uvm_km.c revision 1.70 1 1.70 yamt /* $NetBSD: uvm_km.c,v 1.70 2005/01/01 21:00:06 yamt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
106 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 1.7 chuck *
108 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
109 1.7 chuck * to this is for memory that belongs to submaps that must be protected
110 1.52 chs * by splvm(). pages in these submaps are not assigned to an object.
111 1.7 chuck *
112 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
113 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
114 1.47 chs * large chunks of a kernel object's space go unused either because
115 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
116 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
117 1.7 chuck * objects, the only part of the object that can ever be populated is the
118 1.7 chuck * offsets that are managed by the submap.
119 1.7 chuck *
120 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
121 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 1.7 chuck * example:
123 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
127 1.47 chs * mapped at 0xf8235000.
128 1.7 chuck *
129 1.7 chuck * kernel object have one other special property: when the kernel virtual
130 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
131 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
132 1.7 chuck * this has to be done because there is no backing store for kernel pages
133 1.7 chuck * and no need to save them after they are no longer referenced.
134 1.7 chuck */
135 1.55 lukem
136 1.55 lukem #include <sys/cdefs.h>
137 1.70 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.70 2005/01/01 21:00:06 yamt Exp $");
138 1.55 lukem
139 1.55 lukem #include "opt_uvmhist.h"
140 1.7 chuck
141 1.1 mrg #include <sys/param.h>
142 1.1 mrg #include <sys/systm.h>
143 1.1 mrg #include <sys/proc.h>
144 1.1 mrg
145 1.1 mrg #include <uvm/uvm.h>
146 1.1 mrg
147 1.1 mrg /*
148 1.1 mrg * global data structures
149 1.1 mrg */
150 1.1 mrg
151 1.49 chs struct vm_map *kernel_map = NULL;
152 1.1 mrg
153 1.1 mrg /*
154 1.1 mrg * local data structues
155 1.1 mrg */
156 1.1 mrg
157 1.1 mrg static struct vm_map kernel_map_store;
158 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
159 1.1 mrg
160 1.1 mrg /*
161 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
162 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
163 1.1 mrg *
164 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
165 1.62 thorpej * we assume that [min -> start] has already been allocated and that
166 1.62 thorpej * "end" is the end.
167 1.1 mrg */
168 1.1 mrg
169 1.8 mrg void
170 1.62 thorpej uvm_km_init(start, end)
171 1.62 thorpej vaddr_t start, end;
172 1.1 mrg {
173 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
174 1.27 thorpej
175 1.27 thorpej /*
176 1.27 thorpej * next, init kernel memory objects.
177 1.8 mrg */
178 1.1 mrg
179 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
180 1.34 chs uao_init();
181 1.62 thorpej uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
182 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
183 1.1 mrg
184 1.24 thorpej /*
185 1.56 thorpej * init the map and reserve any space that might already
186 1.56 thorpej * have been allocated kernel space before installing.
187 1.8 mrg */
188 1.1 mrg
189 1.62 thorpej uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
190 1.8 mrg kernel_map_store.pmap = pmap_kernel();
191 1.70 yamt if (start != base) {
192 1.70 yamt int error;
193 1.70 yamt struct uvm_map_args args;
194 1.70 yamt
195 1.70 yamt error = uvm_map_prepare(&kernel_map_store, base, start - base,
196 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
197 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
198 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
199 1.70 yamt if (!error) {
200 1.70 yamt kernel_first_mapent_store.flags =
201 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
202 1.70 yamt error = uvm_map_enter(&kernel_map_store, &args,
203 1.70 yamt &kernel_first_mapent_store);
204 1.70 yamt }
205 1.70 yamt
206 1.70 yamt if (error)
207 1.70 yamt panic(
208 1.70 yamt "uvm_km_init: could not reserve space for kernel");
209 1.70 yamt }
210 1.47 chs
211 1.8 mrg /*
212 1.8 mrg * install!
