
    273  1.1      mrg 
    274  1.1      mrg     }	/* "for" lcv loop */
    275  1.1      mrg 
    276  1.1      mrg     /*
    277  1.1      mrg      * step 1b: now we've either done everything needed or we to unlock
    278  1.1      mrg      * and do some waiting or I/O.
    279  1.1      mrg      */
    280  1.1      mrg 
    281  1.1      mrg     UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    282  1.1      mrg 
    283  1.1      mrg     *npagesp = gotpages;
    284  1.1      mrg     if (done)
    285  1.1      mrg       return(VM_PAGER_OK);		/* bingo! */
    286  1.1      mrg     else
    287  1.1      mrg       return(VM_PAGER_UNLOCK);		/* EEK!   Need to unlock and I/O */
    288  1.1      mrg   }
    289  1.1      mrg 
    290  1.1      mrg   /*
    291  1.1      mrg    * step 2: get non-resident or busy pages.
    292  1.1      mrg    * object is locked.   data structures are unlocked.
    293  1.1      mrg    */
    294  1.1      mrg 
    295  1.1      mrg   for (lcv = 0, current_offset = offset ;
    296  1.1      mrg        lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    297  1.1      mrg 
    298  1.1      mrg     /* skip over pages we've already gotten or don't want */
    299  1.1      mrg     /* skip over pages we don't _have_ to get */
    300  1.1      mrg     if (pps[lcv] != NULL ||
    301  1.1      mrg 	(lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    302  1.1      mrg       continue;
    303  1.1      mrg 
    304  1.1      mrg     /*
    305  1.1      mrg      * we have yet to locate the current page (pps[lcv]).   we first
    306  1.1      mrg      * look for a page that is already at the current offset.   if we
    307  1.1      mrg      * find a page, we check to see if it is busy or released.  if that
    308  1.1      mrg      * is the case, then we sleep on the page until it is no longer busy
    309  1.1      mrg      * or released and repeat the lookup.    if the page we found is
    310  1.1      mrg      * neither busy nor released, then we busy it (so we own it) and
    311  1.1      mrg      * plug it into pps[lcv].   this 'break's the following while loop
    312  1.1      mrg      * and indicates we are ready to move on to the next page in the
    313  1.1      mrg      * "lcv" loop above.
    314  1.1      mrg      *
    315  1.1      mrg      * if we exit the while loop with pps[lcv] still set to NULL, then
    316  1.1      mrg      * it means that we allocated a new busy/fake/clean page ptmp in the
    317  1.1      mrg      * object and we need to do I/O to fill in the data.
    318  1.1      mrg      */
    319  1.1      mrg 
    320  1.1      mrg     while (pps[lcv] == NULL) {		/* top of "pps" while loop */
    321  1.1      mrg 
    322  1.1      mrg       /* look for a current page */
    323  1.1      mrg       ptmp = uvm_pagelookup(uobj, current_offset);
    324  1.1      mrg 
    325  1.1      mrg       /* nope?   allocate one now (if we can) */
    326  1.1      mrg       if (ptmp == NULL) {
    327  1.1      mrg 
    328  1.1      mrg 	ptmp = uvm_pagealloc(uobj, current_offset, NULL);	/* alloc */
    329  1.1      mrg 
    330  1.1      mrg 	/* out of RAM? */
    331  1.1      mrg 	if (ptmp == NULL) {
    332  1.1      mrg 	  simple_unlock(&uobj->vmobjlock);
    333  1.1      mrg 	  uvm_wait("kmgetwait1");
    334  1.1      mrg 	  simple_lock(&uobj->vmobjlock);
    335  1.1      mrg 	  continue;		/* goto top of pps while loop */
    336  1.1      mrg 	}
    337  1.1      mrg 
    338  1.1      mrg 	/*
    339  1.1      mrg 	 * got new page ready for I/O.  break pps while loop.  pps[lcv] is
    340  1.1      mrg 	 * still NULL.
