uvm_km.c revision 1.7 1 1.7 chuck /* $NetBSD: uvm_km.c,v 1.7 1998/02/24 15:58:09 chuck Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
5 1.1 mrg * >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
6 1.1 mrg */
7 1.1 mrg /*
8 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
9 1.1 mrg * Copyright (c) 1991, 1993, The Regents of the University of California.
10 1.1 mrg *
11 1.1 mrg * All rights reserved.
12 1.1 mrg *
13 1.1 mrg * This code is derived from software contributed to Berkeley by
14 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
15 1.1 mrg *
16 1.1 mrg * Redistribution and use in source and binary forms, with or without
17 1.1 mrg * modification, are permitted provided that the following conditions
18 1.1 mrg * are met:
19 1.1 mrg * 1. Redistributions of source code must retain the above copyright
20 1.1 mrg * notice, this list of conditions and the following disclaimer.
21 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 mrg * notice, this list of conditions and the following disclaimer in the
23 1.1 mrg * documentation and/or other materials provided with the distribution.
24 1.1 mrg * 3. All advertising materials mentioning features or use of this software
25 1.1 mrg * must display the following acknowledgement:
26 1.1 mrg * This product includes software developed by Charles D. Cranor,
27 1.1 mrg * Washington University, the University of California, Berkeley and
28 1.1 mrg * its contributors.
29 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
30 1.1 mrg * may be used to endorse or promote products derived from this software
31 1.1 mrg * without specific prior written permission.
32 1.1 mrg *
33 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
34 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
35 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
36 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
37 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
38 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
39 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
40 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
41 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
42 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 1.1 mrg * SUCH DAMAGE.
44 1.1 mrg *
45 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
46 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
47 1.1 mrg *
48 1.1 mrg *
49 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
50 1.1 mrg * All rights reserved.
51 1.1 mrg *
52 1.1 mrg * Permission to use, copy, modify and distribute this software and
53 1.1 mrg * its documentation is hereby granted, provided that both the copyright
54 1.1 mrg * notice and this permission notice appear in all copies of the
55 1.1 mrg * software, derivative works or modified versions, and any portions
56 1.1 mrg * thereof, and that both notices appear in supporting documentation.
57 1.1 mrg *
58 1.1 mrg * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
59 1.1 mrg * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
60 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
61 1.1 mrg *
62 1.1 mrg * Carnegie Mellon requests users of this software to return to
63 1.1 mrg *
64 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
65 1.1 mrg * School of Computer Science
66 1.1 mrg * Carnegie Mellon University
67 1.1 mrg * Pittsburgh PA 15213-3890
68 1.1 mrg *
69 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
70 1.1 mrg * rights to redistribute these changes.
71 1.1 mrg */
72 1.6 mrg
73 1.6 mrg #include "opt_uvmhist.h"
74 1.6 mrg #include "opt_pmap_new.h"
75 1.1 mrg
76 1.1 mrg /*
77 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
78 1.1 mrg */
79 1.1 mrg
80 1.7 chuck /*
81 1.7 chuck * overview of kernel memory management:
82 1.7 chuck *
83 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
84 1.7 chuck * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
85 1.7 chuck * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
86 1.7 chuck *
87 1.7 chuck * the kernel_map has several "submaps." submaps can only appear in
88 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
89 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
90 1.7 chuck * are typically allocated at boot time and are never released. kernel
91 1.7 chuck * virtual address space that is mapped by a submap is locked by the
92 1.7 chuck * submap's lock -- not the kernel_map's lock.
93 1.7 chuck *
94 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
95 1.7 chuck * up the locking and protection of the kernel address space into smaller
96 1.7 chuck * chunks.
97 1.7 chuck *
98 1.7 chuck * the vm system has several standard kernel submaps, including:
99 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
100 1.7 chuck * malloc. *** access to kmem_map must be protected
101 1.7 chuck * by splimp() because we are allowed to call malloc()
102 1.7 chuck * at interrupt time ***
103 1.7 chuck * mb_map => memory for large mbufs, *** protected by splimp ***
104 1.7 chuck * pager_map => used to map "buf" structures into kernel space
105 1.7 chuck * exec_map => used during exec to handle exec args
106 1.7 chuck * etc...
107 1.7 chuck *
108 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
109 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
110 1.7 chuck * are "special" and never die). all kernel objects should be thought of
111 1.7 chuck * as large, fixed-sized, sparsely populated uvm_objects. each kernel
112 1.7 chuck * object is equal to the size of kernel virtual address space (i.e. the
113 1.7 chuck * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
114 1.7 chuck *
115 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
116 1.7 chuck * to this is for memory that belongs to submaps that must be protected
117 1.7 chuck * by splimp(). each of these submaps has their own private kernel
118 1.7 chuck * object (e.g. kmem_object, mb_object).
119 1.7 chuck *
120 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
121 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
122 1.7 chuck * large chunks of a kernel object's space go unused either because
123 1.7 chuck * that area of kernel VM is unmapped, or there is some other type of
124 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
125 1.7 chuck * objects, the only part of the object that can ever be populated is the
126 1.7 chuck * offsets that are managed by the submap.