213 1.8 mrg */
214 1.8 mrg
215 1.8 mrg kernel_map = &kernel_map_store;
216 1.1 mrg }
217 1.1 mrg
218 1.1 mrg /*
219 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
220 1.1 mrg * is allocated all references to that area of VM must go through it. this
221 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
222 1.1 mrg *
223 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
224 1.5 thorpej * by the submap must start
225 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
226 1.1 mrg * alloc a new map
227 1.1 mrg */
228 1.8 mrg struct vm_map *
229 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
230 1.8 mrg struct vm_map *map;
231 1.52 chs vaddr_t *min, *max; /* IN/OUT, OUT */
232 1.14 eeh vsize_t size;
233 1.25 thorpej int flags;
234 1.8 mrg boolean_t fixed;
235 1.8 mrg struct vm_map *submap;
236 1.8 mrg {
237 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
238 1.1 mrg
239 1.8 mrg size = round_page(size); /* round up to pagesize */
240 1.1 mrg
241 1.8 mrg /*
242 1.8 mrg * first allocate a blank spot in the parent map
243 1.8 mrg */
244 1.8 mrg
245 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
246 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
247 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
248 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
249 1.8 mrg }
250 1.8 mrg
251 1.8 mrg /*
252 1.8 mrg * set VM bounds (min is filled in by uvm_map)
253 1.8 mrg */
254 1.1 mrg
255 1.8 mrg *max = *min + size;
256 1.5 thorpej
257 1.8 mrg /*
258 1.8 mrg * add references to pmap and create or init the submap
259 1.8 mrg */
260 1.1 mrg
261 1.8 mrg pmap_reference(vm_map_pmap(map));
262 1.8 mrg if (submap == NULL) {
263 1.25 thorpej submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
264 1.8 mrg if (submap == NULL)
265 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
266 1.8 mrg } else {
267 1.25 thorpej uvm_map_setup(submap, *min, *max, flags);
268 1.8 mrg submap->pmap = vm_map_pmap(map);
269 1.8 mrg }
270 1.1 mrg
271 1.8 mrg /*
272 1.8 mrg * now let uvm_map_submap plug in it...
273 1.8 mrg */
274 1.1 mrg
275 1.43 chs if (uvm_map_submap(map, *min, *max, submap) != 0)
276 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
277 1.1 mrg
278 1.8 mrg return(submap);
279 1.1 mrg }
280 1.1 mrg
281 1.1 mrg /*
282 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
283 1.1 mrg *
284 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
285 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
286 1.1 mrg */
287 1.1 mrg
288 1.8 mrg void
289 1.8 mrg uvm_km_pgremove(uobj, start, end)
290 1.8 mrg struct uvm_object *uobj;
291 1.14 eeh vaddr_t start, end;
292 1.1 mrg {
293 1.53 chs struct vm_page *pg;
294 1.52 chs voff_t curoff, nextoff;
295 1.53 chs int swpgonlydelta = 0;
296 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
297 1.1 mrg
298 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
299 1.40 chs simple_lock(&uobj->vmobjlock);
300 1.3 chs
301 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
302 1.52 chs nextoff = curoff + PAGE_SIZE;
303 1.52 chs pg = uvm_pagelookup(uobj, curoff);
304 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
305 1.52 chs pg->flags |= PG_WANTED;
306 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
307 1.52 chs "km_pgrm", 0);
308 1.52 chs simple_lock(&uobj->vmobjlock);
309 1.52 chs nextoff = curoff;
310 1.8 mrg continue;
311 1.52 chs }
312 1.8 mrg
313 1.52 chs /*
314 1.52 chs * free the swap slot, then the page.
315 1.52 chs */
316 1.8 mrg
317 1.53 chs if (pg == NULL &&
318 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
319 1.53 chs swpgonlydelta++;
320 1.53 chs }
321 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
322 1.53 chs if (pg != NULL) {
323 1.53 chs uvm_lock_pageq();
324 1.53 chs uvm_pagefree(pg);
325 1.53 chs uvm_unlock_pageq();
326 1.53 chs }
327 1.8 mrg }
328 1.8 mrg simple_unlock(&uobj->vmobjlock);
329 1.8 mrg
330 1.54 chs if (swpgonlydelta > 0) {
331 1.54 chs simple_lock(&uvm.swap_data_lock);
332 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
333 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
334 1.54 chs simple_unlock(&uvm.swap_data_lock);
335 1.54 chs }
336 1.24 thorpej }
337 1.24 thorpej
338 1.24 thorpej
339 1.24 thorpej /*
340 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
341 1.52 chs * maps
342 1.24 thorpej *
343 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
344 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
345 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
346 1.52 chs * be on the active or inactive queues (because they have no object).