    341  1.1      mrg 	 */
    342  1.1      mrg 	break;
    343  1.1      mrg       }
    344  1.1      mrg 
    345  1.1      mrg       /* page is there, see if we need to wait on it */
    346  1.1      mrg       if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    347  1.1      mrg 	ptmp->flags |= PG_WANTED;
    348  1.1      mrg 	UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock,0,"uvn_get",0);
    349  1.1      mrg 	simple_lock(&uobj->vmobjlock);
    350  1.1      mrg 	continue;		/* goto top of pps while loop */
    351  1.1      mrg       }
    352  1.1      mrg 
    353  1.1      mrg       /*
    354  1.1      mrg        * if we get here then the page has become resident and unbusy
    355  1.1      mrg        * between steps 1 and 2.  we busy it now (so we own it) and set
    356  1.1      mrg        * pps[lcv] (so that we exit the while loop).
    357  1.1      mrg        */
    358  1.1      mrg       ptmp->flags |= PG_BUSY;	/* we own it, caller must un-busy */
    359  1.1      mrg       UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    360  1.1      mrg       pps[lcv] = ptmp;
    361  1.1      mrg     }
    362  1.1      mrg 
    363  1.1      mrg     /*
    364  1.1      mrg      * if we own the a valid page at the correct offset, pps[lcv] will
    365  1.1      mrg      * point to it.   nothing more to do except go to the next page.
    366  1.1      mrg      */
    367  1.1      mrg 
    368  1.1      mrg     if (pps[lcv])
    369  1.1      mrg       continue;			/* next lcv */
    370  1.1      mrg 
    371  1.1      mrg     /*
    372  1.1      mrg      * we have a "fake/busy/clean" page that we just allocated.
    373  1.1      mrg      * do the needed "i/o" (in this case that means zero it).
    374  1.1      mrg      */
    375  1.1      mrg 
    376  1.1      mrg     uvm_pagezero(ptmp);
    377  1.1      mrg     ptmp->flags &= ~(PG_FAKE);
    378  1.1      mrg     ptmp->wire_count = 1;		/* XXX: prevents pageout attempts */
    379  1.1      mrg     pps[lcv] = ptmp;
    380  1.1      mrg 
    381  1.1      mrg   }	/* lcv loop */
    382  1.1      mrg 
    383  1.1      mrg   /*
    384  1.1      mrg    * finally, unlock object and return.
    385  1.1      mrg    */
    386  1.1      mrg 
    387  1.1      mrg   simple_unlock(&uobj->vmobjlock);
    388  1.1      mrg   UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    389  1.1      mrg   return(VM_PAGER_OK);
    390  1.1      mrg }
    391  1.1      mrg 
    392  1.1      mrg /*
    393  1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    394  1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    395  1.1      mrg  *
    396  1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    397  1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    398  1.1      mrg  *    "end" is the end.
    399  1.1      mrg  */
    400  1.1      mrg 
    401  1.1      mrg void uvm_km_init(start, end)
    402  1.1      mrg 
    403  1.1      mrg vm_offset_t start, end;
    404  1.1      mrg 
    405  1.1      mrg {
    406  1.1      mrg   vm_offset_t base = VM_MIN_KERNEL_ADDRESS;
    407  1.1      mrg 
    408  1.1      mrg   /*
    409  1.1      mrg    * first, init kernel memory objects.
    410  1.1      mrg    */
    411  1.1      mrg 
    412  1.3      chs   /* kernel_object: for pageable anonymous kernel memory */
    413  1.3      chs   uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    414  1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    415  1.1      mrg 
    416  1.7    chuck   /* kmem_object: for malloc'd memory (always wired, protected by splimp) */
    417  1.1      mrg   simple_lock_init(&kmem_object_store.vmobjlock);
    418  1.1      mrg   kmem_object_store.pgops = &km_pager;
    419  1.1      mrg   TAILQ_INIT(&kmem_object_store.memq);
    420  1.1      mrg   kmem_object_store.uo_npages = 0;
    421  1.1      mrg   kmem_object_store.uo_refs = UVM_OBJ_KERN;
    422  1.1      mrg 					/* we are special.  we never die */
    423  1.1      mrg   uvmexp.kmem_object = &kmem_object_store;
    424  1.1      mrg 
    425  1.7    chuck   /* mb_object: for mbuf memory (always wired, protected by splimp) */
    426  1.1      mrg   simple_lock_init(&mb_object_store.vmobjlock);
    427  1.1      mrg   mb_object_store.pgops = &km_pager;
    428  1.1      mrg   TAILQ_INIT(&mb_object_store.memq);
    429  1.1      mrg   mb_object_store.uo_npages = 0;
    430  1.1      mrg   mb_object_store.uo_refs = UVM_OBJ_KERN;
    431  1.1      mrg 					/* we are special.  we never die */
    432  1.1      mrg   uvmexp.mb_object = &mb_object_store;
    433  1.1      mrg 
    434  1.1      mrg   /*
    435  1.7    chuck    * init the map and reserve allready allocated kernel space
    436  1.7    chuck    * before installing.