127 1.7 chuck *
128 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
129 1.7 chuck * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
130 1.7 chuck * example:
131 1.7 chuck * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
132 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
133 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
134 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
135 1.7 chuck * mapped at 0xf8235000.
136 1.7 chuck *
137 1.7 chuck * note that the offsets in kmem_object and mb_object also follow this
138 1.7 chuck * rule. this means that the offsets for kmem_object must fall in the
139 1.7 chuck * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
140 1.7 chuck * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
141 1.7 chuck * in those objects will typically not start at zero.
142 1.7 chuck *
143 1.7 chuck * kernel object have one other special property: when the kernel virtual
144 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
145 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
146 1.7 chuck * this has to be done because there is no backing store for kernel pages
147 1.7 chuck * and no need to save them after they are no longer referenced.
148 1.7 chuck */
149 1.7 chuck
150 1.1 mrg #include <sys/param.h>
151 1.1 mrg #include <sys/systm.h>
152 1.1 mrg #include <sys/proc.h>
153 1.1 mrg
154 1.1 mrg #include <vm/vm.h>
155 1.1 mrg #include <vm/vm_page.h>
156 1.1 mrg #include <vm/vm_kern.h>
157 1.1 mrg
158 1.1 mrg #include <uvm/uvm.h>
159 1.1 mrg
160 1.1 mrg /*
161 1.1 mrg * global data structures
162 1.1 mrg */
163 1.1 mrg
164 1.1 mrg vm_map_t kernel_map = NULL;
165 1.1 mrg
166 1.1 mrg /*
167 1.1 mrg * local functions
168 1.1 mrg */
169 1.1 mrg
170 1.1 mrg static int uvm_km_get __P((struct uvm_object *, vm_offset_t,
171 1.1 mrg vm_page_t *, int *, int, vm_prot_t, int, int));
172 1.1 mrg /*
173 1.1 mrg * local data structues
174 1.1 mrg */
175 1.1 mrg
176 1.1 mrg static struct vm_map kernel_map_store;
177 1.1 mrg static struct uvm_object kmem_object_store;
178 1.1 mrg static struct uvm_object mb_object_store;
179 1.1 mrg
180 1.1 mrg static struct uvm_pagerops km_pager = {
181 1.1 mrg NULL, /* init */
182 1.1 mrg NULL, /* attach */
183 1.1 mrg NULL, /* reference */
184 1.1 mrg NULL, /* detach */
185 1.1 mrg NULL, /* fault */
186 1.1 mrg NULL, /* flush */
187 1.1 mrg uvm_km_get, /* get */
188 1.1 mrg /* ... rest are NULL */
189 1.1 mrg };
190 1.1 mrg
191 1.1 mrg /*
192 1.1 mrg * uvm_km_get: pager get function for kernel objects
193 1.1 mrg *
194 1.1 mrg * => currently we do not support pageout to the swap area, so this
195 1.1 mrg * pager is very simple. eventually we may want an anonymous
196 1.1 mrg * object pager which will do paging.
197 1.7 chuck * => XXXCDC: this pager should be phased out in favor of the aobj pager
198 1.1 mrg */
199 1.1 mrg
200 1.1 mrg
201 1.1 mrg static int uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type,
202 1.1 mrg advice, flags)
203 1.1 mrg
204 1.1 mrg struct uvm_object *uobj;
205 1.1 mrg vm_offset_t offset;
206 1.1 mrg struct vm_page **pps;
207 1.1 mrg int *npagesp;
208 1.1 mrg int centeridx, advice, flags;
209 1.1 mrg vm_prot_t access_type;
210 1.1 mrg
211 1.1 mrg {
212 1.1 mrg vm_offset_t current_offset;
213 1.1 mrg vm_page_t ptmp;
214 1.1 mrg int lcv, gotpages, maxpages;
215 1.1 mrg boolean_t done;
216 1.1 mrg UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
217 1.1 mrg
218 1.1 mrg UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
219 1.1 mrg
220 1.1 mrg /*
221 1.1 mrg * get number of pages
222 1.1 mrg */
223 1.1 mrg
224 1.1 mrg maxpages = *npagesp;
225 1.1 mrg
226 1.1 mrg /*
227 1.1 mrg * step 1: handled the case where fault data structures are locked.
228 1.1 mrg */
229 1.1 mrg
230 1.1 mrg if (flags & PGO_LOCKED) {
231 1.1 mrg
232 1.1 mrg /*
233 1.1 mrg * step 1a: get pages that are already resident. only do this
234 1.1 mrg * if the data structures are locked (i.e. the first time through).