347 1.24 thorpej */
348 1.24 thorpej
349 1.24 thorpej void
350 1.52 chs uvm_km_pgremove_intrsafe(start, end)
351 1.24 thorpej vaddr_t start, end;
352 1.24 thorpej {
353 1.52 chs struct vm_page *pg;
354 1.52 chs paddr_t pa;
355 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
356 1.24 thorpej
357 1.52 chs for (; start < end; start += PAGE_SIZE) {
358 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
359 1.24 thorpej continue;
360 1.40 chs }
361 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
362 1.52 chs KASSERT(pg);
363 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
364 1.52 chs uvm_pagefree(pg);
365 1.24 thorpej }
366 1.1 mrg }
367 1.1 mrg
368 1.1 mrg
369 1.1 mrg /*
370 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
371 1.1 mrg *
372 1.1 mrg * => we map wired memory into the specified map using the obj passed in
373 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
374 1.1 mrg * free VM space in the map... caller should be prepared to handle
375 1.1 mrg * this case.
376 1.1 mrg * => we return KVA of memory allocated
377 1.66 pk * => align,prefer - passed on to uvm_map()
378 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
379 1.1 mrg * lock the map
380 1.1 mrg */
381 1.1 mrg
382 1.14 eeh vaddr_t
383 1.66 pk uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
384 1.49 chs struct vm_map *map;
385 1.8 mrg struct uvm_object *obj;
386 1.14 eeh vsize_t size;
387 1.66 pk vsize_t align;
388 1.66 pk voff_t prefer;
389 1.8 mrg int flags;
390 1.1 mrg {
391 1.14 eeh vaddr_t kva, loopva;
392 1.14 eeh vaddr_t offset;
393 1.44 thorpej vsize_t loopsize;
394 1.8 mrg struct vm_page *pg;
395 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
396 1.1 mrg
397 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
398 1.40 chs map, obj, size, flags);
399 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
400 1.1 mrg
401 1.8 mrg /*
402 1.8 mrg * setup for call
403 1.8 mrg */
404 1.8 mrg
405 1.8 mrg size = round_page(size);
406 1.8 mrg kva = vm_map_min(map); /* hint */
407 1.1 mrg
408 1.8 mrg /*
409 1.8 mrg * allocate some virtual space
410 1.8 mrg */
411 1.8 mrg
412 1.66 pk if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
413 1.66 pk UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
414 1.66 pk UVM_ADV_RANDOM,
415 1.70 yamt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
416 1.70 yamt | UVM_FLAG_QUANTUM))
417 1.43 chs != 0)) {
418 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
419 1.8 mrg return(0);
420 1.8 mrg }
421 1.8 mrg
422 1.8 mrg /*
423 1.8 mrg * if all we wanted was VA, return now
424 1.8 mrg */
425 1.8 mrg
426 1.8 mrg if (flags & UVM_KMF_VALLOC) {
427 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
428 1.8 mrg return(kva);
429 1.8 mrg }
430 1.40 chs
431 1.8 mrg /*
432 1.8 mrg * recover object offset from virtual address
433 1.8 mrg */
434 1.8 mrg
435 1.8 mrg offset = kva - vm_map_min(kernel_map);
436 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
437 1.8 mrg
438 1.8 mrg /*
439 1.8 mrg * now allocate and map in the memory... note that we are the only ones
440 1.8 mrg * whom should ever get a handle on this area of VM.