    437  1.1      mrg    */
    438  1.1      mrg 
    439  1.1      mrg   uvm_map_setup(&kernel_map_store, base, end, FALSE);
    440  1.1      mrg   kernel_map_store.pmap = pmap_kernel();
    441  1.1      mrg   if (uvm_map(&kernel_map_store, &base, start - base, NULL, UVM_UNKNOWN_OFFSET,
    442  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    443  1.1      mrg 			  UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    444  1.1      mrg     panic("uvm_km_init: could not reserve space for kernel");
    445  1.1      mrg 
    446  1.1      mrg   /*
    447  1.1      mrg    * install!
    448  1.1      mrg    */
    449  1.1      mrg 
    450  1.1      mrg   kernel_map = &kernel_map_store;
    451  1.1      mrg }
    452  1.1      mrg 
    453  1.1      mrg /*
    454  1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    455  1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    456  1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    457  1.1      mrg  *
    458  1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    459  1.5  thorpej  *      by the submap must start
    460  1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    461  1.1      mrg  *	alloc a new map
    462  1.1      mrg  */
    463  1.1      mrg 
    464  1.5  thorpej struct vm_map *uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    465  1.1      mrg 
    466  1.1      mrg struct vm_map *map;
    467  1.1      mrg vm_offset_t *min, *max;		/* OUT, OUT */
    468  1.1      mrg vm_size_t size;
    469  1.1      mrg boolean_t pageable;
    470  1.5  thorpej boolean_t fixed;
    471  1.1      mrg struct vm_map *submap;
    472  1.1      mrg 
    473  1.1      mrg {
    474  1.5  thorpej   int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    475  1.5  thorpej 
    476  1.1      mrg   size = round_page(size);	/* round up to pagesize */
    477  1.1      mrg 
    478  1.1      mrg   /*
    479  1.1      mrg    * first allocate a blank spot in the parent map
    480  1.1      mrg    */
    481  1.1      mrg 
    482  1.1      mrg   if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    483  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    484  1.5  thorpej 			  UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    485  1.1      mrg     panic("uvm_km_suballoc: unable to allocate space in parent map");
    486  1.1      mrg   }
    487  1.1      mrg 
    488  1.1      mrg   /*
    489  1.1      mrg    * set VM bounds (min is filled in by uvm_map)
    490  1.1      mrg    */
    491  1.1      mrg 
    492  1.1      mrg   *max = *min + size;
    493  1.1      mrg 
    494  1.1      mrg   /*
    495  1.1      mrg    * add references to pmap and create or init the submap
    496  1.1      mrg    */
    497  1.1      mrg 
    498  1.1      mrg   pmap_reference(vm_map_pmap(map));
    499  1.1      mrg   if (submap == NULL) {
    500  1.1      mrg     submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    501  1.1      mrg     if (submap == NULL)
    502  1.1      mrg       panic("uvm_km_suballoc: unable to create submap");
    503  1.1      mrg   } else {
    504  1.1      mrg       uvm_map_setup(submap, *min, *max, pageable);
    505  1.1      mrg       submap->pmap = vm_map_pmap(map);
    506  1.1      mrg   }
    507  1.1      mrg 
    508  1.1      mrg   /*
    509  1.1      mrg    * now let uvm_map_submap plug in it...