235 1.1 mrg */
236 1.1 mrg
237 1.1 mrg done = TRUE; /* be optimistic */
238 1.1 mrg gotpages = 0; /* # of pages we got so far */
239 1.1 mrg
240 1.1 mrg for (lcv = 0, current_offset = offset ;
241 1.1 mrg lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
242 1.1 mrg
243 1.1 mrg /* do we care about this page? if not, skip it */
244 1.1 mrg if (pps[lcv] == PGO_DONTCARE)
245 1.1 mrg continue;
246 1.1 mrg
247 1.1 mrg /* lookup page */
248 1.1 mrg ptmp = uvm_pagelookup(uobj, current_offset);
249 1.1 mrg
250 1.1 mrg /* null? attempt to allocate the page */
251 1.1 mrg if (ptmp == NULL) {
252 1.1 mrg ptmp = uvm_pagealloc(uobj, current_offset, NULL);
253 1.1 mrg if (ptmp) {
254 1.1 mrg ptmp->flags &= ~(PG_BUSY|PG_FAKE); /* new page */
255 1.1 mrg UVM_PAGE_OWN(ptmp, NULL);
256 1.1 mrg ptmp->wire_count = 1; /* XXX: prevents pageout attempts */
257 1.1 mrg uvm_pagezero(ptmp);
258 1.1 mrg }
259 1.1 mrg }
260 1.1 mrg
261 1.1 mrg /* to be useful must get a non-busy, non-released page */
262 1.1 mrg if (ptmp == NULL || (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
263 1.1 mrg if (lcv == centeridx || (flags & PGO_ALLPAGES) != 0)
264 1.1 mrg done = FALSE; /* need to do a wait or I/O! */
265 1.1 mrg continue;
266 1.1 mrg }
267 1.1 mrg
268 1.1 mrg /* useful page: busy/lock it and plug it in our result array */
269 1.1 mrg ptmp->flags |= PG_BUSY; /* caller must un-busy this page */
270 1.1 mrg UVM_PAGE_OWN(ptmp, "uvm_km_get1");
271 1.1 mrg pps[lcv] = ptmp;
272 1.1 mrg gotpages++;
273 1.1 mrg
274 1.1 mrg } /* "for" lcv loop */
275 1.1 mrg
276 1.1 mrg /*
277 1.1 mrg * step 1b: now we've either done everything needed or we to unlock
278 1.1 mrg * and do some waiting or I/O.
279 1.1 mrg */
280 1.1 mrg
281 1.1 mrg UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
282 1.1 mrg
283 1.1 mrg *npagesp = gotpages;
284 1.1 mrg if (done)
285 1.1 mrg return(VM_PAGER_OK); /* bingo! */
286 1.1 mrg else
287 1.1 mrg return(VM_PAGER_UNLOCK); /* EEK! Need to unlock and I/O */
288 1.1 mrg }
289 1.1 mrg
290 1.1 mrg /*
291 1.1 mrg * step 2: get non-resident or busy pages.
292 1.1 mrg * object is locked. data structures are unlocked.
293 1.1 mrg */
294 1.1 mrg
295 1.1 mrg for (lcv = 0, current_offset = offset ;
296 1.1 mrg lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
297 1.1 mrg
298 1.1 mrg /* skip over pages we've already gotten or don't want */
299 1.1 mrg /* skip over pages we don't _have_ to get */
300 1.1 mrg if (pps[lcv] != NULL ||
301 1.1 mrg (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
302 1.1 mrg continue;
303 1.1 mrg
304 1.1 mrg /*
305 1.1 mrg * we have yet to locate the current page (pps[lcv]). we first
306 1.1 mrg * look for a page that is already at the current offset. if we
307 1.1 mrg * find a page, we check to see if it is busy or released. if that
308 1.1 mrg * is the case, then we sleep on the page until it is no longer busy
309 1.1 mrg * or released and repeat the lookup. if the page we found is
310 1.1 mrg * neither busy nor released, then we busy it (so we own it) and
311 1.1 mrg * plug it into pps[lcv]. this 'break's the following while loop
312 1.1 mrg * and indicates we are ready to move on to the next page in the
313 1.1 mrg * "lcv" loop above.
314 1.1 mrg *
315 1.1 mrg * if we exit the while loop with pps[lcv] still set to NULL, then
316 1.1 mrg * it means that we allocated a new busy/fake/clean page ptmp in the
317 1.1 mrg * object and we need to do I/O to fill in the data.
318 1.1 mrg */
319 1.1 mrg
320 1.1 mrg while (pps[lcv] == NULL) { /* top of "pps" while loop */
321 1.1 mrg
322 1.1 mrg /* look for a current page */
323 1.1 mrg ptmp = uvm_pagelookup(uobj, current_offset);
324 1.1 mrg
325 1.1 mrg /* nope? allocate one now (if we can) */
326 1.1 mrg if (ptmp == NULL) {
327 1.1 mrg
328 1.1 mrg ptmp = uvm_pagealloc(uobj, current_offset, NULL); /* alloc */
329 1.1 mrg
330 1.1 mrg /* out of RAM? */
331 1.1 mrg if (ptmp == NULL) {
332 1.1 mrg simple_unlock(&uobj->vmobjlock);
333 1.1 mrg uvm_wait("kmgetwait1");
334 1.1 mrg simple_lock(&uobj->vmobjlock);
335 1.1 mrg continue; /* goto top of pps while loop */
336 1.1 mrg }
337 1.1 mrg
338 1.1 mrg /*
339 1.1 mrg * got new page ready for I/O. break pps while loop. pps[lcv] is
340 1.1 mrg * still NULL.
