uvm_km.c revision 1.71 1 1.71 yamt /* $NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
106 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 1.7 chuck *
108 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
109 1.7 chuck * to this is for memory that belongs to submaps that must be protected
110 1.52 chs * by splvm(). pages in these submaps are not assigned to an object.
111 1.7 chuck *
112 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
113 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
114 1.47 chs * large chunks of a kernel object's space go unused either because
115 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
116 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
117 1.7 chuck * objects, the only part of the object that can ever be populated is the
118 1.7 chuck * offsets that are managed by the submap.
119 1.7 chuck *
120 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
121 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 1.7 chuck * example:
123 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
127 1.47 chs * mapped at 0xf8235000.
128 1.7 chuck *
129 1.7 chuck * kernel object have one other special property: when the kernel virtual
130 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
131 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
132 1.7 chuck * this has to be done because there is no backing store for kernel pages
133 1.7 chuck * and no need to save them after they are no longer referenced.
134 1.7 chuck */
135 1.55 lukem
136 1.55 lukem #include <sys/cdefs.h>
137 1.71 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.71 2005/01/01 21:02:13 yamt Exp $");
138 1.55 lukem
139 1.55 lukem #include "opt_uvmhist.h"
140 1.7 chuck
141 1.1 mrg #include <sys/param.h>
142 1.71 yamt #include <sys/malloc.h>
143 1.1 mrg #include <sys/systm.h>
144 1.1 mrg #include <sys/proc.h>
145 1.1 mrg
146 1.1 mrg #include <uvm/uvm.h>
147 1.1 mrg
148 1.1 mrg /*
149 1.1 mrg * global data structures
150 1.1 mrg */
151 1.1 mrg
152 1.49 chs struct vm_map *kernel_map = NULL;
153 1.1 mrg
154 1.1 mrg /*
155 1.1 mrg * local data structues
156 1.1 mrg */
157 1.1 mrg
158 1.71 yamt static struct vm_map_kernel kernel_map_store;
159 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
160 1.1 mrg
161 1.1 mrg /*
162 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
163 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
164 1.1 mrg *
165 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
166 1.62 thorpej * we assume that [min -> start] has already been allocated and that
167 1.62 thorpej * "end" is the end.
168 1.1 mrg */
169 1.1 mrg
170 1.8 mrg void
171 1.62 thorpej uvm_km_init(start, end)
172 1.62 thorpej vaddr_t start, end;
173 1.1 mrg {
174 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
175 1.27 thorpej
176 1.27 thorpej /*
177 1.27 thorpej * next, init kernel memory objects.
178 1.8 mrg */
179 1.1 mrg
180 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
181 1.34 chs uao_init();
182 1.62 thorpej uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
183 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
184 1.1 mrg
185 1.24 thorpej /*
186 1.56 thorpej * init the map and reserve any space that might already
187 1.56 thorpej * have been allocated kernel space before installing.
188 1.8 mrg */
189 1.1 mrg
190 1.71 yamt uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
191 1.71 yamt kernel_map_store.vmk_map.pmap = pmap_kernel();
192 1.70 yamt if (start != base) {
193 1.70 yamt int error;
194 1.70 yamt struct uvm_map_args args;
195 1.70 yamt
196 1.71 yamt error = uvm_map_prepare(&kernel_map_store.vmk_map,
197 1.71 yamt base, start - base,
198 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
199 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
200 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
201 1.70 yamt if (!error) {
202 1.70 yamt kernel_first_mapent_store.flags =
203 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
204 1.71 yamt error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
205 1.70 yamt &kernel_first_mapent_store);
206 1.70 yamt }
207 1.70 yamt
208 1.70 yamt if (error)
209 1.70 yamt panic(
210 1.70 yamt "uvm_km_init: could not reserve space for kernel");
211 1.70 yamt }
212 1.47 chs
213 1.8 mrg /*
214 1.8 mrg * install!
215 1.8 mrg */
216 1.8 mrg
217 1.71 yamt kernel_map = &kernel_map_store.vmk_map;
218 1.1 mrg }
219 1.1 mrg
220 1.1 mrg /*
221 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
222 1.1 mrg * is allocated all references to that area of VM must go through it. this
223 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
224 1.1 mrg *
225 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
226 1.5 thorpej * by the submap must start
227 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
228 1.1 mrg * alloc a new map
229 1.1 mrg */
230 1.8 mrg struct vm_map *
231 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
232 1.8 mrg struct vm_map *map;
233 1.52 chs vaddr_t *min, *max; /* IN/OUT, OUT */
234 1.14 eeh vsize_t size;
235 1.25 thorpej int flags;
236 1.8 mrg boolean_t fixed;
237 1.71 yamt struct vm_map_kernel *submap;
238 1.8 mrg {
239 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
240 1.1 mrg
241 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
242 1.71 yamt
243 1.8 mrg size = round_page(size); /* round up to pagesize */
244 1.1 mrg
245 1.8 mrg /*
246 1.8 mrg * first allocate a blank spot in the parent map
247 1.8 mrg */
248 1.8 mrg
249 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
250 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
251 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
252 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
253 1.8 mrg }
254 1.8 mrg
255 1.8 mrg /*
256 1.8 mrg * set VM bounds (min is filled in by uvm_map)
257 1.8 mrg */
258 1.1 mrg
259 1.8 mrg *max = *min + size;
260 1.5 thorpej
261 1.8 mrg /*
262 1.8 mrg * add references to pmap and create or init the submap
263 1.8 mrg */
264 1.1 mrg
265 1.8 mrg pmap_reference(vm_map_pmap(map));
266 1.8 mrg if (submap == NULL) {
267 1.71 yamt submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
268 1.8 mrg if (submap == NULL)
269 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
270 1.8 mrg }
271 1.71 yamt uvm_map_setup_kernel(submap, *min, *max, flags);
272 1.71 yamt submap->vmk_map.pmap = vm_map_pmap(map);
273 1.1 mrg
274 1.8 mrg /*
275 1.8 mrg * now let uvm_map_submap plug in it...