    510  1.1      mrg    */
    511  1.1      mrg 
    512  1.1      mrg   if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    513  1.1      mrg     panic("uvm_km_suballoc: submap allocation failed");
    514  1.1      mrg 
    515  1.1      mrg   return(submap);
    516  1.1      mrg }
    517  1.1      mrg 
    518  1.1      mrg /*
    519  1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    520  1.1      mrg  *
    521  1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    522  1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    523  1.1      mrg  */
    524  1.1      mrg 
    525  1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    526  1.1      mrg 
    527  1.1      mrg void uvm_km_pgremove(uobj, start, end)
    528  1.1      mrg 
    529  1.1      mrg struct uvm_object *uobj;
    530  1.1      mrg vm_offset_t start, end;
    531  1.1      mrg 
    532  1.1      mrg {
    533  1.3      chs   boolean_t by_list, is_aobj;
    534  1.1      mrg   struct vm_page *pp, *ppnext;
    535  1.1      mrg   vm_offset_t curoff;
    536  1.1      mrg   UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    537  1.1      mrg 
    538  1.1      mrg   simple_lock(&uobj->vmobjlock);		/* lock object */
    539  1.1      mrg 
    540  1.3      chs   /* is uobj an aobj? */
    541  1.3      chs   is_aobj = uobj->pgops == &aobj_pager;
    542  1.3      chs 
    543  1.1      mrg   /* choose cheapest traversal */
    544  1.1      mrg   by_list = (uobj->uo_npages <=
    545  1.1      mrg 	     ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
    546  1.1      mrg 
    547  1.1      mrg   if (by_list)
    548  1.1      mrg     goto loop_by_list;
    549  1.1      mrg 
    550  1.1      mrg   /* by hash */
    551  1.1      mrg 
    552  1.1      mrg   for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    553  1.1      mrg     pp = uvm_pagelookup(uobj, curoff);
    554  1.1      mrg     if (pp == NULL)
    555  1.1      mrg       continue;
    556  1.1      mrg 
    557  1.1      mrg     UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,pp->flags & PG_BUSY,0,0);
    558  1.1      mrg     /* now do the actual work */
    559  1.1      mrg     if (pp->flags & PG_BUSY)
    560  1.1      mrg       pp->flags |= PG_RELEASED;	/* owner must check for this when done */
    561  1.1      mrg     else {
    562  1.1      mrg       pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    563  1.3      chs 
    564  1.3      chs       /*
    565  1.3      chs        * if this kernel object is an aobj, free the swap slot.
    566  1.3      chs        */
    567  1.3      chs       if (is_aobj) {
    568  1.3      chs 	int slot = uao_set_swslot(uobj, curoff / PAGE_SIZE, 0);
    569  1.3      chs 
    570  1.3      chs 	if (slot)
    571  1.3      chs 	  uvm_swap_free(slot, 1);
    572  1.3      chs       }
    573  1.3      chs 
    574  1.1      mrg       uvm_lock_pageq();
    575  1.1      mrg       uvm_pagefree(pp);
    576  1.1      mrg       uvm_unlock_pageq();
    577  1.1      mrg     }
    578  1.1      mrg     /* done */
    579  1.1      mrg 
    580  1.1      mrg   }
    581  1.1      mrg   simple_unlock(&uobj->vmobjlock);
    582  1.1      mrg   return;
    583  1.1      mrg 
    584  1.1      mrg loop_by_list:
    585  1.1      mrg 
    586  1.1      mrg   for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    587  1.1      mrg 
    588  1.1      mrg     ppnext = pp->listq.tqe_next;
    589  1.1      mrg     if (pp->offset < start || pp->offset >= end) {
    590  1.1      mrg       continue;
    591  1.1      mrg     }
    592  1.1      mrg 
    593  1.1      mrg     UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,pp->flags & PG_BUSY,0,0);
    594  1.1      mrg     /* now do the actual work */
    595  1.1      mrg     if (pp->flags & PG_BUSY)
    596  1.1      mrg       pp->flags |= PG_RELEASED;	/* owner must check for this when done */
    597  1.1      mrg     else {
    598  1.1      mrg       pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    599  1.3      chs 
    600  1.3      chs       /*
    601  1.3      chs        * if this kernel object is an aobj, free the swap slot.