341 1.1 mrg */
342 1.1 mrg break;
343 1.1 mrg }
344 1.1 mrg
345 1.1 mrg /* page is there, see if we need to wait on it */
346 1.1 mrg if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
347 1.1 mrg ptmp->flags |= PG_WANTED;
348 1.1 mrg UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock,0,"uvn_get",0);
349 1.1 mrg simple_lock(&uobj->vmobjlock);
350 1.1 mrg continue; /* goto top of pps while loop */
351 1.1 mrg }
352 1.1 mrg
353 1.1 mrg /*
354 1.1 mrg * if we get here then the page has become resident and unbusy
355 1.1 mrg * between steps 1 and 2. we busy it now (so we own it) and set
356 1.1 mrg * pps[lcv] (so that we exit the while loop).
357 1.1 mrg */
358 1.1 mrg ptmp->flags |= PG_BUSY; /* we own it, caller must un-busy */
359 1.1 mrg UVM_PAGE_OWN(ptmp, "uvm_km_get2");
360 1.1 mrg pps[lcv] = ptmp;
361 1.1 mrg }
362 1.1 mrg
363 1.1 mrg /*
364 1.1 mrg * if we own the a valid page at the correct offset, pps[lcv] will
365 1.1 mrg * point to it. nothing more to do except go to the next page.
366 1.1 mrg */
367 1.1 mrg
368 1.1 mrg if (pps[lcv])
369 1.1 mrg continue; /* next lcv */
370 1.1 mrg
371 1.1 mrg /*
372 1.1 mrg * we have a "fake/busy/clean" page that we just allocated.
373 1.1 mrg * do the needed "i/o" (in this case that means zero it).
374 1.1 mrg */
375 1.1 mrg
376 1.1 mrg uvm_pagezero(ptmp);
377 1.1 mrg ptmp->flags &= ~(PG_FAKE);
378 1.1 mrg ptmp->wire_count = 1; /* XXX: prevents pageout attempts */
379 1.1 mrg pps[lcv] = ptmp;
380 1.1 mrg
381 1.1 mrg } /* lcv loop */
382 1.1 mrg
383 1.1 mrg /*
384 1.1 mrg * finally, unlock object and return.
385 1.1 mrg */
386 1.1 mrg
387 1.1 mrg simple_unlock(&uobj->vmobjlock);
388 1.1 mrg UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
389 1.1 mrg return(VM_PAGER_OK);
390 1.1 mrg }
391 1.1 mrg
392 1.1 mrg /*
393 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
394 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
395 1.1 mrg *
396 1.1 mrg * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
397 1.1 mrg * we assume that [min -> start] has already been allocated and that
398 1.1 mrg * "end" is the end.
399 1.1 mrg */
400 1.1 mrg
401 1.1 mrg void uvm_km_init(start, end)
402 1.1 mrg
403 1.1 mrg vm_offset_t start, end;
404 1.1 mrg
405 1.1 mrg {
406 1.1 mrg vm_offset_t base = VM_MIN_KERNEL_ADDRESS;
407 1.1 mrg
408 1.1 mrg /*
409 1.1 mrg * first, init kernel memory objects.
410 1.1 mrg */
411 1.1 mrg
412 1.3 chs /* kernel_object: for pageable anonymous kernel memory */
413 1.3 chs uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
414 1.3 chs VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
415 1.1 mrg
416 1.7 chuck /* kmem_object: for malloc'd memory (always wired, protected by splimp) */
417 1.1 mrg simple_lock_init(&kmem_object_store.vmobjlock);
418 1.1 mrg kmem_object_store.pgops = &km_pager;
419 1.1 mrg TAILQ_INIT(&kmem_object_store.memq);
420 1.1 mrg kmem_object_store.uo_npages = 0;
421 1.1 mrg kmem_object_store.uo_refs = UVM_OBJ_KERN;
422 1.1 mrg /* we are special. we never die */
423 1.1 mrg uvmexp.kmem_object = &kmem_object_store;
424 1.1 mrg
425 1.7 chuck /* mb_object: for mbuf memory (always wired, protected by splimp) */
426 1.1 mrg simple_lock_init(&mb_object_store.vmobjlock);
427 1.1 mrg mb_object_store.pgops = &km_pager;
428 1.1 mrg TAILQ_INIT(&mb_object_store.memq);
429 1.1 mrg mb_object_store.uo_npages = 0;
430 1.1 mrg mb_object_store.uo_refs = UVM_OBJ_KERN;
431 1.1 mrg /* we are special. we never die */
432 1.1 mrg uvmexp.mb_object = &mb_object_store;
433 1.1 mrg
434 1.1 mrg /*
435 1.7 chuck * init the map and reserve allready allocated kernel space
436 1.7 chuck * before installing.
437 1.1 mrg */
438 1.1 mrg
439 1.1 mrg uvm_map_setup(&kernel_map_store, base, end, FALSE);
440 1.1 mrg kernel_map_store.pmap = pmap_kernel();
441 1.1 mrg if (uvm_map(&kernel_map_store, &base, start - base, NULL, UVM_UNKNOWN_OFFSET,
442 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
443 1.1 mrg UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
444 1.1 mrg panic("uvm_km_init: could not reserve space for kernel");
445 1.1 mrg
446 1.1 mrg /*
447 1.1 mrg * install!