441 1.8 mrg */
442 1.8 mrg
443 1.8 mrg loopva = kva;
444 1.44 thorpej loopsize = size;
445 1.44 thorpej while (loopsize) {
446 1.52 chs if (obj) {
447 1.52 chs simple_lock(&obj->vmobjlock);
448 1.52 chs }
449 1.52 chs pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
450 1.45 thorpej if (__predict_true(pg != NULL)) {
451 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
452 1.8 mrg UVM_PAGE_OWN(pg, NULL);
453 1.8 mrg }
454 1.52 chs if (obj) {
455 1.52 chs simple_unlock(&obj->vmobjlock);
456 1.52 chs }
457 1.47 chs
458 1.8 mrg /*
459 1.8 mrg * out of memory?
460 1.8 mrg */
461 1.8 mrg
462 1.35 thorpej if (__predict_false(pg == NULL)) {
463 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
464 1.63 pk ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
465 1.8 mrg /* free everything! */
466 1.17 chuck uvm_unmap(map, kva, kva + size);
467 1.58 chs return (0);
468 1.8 mrg } else {
469 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
470 1.8 mrg continue;
471 1.8 mrg }
472 1.8 mrg }
473 1.47 chs
474 1.8 mrg /*
475 1.52 chs * map it in
476 1.8 mrg */
477 1.40 chs
478 1.52 chs if (obj == NULL) {
479 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
480 1.57 thorpej VM_PROT_READ | VM_PROT_WRITE);
481 1.24 thorpej } else {
482 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
483 1.33 thorpej UVM_PROT_ALL,
484 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
485 1.24 thorpej }
486 1.8 mrg loopva += PAGE_SIZE;
487 1.8 mrg offset += PAGE_SIZE;
488 1.44 thorpej loopsize -= PAGE_SIZE;
489 1.8 mrg }
490 1.69 junyoung
491 1.51 chris pmap_update(pmap_kernel());
492 1.69 junyoung
493 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
494 1.8 mrg return(kva);
495 1.1 mrg }
496 1.1 mrg
497 1.1 mrg /*
498 1.1 mrg * uvm_km_free: free an area of kernel memory
499 1.1 mrg */
500 1.1 mrg
501 1.8 mrg void
502 1.8 mrg uvm_km_free(map, addr, size)
503 1.49 chs struct vm_map *map;
504 1.14 eeh vaddr_t addr;
505 1.14 eeh vsize_t size;
506 1.8 mrg {
507 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
508 1.1 mrg }
509 1.1 mrg
510 1.1 mrg /*
511 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
512 1.1 mrg * anyone waiting for vm space.
513 1.1 mrg *
514 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
515 1.1 mrg */
516 1.1 mrg
517 1.8 mrg void
518 1.8 mrg uvm_km_free_wakeup(map, addr, size)
519 1.49 chs struct vm_map *map;
520 1.14 eeh vaddr_t addr;
521 1.14 eeh vsize_t size;
522 1.1 mrg {
523 1.49 chs struct vm_map_entry *dead_entries;
524 1.1 mrg
525 1.8 mrg vm_map_lock(map);
526 1.47 chs uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
527 1.70 yamt &dead_entries, NULL);
528 1.31 thorpej wakeup(map);
529 1.8 mrg vm_map_unlock(map);
530 1.8 mrg if (dead_entries != NULL)
531 1.8 mrg uvm_unmap_detach(dead_entries, 0);
532 1.1 mrg }
533 1.1 mrg
534 1.1 mrg /*
535 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
536 1.1 mrg *
537 1.1 mrg * => we can sleep if needed
538 1.1 mrg */
539 1.1 mrg
540 1.14 eeh vaddr_t
541 1.8 mrg uvm_km_alloc1(map, size, zeroit)
542 1.49 chs struct vm_map *map;
543 1.14 eeh vsize_t size;
544 1.8 mrg boolean_t zeroit;
545 1.1 mrg {
546 1.14 eeh vaddr_t kva, loopva, offset;
547 1.8 mrg struct vm_page *pg;
548 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
549 1.1 mrg
550 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
551 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
552 1.1 mrg
553 1.8 mrg size = round_page(size);
554 1.8 mrg kva = vm_map_min(map); /* hint */
555 1.1 mrg
556 1.8 mrg /*
557 1.8 mrg * allocate some virtual space
558 1.8 mrg */
559 1.1 mrg
560 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
561 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
562 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
563 1.70 yamt UVM_FLAG_QUANTUM)) != 0)) {
564 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
565 1.8 mrg return(0);
566 1.8 mrg }
567 1.8 mrg
568 1.8 mrg /*
569 1.8 mrg * recover object offset from virtual address
570 1.8 mrg */
571 1.8 mrg
572 1.8 mrg offset = kva - vm_map_min(kernel_map);
573 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
574 1.8 mrg
575 1.8 mrg /*
576 1.52 chs * now allocate the memory.