    602  1.3      chs        */
    603  1.3      chs       if (is_aobj) {
    604  1.3      chs 	int slot = uao_set_swslot(uobj, pp->offset / PAGE_SIZE, 0);
    605  1.3      chs 
    606  1.3      chs 	if (slot)
    607  1.3      chs 	  uvm_swap_free(slot, 1);
    608  1.3      chs       }
    609  1.3      chs 
    610  1.1      mrg       uvm_lock_pageq();
    611  1.1      mrg       uvm_pagefree(pp);
    612  1.1      mrg       uvm_unlock_pageq();
    613  1.1      mrg     }
    614  1.1      mrg     /* done */
    615  1.1      mrg 
    616  1.1      mrg   }
    617  1.1      mrg   simple_unlock(&uobj->vmobjlock);
    618  1.1      mrg   return;
    619  1.1      mrg }
    620  1.1      mrg 
    621  1.1      mrg 
    622  1.1      mrg /*
    623  1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    624  1.1      mrg  *
    625  1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    626  1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    627  1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    628  1.1      mrg  *	this case.
    629  1.1      mrg  * => we return KVA of memory allocated
    630  1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    631  1.1      mrg  *	lock the map
    632  1.1      mrg  */
    633  1.1      mrg 
    634  1.1      mrg vm_offset_t uvm_km_kmemalloc(map, obj, size, flags)
    635  1.1      mrg 
    636  1.1      mrg vm_map_t map;
    637  1.1      mrg struct uvm_object *obj;
    638  1.1      mrg vm_size_t size;
    639  1.1      mrg int flags;
    640  1.1      mrg 
    641  1.1      mrg {
    642  1.1      mrg   vm_offset_t kva, loopva;
    643  1.1      mrg   vm_offset_t offset;
    644  1.1      mrg   struct vm_page *pg;
    645  1.1      mrg   UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    646  1.1      mrg 
    647  1.1      mrg 
    648  1.1      mrg   UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    649  1.1      mrg 	map, obj, size, flags);
    650  1.1      mrg #ifdef DIAGNOSTIC
    651  1.1      mrg   /* sanity check */
    652  1.1      mrg   if (vm_map_pmap(map) != pmap_kernel())
    653  1.1      mrg     panic("uvm_km_kmemalloc: invalid map");
    654  1.1      mrg #endif
    655  1.1      mrg 
    656  1.1      mrg   /*
    657  1.1      mrg    * setup for call
    658  1.1      mrg    */
    659  1.1      mrg 
    660  1.1      mrg   size = round_page(size);
    661  1.1      mrg   kva = vm_map_min(map);	/* hint */
    662  1.1      mrg 
    663  1.1      mrg   /*
    664  1.1      mrg    * allocate some virtual space
    665  1.1      mrg    */
    666  1.1      mrg 
    667  1.1      mrg   if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    668  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    669  1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    670  1.1      mrg       != KERN_SUCCESS) {
    671  1.1      mrg     UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    672  1.1      mrg     return(0);
    673  1.1      mrg   }
    674  1.1      mrg 
    675  1.1      mrg   /*
    676  1.1      mrg    * if all we wanted was VA, return now
    677  1.1      mrg    */
    678  1.1      mrg 
    679  1.1      mrg   if (flags & UVM_KMF_VALLOC) {
    680  1.1      mrg     UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    681  1.1      mrg     return(kva);
    682  1.1      mrg   }
    683  1.1      mrg   /*
    684  1.1      mrg    * recover object offset from virtual address
    685  1.1      mrg    */
    686  1.1      mrg 
    687  1.7    chuck   offset = kva - vm_map_min(kernel_map);
    688  1.1      mrg   UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    689  1.1      mrg 
    690  1.1      mrg   /*
    691  1.1      mrg    * now allocate and map in the memory... note that we are the only ones
    692  1.1      mrg    * whom should ever get a handle on this area of VM.