448 1.1 mrg */
449 1.1 mrg
450 1.1 mrg kernel_map = &kernel_map_store;
451 1.1 mrg }
452 1.1 mrg
453 1.1 mrg /*
454 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
455 1.1 mrg * is allocated all references to that area of VM must go through it. this
456 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
457 1.1 mrg *
458 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
459 1.5 thorpej * by the submap must start
460 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
461 1.1 mrg * alloc a new map
462 1.1 mrg */
463 1.1 mrg
464 1.5 thorpej struct vm_map *uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
465 1.1 mrg
466 1.1 mrg struct vm_map *map;
467 1.1 mrg vm_offset_t *min, *max; /* OUT, OUT */
468 1.1 mrg vm_size_t size;
469 1.1 mrg boolean_t pageable;
470 1.5 thorpej boolean_t fixed;
471 1.1 mrg struct vm_map *submap;
472 1.1 mrg
473 1.1 mrg {
474 1.5 thorpej int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
475 1.5 thorpej
476 1.1 mrg size = round_page(size); /* round up to pagesize */
477 1.1 mrg
478 1.1 mrg /*
479 1.1 mrg * first allocate a blank spot in the parent map
480 1.1 mrg */
481 1.1 mrg
482 1.1 mrg if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
483 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
484 1.5 thorpej UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
485 1.1 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
486 1.1 mrg }
487 1.1 mrg
488 1.1 mrg /*
489 1.1 mrg * set VM bounds (min is filled in by uvm_map)
490 1.1 mrg */
491 1.1 mrg
492 1.1 mrg *max = *min + size;
493 1.1 mrg
494 1.1 mrg /*
495 1.1 mrg * add references to pmap and create or init the submap
496 1.1 mrg */
497 1.1 mrg
498 1.1 mrg pmap_reference(vm_map_pmap(map));
499 1.1 mrg if (submap == NULL) {
500 1.1 mrg submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
501 1.1 mrg if (submap == NULL)
502 1.1 mrg panic("uvm_km_suballoc: unable to create submap");
503 1.1 mrg } else {
504 1.1 mrg uvm_map_setup(submap, *min, *max, pageable);
505 1.1 mrg submap->pmap = vm_map_pmap(map);
506 1.1 mrg }
507 1.1 mrg
508 1.1 mrg /*
509 1.1 mrg * now let uvm_map_submap plug in it...
510 1.1 mrg */
511 1.1 mrg
512 1.1 mrg if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
513 1.1 mrg panic("uvm_km_suballoc: submap allocation failed");
514 1.1 mrg
515 1.1 mrg return(submap);
516 1.1 mrg }
517 1.1 mrg
518 1.1 mrg /*
519 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
520 1.1 mrg *
521 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
522 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
523 1.1 mrg */
524 1.1 mrg
525 1.1 mrg #define UKM_HASH_PENALTY 4 /* a guess */
526 1.1 mrg
527 1.1 mrg void uvm_km_pgremove(uobj, start, end)
528 1.1 mrg
529 1.1 mrg struct uvm_object *uobj;
530 1.1 mrg vm_offset_t start, end;
531 1.1 mrg
532 1.1 mrg {
533 1.3 chs boolean_t by_list, is_aobj;
534 1.1 mrg struct vm_page *pp, *ppnext;
535 1.1 mrg vm_offset_t curoff;
536 1.1 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
537 1.1 mrg
538 1.1 mrg simple_lock(&uobj->vmobjlock); /* lock object */
539 1.1 mrg
540 1.3 chs /* is uobj an aobj? */
541 1.3 chs is_aobj = uobj->pgops == &aobj_pager;
542 1.3 chs
543 1.1 mrg /* choose cheapest traversal */
544 1.1 mrg by_list = (uobj->uo_npages <=
545 1.1 mrg ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
546 1.1 mrg
547 1.1 mrg if (by_list)
548 1.1 mrg goto loop_by_list;
549 1.1 mrg
550 1.1 mrg /* by hash */
551 1.1 mrg
552 1.1 mrg for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
553 1.1 mrg pp = uvm_pagelookup(uobj, curoff);
554 1.1 mrg if (pp == NULL)
555 1.1 mrg continue;
556 1.1 mrg
557 1.1 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,pp->flags & PG_BUSY,0,0);
558 1.1 mrg /* now do the actual work */
559 1.1 mrg if (pp->flags & PG_BUSY)
560 1.1 mrg pp->flags |= PG_RELEASED; /* owner must check for this when done */
561 1.1 mrg else {
562 1.1 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
563 1.3 chs
564 1.3 chs /*
565 1.3 chs * if this kernel object is an aobj, free the swap slot.
566 1.3 chs */
567 1.3 chs if (is_aobj) {
568 1.3 chs int slot = uao_set_swslot(uobj, curoff / PAGE_SIZE, 0);
569 1.3 chs
570 1.3 chs if (slot)
571 1.3 chs uvm_swap_free(slot, 1);
572 1.3 chs }
573 1.3 chs
574 1.1 mrg uvm_lock_pageq();
575 1.1 mrg uvm_pagefree(pp);
576 1.1 mrg uvm_unlock_pageq();
577 1.1 mrg }
578 1.1 mrg /* done */
579 1.1 mrg
580 1.1 mrg }
581 1.1 mrg simple_unlock(&uobj->vmobjlock);
582 1.1 mrg return;
583 1.1 mrg
584 1.1 mrg loop_by_list:
585 1.1 mrg
586 1.1 mrg for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
587 1.1 mrg
588 1.1 mrg ppnext = pp->listq.tqe_next;
589 1.1 mrg if (pp->offset < start || pp->offset >= end) {
590 1.1 mrg continue;
591 1.1 mrg }
592 1.1 mrg
593 1.1 mrg UVMHIST_LOG(maphist," page 0x%x, busy=%d", pp,pp->flags & PG_BUSY,0,0);
594 1.1 mrg /* now do the actual work */
595 1.1 mrg if (pp->flags & PG_BUSY)
596 1.1 mrg pp->flags |= PG_RELEASED; /* owner must check for this when done */
597 1.1 mrg else {
598 1.1 mrg pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
599 1.3 chs
600 1.3 chs /*
601 1.3 chs * if this kernel object is an aobj, free the swap slot.