577 1.8 mrg */
578 1.8 mrg
579 1.8 mrg loopva = kva;
580 1.8 mrg while (size) {
581 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
582 1.52 chs KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
583 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
584 1.8 mrg if (pg) {
585 1.52 chs pg->flags &= ~PG_BUSY;
586 1.8 mrg UVM_PAGE_OWN(pg, NULL);
587 1.8 mrg }
588 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
589 1.52 chs if (pg == NULL) {
590 1.52 chs uvm_wait("km_alloc1w");
591 1.8 mrg continue;
592 1.8 mrg }
593 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
594 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
595 1.8 mrg loopva += PAGE_SIZE;
596 1.8 mrg offset += PAGE_SIZE;
597 1.8 mrg size -= PAGE_SIZE;
598 1.8 mrg }
599 1.51 chris pmap_update(map->pmap);
600 1.46 thorpej
601 1.8 mrg /*
602 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
603 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
604 1.8 mrg */
605 1.1 mrg
606 1.8 mrg if (zeroit)
607 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
608 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
609 1.8 mrg return(kva);
610 1.1 mrg }
611 1.1 mrg
612 1.1 mrg /*
613 1.65 pk * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
614 1.1 mrg *
615 1.1 mrg * => memory is not allocated until fault time
616 1.65 pk * => the align, prefer and flags parameters are passed on to uvm_map().
617 1.65 pk *
618 1.65 pk * Note: this function is also the backend for these macros:
619 1.65 pk * uvm_km_valloc
620 1.65 pk * uvm_km_valloc_wait
621 1.65 pk * uvm_km_valloc_prefer
622 1.65 pk * uvm_km_valloc_prefer_wait
623 1.65 pk * uvm_km_valloc_align
624 1.1 mrg */
625 1.1 mrg
626 1.14 eeh vaddr_t
627 1.65 pk uvm_km_valloc1(map, size, align, prefer, flags)
628 1.49 chs struct vm_map *map;
629 1.41 nisimura vsize_t size;
630 1.41 nisimura vsize_t align;
631 1.65 pk voff_t prefer;
632 1.65 pk uvm_flag_t flags;
633 1.41 nisimura {
634 1.14 eeh vaddr_t kva;
635 1.65 pk UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
636 1.65 pk
637 1.65 pk UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
638 1.65 pk map, size, align, prefer);
639 1.1 mrg
640 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
641 1.1 mrg
642 1.8 mrg size = round_page(size);
643 1.8 mrg /*
644 1.65 pk * Check if requested size is larger than the map, in which
645 1.65 pk * case we can't succeed.
646 1.8 mrg */
647 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
648 1.65 pk return (0);
649 1.8 mrg
650 1.70 yamt flags |= UVM_FLAG_QUANTUM;
651 1.52 chs for (;;) {
652 1.8 mrg kva = vm_map_min(map); /* hint */
653 1.8 mrg
654 1.8 mrg /*
655 1.8 mrg * allocate some virtual space. will be demand filled
656 1.8 mrg * by kernel_object.