    693  1.1      mrg    */
    694  1.1      mrg 
    695  1.1      mrg   loopva = kva;
    696  1.1      mrg   while (size) {
    697  1.1      mrg     simple_lock(&obj->vmobjlock);
    698  1.1      mrg     pg = uvm_pagealloc(obj, offset, NULL);
    699  1.1      mrg     if (pg) {
    700  1.1      mrg       pg->flags &= ~PG_BUSY;	/* new page */
    701  1.1      mrg       UVM_PAGE_OWN(pg, NULL);
    702  1.3      chs 
    703  1.3      chs       pg->wire_count = 1;
    704  1.3      chs       uvmexp.wired++;
    705  1.1      mrg     }
    706  1.1      mrg     simple_unlock(&obj->vmobjlock);
    707  1.1      mrg 
    708  1.1      mrg     /*
    709  1.1      mrg      * out of memory?
    710  1.1      mrg      */
    711  1.1      mrg 
    712  1.1      mrg     if (pg == NULL) {
    713  1.1      mrg       if (flags & UVM_KMF_NOWAIT) {
    714  1.1      mrg 	uvm_unmap(map, kva, kva + size, 0); /* free everything! */
    715  1.1      mrg 	return(0);
    716  1.1      mrg       } else {
    717  1.1      mrg 	uvm_wait("km_getwait2");		/* sleep here */
    718  1.1      mrg 	continue;
    719  1.1      mrg       }
    720  1.1      mrg     }
    721  1.1      mrg 
    722  1.1      mrg     /*
    723  1.1      mrg      * map it in: note that we call pmap_enter with the map and object
    724  1.1      mrg      * unlocked in case we are kmem_map/kmem_object (because if pmap_enter
    725  1.1      mrg      * wants to allocate out of kmem_object it will need to lock it itself!)
    726  1.1      mrg      */
    727  1.1      mrg #if defined(PMAP_NEW)
    728  1.1      mrg     pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    729  1.1      mrg #else
    730  1.1      mrg     pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL, TRUE);
    731  1.1      mrg #endif
    732  1.1      mrg     loopva += PAGE_SIZE;
    733  1.1      mrg     offset += PAGE_SIZE;
    734  1.1      mrg     size -= PAGE_SIZE;
    735  1.1      mrg   }
    736  1.1      mrg 
    737  1.1      mrg   UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    738  1.1      mrg   return(kva);
    739  1.1      mrg }
    740  1.1      mrg 
    741  1.1      mrg /*
    742  1.1      mrg  * uvm_km_free: free an area of kernel memory
    743  1.1      mrg  */
    744  1.1      mrg 
    745  1.1      mrg void uvm_km_free(map, addr, size)
    746  1.1      mrg 
    747  1.1      mrg vm_map_t map;
    748  1.1      mrg vm_offset_t addr;
    749  1.1      mrg vm_size_t size;
    750  1.1      mrg 
    751  1.1      mrg {
    752  1.1      mrg   uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
    753  1.1      mrg }
    754  1.1      mrg 
    755  1.1      mrg /*
    756  1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    757  1.1      mrg  * anyone waiting for vm space.
    758  1.1      mrg  *
    759  1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    760  1.1      mrg  */
    761  1.1      mrg 
    762  1.1      mrg void uvm_km_free_wakeup(map, addr, size)
    763  1.1      mrg 
    764  1.1      mrg vm_map_t map;
    765  1.1      mrg vm_offset_t addr;
    766  1.1      mrg vm_size_t size;
    767  1.1      mrg 
    768  1.1      mrg {
    769  1.1      mrg   vm_map_entry_t dead_entries;
    770  1.1      mrg 
    771  1.1      mrg   vm_map_lock(map);
    772  1.1      mrg   (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
    773  1.1      mrg 			 &dead_entries);
    774  1.1      mrg   thread_wakeup(map);
    775  1.1      mrg   vm_map_unlock(map);
    776  1.1      mrg 
    777  1.1      mrg   if (dead_entries != NULL)
    778  1.1      mrg     uvm_unmap_detach(dead_entries, 0);
    779  1.1      mrg }
    780  1.1      mrg 
    781  1.1      mrg /*
    782  1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    783  1.1      mrg  *
    784  1.1      mrg  * => we can sleep if needed
    785  1.1      mrg  */
    786  1.1      mrg 