602 1.3 chs */
603 1.3 chs if (is_aobj) {
604 1.3 chs int slot = uao_set_swslot(uobj, pp->offset / PAGE_SIZE, 0);
605 1.3 chs
606 1.3 chs if (slot)
607 1.3 chs uvm_swap_free(slot, 1);
608 1.3 chs }
609 1.3 chs
610 1.1 mrg uvm_lock_pageq();
611 1.1 mrg uvm_pagefree(pp);
612 1.1 mrg uvm_unlock_pageq();
613 1.1 mrg }
614 1.1 mrg /* done */
615 1.1 mrg
616 1.1 mrg }
617 1.1 mrg simple_unlock(&uobj->vmobjlock);
618 1.1 mrg return;
619 1.1 mrg }
620 1.1 mrg
621 1.1 mrg
622 1.1 mrg /*
623 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
624 1.1 mrg *
625 1.1 mrg * => we map wired memory into the specified map using the obj passed in
626 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
627 1.1 mrg * free VM space in the map... caller should be prepared to handle
628 1.1 mrg * this case.
629 1.1 mrg * => we return KVA of memory allocated
630 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
631 1.1 mrg * lock the map
632 1.1 mrg */
633 1.1 mrg
634 1.1 mrg vm_offset_t uvm_km_kmemalloc(map, obj, size, flags)
635 1.1 mrg
636 1.1 mrg vm_map_t map;
637 1.1 mrg struct uvm_object *obj;
638 1.1 mrg vm_size_t size;
639 1.1 mrg int flags;
640 1.1 mrg
641 1.1 mrg {
642 1.1 mrg vm_offset_t kva, loopva;
643 1.1 mrg vm_offset_t offset;
644 1.1 mrg struct vm_page *pg;
645 1.1 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
646 1.1 mrg
647 1.1 mrg
648 1.1 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
649 1.1 mrg map, obj, size, flags);
650 1.1 mrg #ifdef DIAGNOSTIC
651 1.1 mrg /* sanity check */
652 1.1 mrg if (vm_map_pmap(map) != pmap_kernel())
653 1.1 mrg panic("uvm_km_kmemalloc: invalid map");
654 1.1 mrg #endif
655 1.1 mrg
656 1.1 mrg /*
657 1.1 mrg * setup for call
658 1.1 mrg */
659 1.1 mrg
660 1.1 mrg size = round_page(size);
661 1.1 mrg kva = vm_map_min(map); /* hint */
662 1.1 mrg
663 1.1 mrg /*
664 1.1 mrg * allocate some virtual space
665 1.1 mrg */
666 1.1 mrg
667 1.1 mrg if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
668 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
669 1.1 mrg UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
670 1.1 mrg != KERN_SUCCESS) {
671 1.1 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
672 1.1 mrg return(0);
673 1.1 mrg }
674 1.1 mrg
675 1.1 mrg /*
676 1.1 mrg * if all we wanted was VA, return now
677 1.1 mrg */
678 1.1 mrg
679 1.1 mrg if (flags & UVM_KMF_VALLOC) {
680 1.1 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
681 1.1 mrg return(kva);
682 1.1 mrg }
683 1.1 mrg /*
684 1.1 mrg * recover object offset from virtual address
685 1.1 mrg */
686 1.1 mrg
687 1.7 chuck offset = kva - vm_map_min(kernel_map);
688 1.1 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
689 1.1 mrg
690 1.1 mrg /*
691 1.1 mrg * now allocate and map in the memory... note that we are the only ones
692 1.1 mrg * whom should ever get a handle on this area of VM.
693 1.1 mrg */
694 1.1 mrg
695 1.1 mrg loopva = kva;
696 1.1 mrg while (size) {
697 1.1 mrg simple_lock(&obj->vmobjlock);
698 1.1 mrg pg = uvm_pagealloc(obj, offset, NULL);
699 1.1 mrg if (pg) {
700 1.1 mrg pg->flags &= ~PG_BUSY; /* new page */
701 1.1 mrg UVM_PAGE_OWN(pg, NULL);
702 1.3 chs
703 1.3 chs pg->wire_count = 1;
704 1.3 chs uvmexp.wired++;
705 1.1 mrg }
706 1.1 mrg simple_unlock(&obj->vmobjlock);
707 1.1 mrg
708 1.1 mrg /*
709 1.1 mrg * out of memory?