657 1.8 mrg */
658 1.8 mrg
659 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
660 1.65 pk prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
661 1.65 pk UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
662 1.43 chs == 0)) {
663 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
664 1.65 pk return (kva);
665 1.8 mrg }
666 1.8 mrg
667 1.8 mrg /*
668 1.8 mrg * failed. sleep for a while (on map)
669 1.8 mrg */
670 1.65 pk if ((flags & UVM_KMF_NOWAIT) != 0)
671 1.65 pk return (0);
672 1.8 mrg
673 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
674 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
675 1.8 mrg }
676 1.8 mrg /*NOTREACHED*/
677 1.38 jeffs }
678 1.38 jeffs
679 1.66 pk /* Function definitions for binary compatibility */
680 1.66 pk vaddr_t
681 1.66 pk uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
682 1.66 pk vsize_t sz, int flags)
683 1.66 pk {
684 1.66 pk return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
685 1.66 pk }
686 1.66 pk
687 1.66 pk vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
688 1.66 pk {
689 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
690 1.66 pk }
691 1.66 pk
692 1.66 pk vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
693 1.66 pk {
694 1.66 pk return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
695 1.66 pk }
696 1.66 pk
697 1.66 pk vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
698 1.66 pk {
699 1.66 pk return uvm_km_valloc1(map, sz, 0, prefer, 0);
700 1.66 pk }
701 1.66 pk
702 1.66 pk vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
703 1.66 pk {
704 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
705 1.66 pk }
706 1.66 pk
707 1.10 thorpej /* Sanity; must specify both or none. */
708 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
709 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
710 1.10 thorpej #error Must specify MAP and UNMAP together.
711 1.10 thorpej #endif
712 1.10 thorpej
713 1.10 thorpej /*
714 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
715 1.10 thorpej *
716 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
717 1.10 thorpej */
718 1.10 thorpej
719 1.11 thorpej /* ARGSUSED */
720 1.14 eeh vaddr_t
721 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
722 1.49 chs struct vm_map *map;
723 1.12 thorpej struct uvm_object *obj;
724 1.15 thorpej boolean_t waitok;
725 1.10 thorpej {
726 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
727 1.10 thorpej struct vm_page *pg;
728 1.14 eeh vaddr_t va;
729 1.10 thorpej
730 1.15 thorpej again:
731 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
732 1.35 thorpej if (__predict_false(pg == NULL)) {
733 1.15 thorpej if (waitok) {
734 1.15 thorpej uvm_wait("plpg");
735 1.15 thorpej goto again;
736 1.15 thorpej } else
737 1.15 thorpej return (0);
738 1.15 thorpej }
739 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
740 1.35 thorpej if (__predict_false(va == 0))
741 1.10 thorpej uvm_pagefree(pg);
742 1.10 thorpej return (va);
743 1.10 thorpej #else
744 1.14 eeh vaddr_t va;
745 1.10 thorpej int s;
746 1.10 thorpej
747 1.16 thorpej /*
748 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
749 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
750 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
751 1.16 thorpej * accessed in interrupt context).
752 1.16 thorpej *
753 1.16 thorpej * XXX We may want to consider changing the interface to this
754 1.16 thorpej * XXX function.
755 1.16 thorpej */
756 1.16 thorpej
757 1.42 thorpej s = splvm();
758 1.60 bouyer va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
759 1.60 bouyer waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
760 1.10 thorpej splx(s);
761 1.10 thorpej return (va);
762 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
763 1.10 thorpej }
764 1.10 thorpej
765 1.10 thorpej /*
766 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
767 1.10 thorpej *
768 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
769 1.10 thorpej */
770 1.10 thorpej
771 1.11 thorpej /* ARGSUSED */
772 1.10 thorpej void
773 1.11 thorpej uvm_km_free_poolpage1(map, addr)
774 1.49 chs struct vm_map *map;
775 1.14 eeh vaddr_t addr;
776 1.10 thorpej {
777 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
778 1.14 eeh paddr_t pa;
779 1.10 thorpej
780 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
781 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
782 1.10 thorpej #else
783 1.10 thorpej int s;
784 1.16 thorpej
785 1.16 thorpej /*
786 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
787 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
788 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
789 1.16 thorpej * accessed in interrupt context).
790 1.16 thorpej *
791 1.16 thorpej * XXX We may want to consider changing the interface to this
792 1.16 thorpej * XXX function.
793 1.16 thorpej */
794 1.10 thorpej
795 1.42 thorpej s = splvm();
796 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
797 1.10 thorpej splx(s);
798 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
799 1.1 mrg }
800