    787  1.1      mrg vm_offset_t uvm_km_alloc1(map, size, zeroit)
    788  1.1      mrg 
    789  1.1      mrg vm_map_t map;
    790  1.1      mrg vm_size_t size;
    791  1.1      mrg boolean_t zeroit;
    792  1.1      mrg 
    793  1.1      mrg {
    794  1.1      mrg   vm_offset_t kva, loopva, offset;
    795  1.1      mrg   struct vm_page *pg;
    796  1.1      mrg   UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    797  1.1      mrg 
    798  1.1      mrg   UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    799  1.1      mrg 
    800  1.1      mrg #ifdef DIAGNOSTIC
    801  1.1      mrg   if (vm_map_pmap(map) != pmap_kernel())
    802  1.1      mrg     panic("uvm_km_alloc1");
    803  1.1      mrg #endif
    804  1.1      mrg 
    805  1.1      mrg   size = round_page(size);
    806  1.1      mrg   kva = vm_map_min(map);		/* hint */
    807  1.1      mrg 
    808  1.1      mrg   /*
    809  1.1      mrg    * allocate some virtual space
    810  1.1      mrg    */
    811  1.1      mrg 
    812  1.1      mrg   if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    813  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    814  1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    815  1.1      mrg     UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    816  1.1      mrg     return(0);
    817  1.1      mrg   }
    818  1.1      mrg 
    819  1.1      mrg   /*
    820  1.1      mrg    * recover object offset from virtual address
    821  1.1      mrg    */
    822  1.1      mrg 
    823  1.7    chuck   offset = kva - vm_map_min(kernel_map);
    824  1.1      mrg   UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    825  1.1      mrg 
    826  1.1      mrg   /*
    827  1.1      mrg    * now allocate the memory.  we must be careful about released pages.
    828  1.1      mrg    */
    829  1.1      mrg 
    830  1.1      mrg   loopva = kva;
    831  1.1      mrg   while (size) {
    832  1.1      mrg     simple_lock(&uvm.kernel_object->vmobjlock);
    833  1.1      mrg     pg = uvm_pagelookup(uvm.kernel_object, offset);
    834  1.1      mrg 
    835  1.1      mrg     /* if we found a page in an unallocated region, it must be released */
    836  1.1      mrg     if (pg) {
    837  1.1      mrg       if ((pg->flags & PG_RELEASED) == 0)
    838  1.1      mrg 	panic("uvm_km_alloc1: non-released page");
    839  1.1      mrg       pg->flags |= PG_WANTED;
    840  1.1      mrg       UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,0,"km_alloc",0);
    841  1.1      mrg       continue;   /* retry */
    842  1.1      mrg     }
    843  1.1      mrg 
    844  1.1      mrg     /* allocate ram */
    845  1.1      mrg     pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    846  1.1      mrg     if (pg) {
    847  1.1      mrg       pg->flags &= ~PG_BUSY;	/* new page */
    848  1.1      mrg       UVM_PAGE_OWN(pg, NULL);
    849  1.1      mrg     }
    850  1.1      mrg     simple_unlock(&uvm.kernel_object->vmobjlock);
    851  1.1      mrg     if (pg == NULL) {
    852  1.1      mrg       uvm_wait("km_alloc1w");	/* wait for memory */
    853  1.1      mrg       continue;
    854  1.1      mrg     }
    855  1.1      mrg 
    856  1.1      mrg     /* map it in */
    857  1.1      mrg #if defined(PMAP_NEW)
    858  1.1      mrg     pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    859  1.1      mrg #else
    860  1.1      mrg     pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL, TRUE);
    861  1.1      mrg #endif
    862  1.1      mrg     loopva += PAGE_SIZE;
    863  1.1      mrg     offset += PAGE_SIZE;
    864  1.1      mrg     size -= PAGE_SIZE;
    865  1.1      mrg   }
    866  1.1      mrg 
    867  1.1      mrg   /*
    868  1.1      mrg    * zero on request (note that "size" is now zero due to the above loop
    869  1.1      mrg    * so we need to subtract kva from loopva to reconstruct the size).