710 1.1 mrg */
711 1.1 mrg
712 1.1 mrg if (pg == NULL) {
713 1.1 mrg if (flags & UVM_KMF_NOWAIT) {
714 1.1 mrg uvm_unmap(map, kva, kva + size, 0); /* free everything! */
715 1.1 mrg return(0);
716 1.1 mrg } else {
717 1.1 mrg uvm_wait("km_getwait2"); /* sleep here */
718 1.1 mrg continue;
719 1.1 mrg }
720 1.1 mrg }
721 1.1 mrg
722 1.1 mrg /*
723 1.1 mrg * map it in: note that we call pmap_enter with the map and object
724 1.1 mrg * unlocked in case we are kmem_map/kmem_object (because if pmap_enter
725 1.1 mrg * wants to allocate out of kmem_object it will need to lock it itself!)
726 1.1 mrg */
727 1.1 mrg #if defined(PMAP_NEW)
728 1.1 mrg pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
729 1.1 mrg #else
730 1.1 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL, TRUE);
731 1.1 mrg #endif
732 1.1 mrg loopva += PAGE_SIZE;
733 1.1 mrg offset += PAGE_SIZE;
734 1.1 mrg size -= PAGE_SIZE;
735 1.1 mrg }
736 1.1 mrg
737 1.1 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
738 1.1 mrg return(kva);
739 1.1 mrg }
740 1.1 mrg
741 1.1 mrg /*
742 1.1 mrg * uvm_km_free: free an area of kernel memory
743 1.1 mrg */
744 1.1 mrg
745 1.1 mrg void uvm_km_free(map, addr, size)
746 1.1 mrg
747 1.1 mrg vm_map_t map;
748 1.1 mrg vm_offset_t addr;
749 1.1 mrg vm_size_t size;
750 1.1 mrg
751 1.1 mrg {
752 1.1 mrg uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
753 1.1 mrg }
754 1.1 mrg
755 1.1 mrg /*
756 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
757 1.1 mrg * anyone waiting for vm space.
758 1.1 mrg *
759 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
760 1.1 mrg */
761 1.1 mrg
762 1.1 mrg void uvm_km_free_wakeup(map, addr, size)
763 1.1 mrg
764 1.1 mrg vm_map_t map;
765 1.1 mrg vm_offset_t addr;
766 1.1 mrg vm_size_t size;
767 1.1 mrg
768 1.1 mrg {
769 1.1 mrg vm_map_entry_t dead_entries;
770 1.1 mrg
771 1.1 mrg vm_map_lock(map);
772 1.1 mrg (void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
773 1.1 mrg &dead_entries);
774 1.1 mrg thread_wakeup(map);
775 1.1 mrg vm_map_unlock(map);
776 1.1 mrg
777 1.1 mrg if (dead_entries != NULL)
778 1.1 mrg uvm_unmap_detach(dead_entries, 0);
779 1.1 mrg }
780 1.1 mrg
781 1.1 mrg /*
782 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
783 1.1 mrg *
784 1.1 mrg * => we can sleep if needed
785 1.1 mrg */
786 1.1 mrg
787 1.1 mrg vm_offset_t uvm_km_alloc1(map, size, zeroit)
788 1.1 mrg
789 1.1 mrg vm_map_t map;
790 1.1 mrg vm_size_t size;
791 1.1 mrg boolean_t zeroit;
792 1.1 mrg
793 1.1 mrg {
794 1.1 mrg vm_offset_t kva, loopva, offset;
795 1.1 mrg struct vm_page *pg;
796 1.1 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
797 1.1 mrg
798 1.1 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
799 1.1 mrg
800 1.1 mrg #ifdef DIAGNOSTIC
801 1.1 mrg if (vm_map_pmap(map) != pmap_kernel())
802 1.1 mrg panic("uvm_km_alloc1");
803 1.1 mrg #endif
804 1.1 mrg
805 1.1 mrg size = round_page(size);
806 1.1 mrg kva = vm_map_min(map); /* hint */
807 1.1 mrg
808 1.1 mrg /*
809 1.1 mrg * allocate some virtual space
810 1.1 mrg */
811 1.1 mrg
812 1.1 mrg if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
813 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
814 1.1 mrg UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
815 1.1 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
816 1.1 mrg return(0);
817 1.1 mrg }
818 1.1 mrg
819 1.1 mrg /*
820 1.1 mrg * recover object offset from virtual address
821 1.1 mrg */
822 1.1 mrg
823 1.7 chuck offset = kva - vm_map_min(kernel_map);
824 1.1 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
825 1.1 mrg
826 1.1 mrg /*
827 1.1 mrg * now allocate the memory. we must be careful about released pages.