    870  1.1      mrg    */
    871  1.1      mrg 
    872  1.1      mrg   if (zeroit)
    873  1.1      mrg     bzero((caddr_t)kva, loopva - kva);
    874  1.1      mrg 
    875  1.1      mrg   UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    876  1.1      mrg   return(kva);
    877  1.1      mrg }
    878  1.1      mrg 
    879  1.1      mrg /*
    880  1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    881  1.1      mrg  *
    882  1.1      mrg  * => memory is not allocated until fault time
    883  1.1      mrg  */
    884  1.1      mrg 
    885  1.1      mrg vm_offset_t uvm_km_valloc(map, size)
    886  1.1      mrg 
    887  1.1      mrg vm_map_t map;
    888  1.1      mrg vm_size_t size;
    889  1.1      mrg 
    890  1.1      mrg {
    891  1.1      mrg   vm_offset_t kva;
    892  1.1      mrg   UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    893  1.1      mrg 
    894  1.1      mrg   UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    895  1.1      mrg 
    896  1.1      mrg #ifdef DIAGNOSTIC
    897  1.1      mrg   if (vm_map_pmap(map) != pmap_kernel())
    898  1.1      mrg     panic("uvm_km_valloc");
    899  1.1      mrg #endif
    900  1.1      mrg 
    901  1.1      mrg   size = round_page(size);
    902  1.1      mrg   kva = vm_map_min(map);		/* hint */
    903  1.1      mrg 
    904  1.1      mrg   /*
    905  1.1      mrg    * allocate some virtual space.   will be demand filled by kernel_object.
    906  1.1      mrg    */
    907  1.1      mrg 
    908  1.1      mrg   if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    909  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    910  1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    911  1.1      mrg     UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    912  1.1      mrg     return(0);
    913  1.1      mrg   }
    914  1.1      mrg 
    915  1.1      mrg   UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    916  1.1      mrg   return(kva);
    917  1.1      mrg }
    918  1.1      mrg 
    919  1.1      mrg /*
    920  1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    921  1.1      mrg  *
    922  1.1      mrg  * => memory is not allocated until fault time
    923  1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    924  1.1      mrg  *    is larger than map (in which case we return 0)
    925  1.1      mrg  */
    926  1.1      mrg 
    927  1.1      mrg vm_offset_t uvm_km_valloc_wait(map, size)
    928  1.1      mrg 
    929  1.1      mrg vm_map_t map;
    930  1.1      mrg vm_size_t size;
    931  1.1      mrg 
    932  1.1      mrg {
    933  1.1      mrg   vm_offset_t kva;
    934  1.1      mrg   UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    935  1.1      mrg 
    936  1.1      mrg   UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    937  1.1      mrg 
    938  1.1      mrg #ifdef DIAGNOSTIC
    939  1.1      mrg   if (vm_map_pmap(map) != pmap_kernel())
    940  1.1      mrg     panic("uvm_km_valloc_wait");
    941  1.1      mrg #endif
    942  1.1      mrg 
    943  1.1      mrg   size = round_page(size);
    944  1.1      mrg   if (size > vm_map_max(map) - vm_map_min(map))
    945  1.1      mrg     return(0);
    946  1.1      mrg 
    947  1.1      mrg   while (1) {
    948  1.1      mrg     kva = vm_map_min(map);		/* hint */
    949  1.1      mrg 
    950  1.1      mrg     /*
    951  1.1      mrg      * allocate some virtual space.   will be demand filled by kernel_object.
    952  1.1      mrg      */
    953  1.1      mrg 
    954  1.1      mrg     if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    955  1.1      mrg 		UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    956  1.1      mrg 			    UVM_ADV_RANDOM, 0)) == KERN_SUCCESS){
    957  1.1      mrg       UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    958  1.1      mrg       return(kva);
    959  1.1      mrg     }
    960  1.1      mrg 
    961  1.1      mrg     /*
    962  1.1      mrg      * failed.  sleep for a while (on map)
    963  1.1      mrg      */
    964  1.1      mrg 
    965  1.1      mrg     UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    966  1.1      mrg     tsleep((caddr_t)map, PVM, "vallocwait", 0);
    967  1.1      mrg   }
    968  1.1      mrg   /*NOTREACHED*/
    969  1.1      mrg }
    970