828 1.1 mrg */
829 1.1 mrg
830 1.1 mrg loopva = kva;
831 1.1 mrg while (size) {
832 1.1 mrg simple_lock(&uvm.kernel_object->vmobjlock);
833 1.1 mrg pg = uvm_pagelookup(uvm.kernel_object, offset);
834 1.1 mrg
835 1.1 mrg /* if we found a page in an unallocated region, it must be released */
836 1.1 mrg if (pg) {
837 1.1 mrg if ((pg->flags & PG_RELEASED) == 0)
838 1.1 mrg panic("uvm_km_alloc1: non-released page");
839 1.1 mrg pg->flags |= PG_WANTED;
840 1.1 mrg UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,0,"km_alloc",0);
841 1.1 mrg continue; /* retry */
842 1.1 mrg }
843 1.1 mrg
844 1.1 mrg /* allocate ram */
845 1.1 mrg pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
846 1.1 mrg if (pg) {
847 1.1 mrg pg->flags &= ~PG_BUSY; /* new page */
848 1.1 mrg UVM_PAGE_OWN(pg, NULL);
849 1.1 mrg }
850 1.1 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
851 1.1 mrg if (pg == NULL) {
852 1.1 mrg uvm_wait("km_alloc1w"); /* wait for memory */
853 1.1 mrg continue;
854 1.1 mrg }
855 1.1 mrg
856 1.1 mrg /* map it in */
857 1.1 mrg #if defined(PMAP_NEW)
858 1.1 mrg pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
859 1.1 mrg #else
860 1.1 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL, TRUE);
861 1.1 mrg #endif
862 1.1 mrg loopva += PAGE_SIZE;
863 1.1 mrg offset += PAGE_SIZE;
864 1.1 mrg size -= PAGE_SIZE;
865 1.1 mrg }
866 1.1 mrg
867 1.1 mrg /*
868 1.1 mrg * zero on request (note that "size" is now zero due to the above loop
869 1.1 mrg * so we need to subtract kva from loopva to reconstruct the size).
870 1.1 mrg */
871 1.1 mrg
872 1.1 mrg if (zeroit)
873 1.1 mrg bzero((caddr_t)kva, loopva - kva);
874 1.1 mrg
875 1.1 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
876 1.1 mrg return(kva);
877 1.1 mrg }
878 1.1 mrg
879 1.1 mrg /*
880 1.1 mrg * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
881 1.1 mrg *
882 1.1 mrg * => memory is not allocated until fault time
883 1.1 mrg */
884 1.1 mrg
885 1.1 mrg vm_offset_t uvm_km_valloc(map, size)
886 1.1 mrg
887 1.1 mrg vm_map_t map;
888 1.1 mrg vm_size_t size;
889 1.1 mrg
890 1.1 mrg {
891 1.1 mrg vm_offset_t kva;
892 1.1 mrg UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
893 1.1 mrg
894 1.1 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
895 1.1 mrg
896 1.1 mrg #ifdef DIAGNOSTIC
897 1.1 mrg if (vm_map_pmap(map) != pmap_kernel())
898 1.1 mrg panic("uvm_km_valloc");
899 1.1 mrg #endif
900 1.1 mrg
901 1.1 mrg size = round_page(size);
902 1.1 mrg kva = vm_map_min(map); /* hint */
903 1.1 mrg
904 1.1 mrg /*
905 1.1 mrg * allocate some virtual space. will be demand filled by kernel_object.
906 1.1 mrg */
907 1.1 mrg
908 1.1 mrg if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
909 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
910 1.1 mrg UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
911 1.1 mrg UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
912 1.1 mrg return(0);
913 1.1 mrg }
914 1.1 mrg
915 1.1 mrg UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
916 1.1 mrg return(kva);
917 1.1 mrg }
918 1.1 mrg
919 1.1 mrg /*
920 1.1 mrg * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
921 1.1 mrg *
922 1.1 mrg * => memory is not allocated until fault time
923 1.1 mrg * => if no room in map, wait for space to free, unless requested size
924 1.1 mrg * is larger than map (in which case we return 0)
925 1.1 mrg */
926 1.1 mrg
927 1.1 mrg vm_offset_t uvm_km_valloc_wait(map, size)
928 1.1 mrg
929 1.1 mrg vm_map_t map;
930 1.1 mrg vm_size_t size;
931 1.1 mrg
932 1.1 mrg {
933 1.1 mrg vm_offset_t kva;
934 1.1 mrg UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
935 1.1 mrg
936 1.1 mrg UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
937 1.1 mrg
938 1.1 mrg #ifdef DIAGNOSTIC
939 1.1 mrg if (vm_map_pmap(map) != pmap_kernel())
940 1.1 mrg panic("uvm_km_valloc_wait");
941 1.1 mrg #endif
942 1.1 mrg
943 1.1 mrg size = round_page(size);
944 1.1 mrg if (size > vm_map_max(map) - vm_map_min(map))
945 1.1 mrg return(0);
946 1.1 mrg
947 1.1 mrg while (1) {
948 1.1 mrg kva = vm_map_min(map); /* hint */
949 1.1 mrg
950 1.1 mrg /*
951 1.1 mrg * allocate some virtual space. will be demand filled by kernel_object.
952 1.1 mrg */
953 1.1 mrg
954 1.1 mrg if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
955 1.1 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
956 1.1 mrg UVM_ADV_RANDOM, 0)) == KERN_SUCCESS){
957 1.1 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
958 1.1 mrg return(kva);
959 1.1 mrg }
960 1.1 mrg
961 1.1 mrg /*
962 1.1 mrg * failed. sleep for a while (on map)
963 1.1 mrg */
964 1.1 mrg
965 1.1 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
966 1.1 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
967 1.1 mrg }
968 1.1 mrg /*NOTREACHED*/
969 1.1 mrg }
970