276 1.8 mrg */
277 1.1 mrg
278 1.71 yamt if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
279 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
280 1.1 mrg
281 1.71 yamt return(&submap->vmk_map);
282 1.1 mrg }
283 1.1 mrg
284 1.1 mrg /*
285 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
286 1.1 mrg *
287 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
288 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
289 1.1 mrg */
290 1.1 mrg
291 1.8 mrg void
292 1.8 mrg uvm_km_pgremove(uobj, start, end)
293 1.8 mrg struct uvm_object *uobj;
294 1.14 eeh vaddr_t start, end;
295 1.1 mrg {
296 1.53 chs struct vm_page *pg;
297 1.52 chs voff_t curoff, nextoff;
298 1.53 chs int swpgonlydelta = 0;
299 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
300 1.1 mrg
301 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
302 1.40 chs simple_lock(&uobj->vmobjlock);
303 1.3 chs
304 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
305 1.52 chs nextoff = curoff + PAGE_SIZE;
306 1.52 chs pg = uvm_pagelookup(uobj, curoff);
307 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
308 1.52 chs pg->flags |= PG_WANTED;
309 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
310 1.52 chs "km_pgrm", 0);
311 1.52 chs simple_lock(&uobj->vmobjlock);
312 1.52 chs nextoff = curoff;
313 1.8 mrg continue;
314 1.52 chs }
315 1.8 mrg
316 1.52 chs /*
317 1.52 chs * free the swap slot, then the page.
318 1.52 chs */
319 1.8 mrg
320 1.53 chs if (pg == NULL &&
321 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
322 1.53 chs swpgonlydelta++;
323 1.53 chs }
324 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
325 1.53 chs if (pg != NULL) {
326 1.53 chs uvm_lock_pageq();
327 1.53 chs uvm_pagefree(pg);
328 1.53 chs uvm_unlock_pageq();
329 1.53 chs }
330 1.8 mrg }
331 1.8 mrg simple_unlock(&uobj->vmobjlock);
332 1.8 mrg
333 1.54 chs if (swpgonlydelta > 0) {
334 1.54 chs simple_lock(&uvm.swap_data_lock);
335 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
336 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
337 1.54 chs simple_unlock(&uvm.swap_data_lock);
338 1.54 chs }
339 1.24 thorpej }
340 1.24 thorpej
341 1.24 thorpej
342 1.24 thorpej /*
343 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
344 1.52 chs * maps
345 1.24 thorpej *
346 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
347 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
348 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
349 1.52 chs * be on the active or inactive queues (because they have no object).
350 1.24 thorpej */
351 1.24 thorpej
352 1.24 thorpej void
353 1.52 chs uvm_km_pgremove_intrsafe(start, end)
354 1.24 thorpej vaddr_t start, end;
355 1.24 thorpej {
356 1.52 chs struct vm_page *pg;
357 1.52 chs paddr_t pa;
358 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
359 1.24 thorpej
360 1.52 chs for (; start < end; start += PAGE_SIZE) {
361 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
362 1.24 thorpej continue;
363 1.40 chs }
364 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
365 1.52 chs KASSERT(pg);
366 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
367 1.52 chs uvm_pagefree(pg);
368 1.24 thorpej }
369 1.1 mrg }
370 1.1 mrg
371 1.1 mrg
372 1.1 mrg /*
373 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
374 1.1 mrg *
375 1.1 mrg * => we map wired memory into the specified map using the obj passed in
376 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
377 1.1 mrg * free VM space in the map... caller should be prepared to handle
378 1.1 mrg * this case.
379 1.1 mrg * => we return KVA of memory allocated
380 1.66 pk * => align,prefer - passed on to uvm_map()
381 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
382 1.1 mrg * lock the map
383 1.1 mrg */
384 1.1 mrg
385 1.14 eeh vaddr_t
386 1.66 pk uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
387 1.49 chs struct vm_map *map;
388 1.8 mrg struct uvm_object *obj;
389 1.14 eeh vsize_t size;
390 1.66 pk vsize_t align;
391 1.66 pk voff_t prefer;
392 1.8 mrg int flags;
393 1.1 mrg {
394 1.14 eeh vaddr_t kva, loopva;
395 1.14 eeh vaddr_t offset;
396 1.44 thorpej vsize_t loopsize;
397 1.8 mrg struct vm_page *pg;
398 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
399 1.1 mrg
400 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
401 1.40 chs map, obj, size, flags);
402 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
403 1.1 mrg
404 1.8 mrg /*
405 1.8 mrg * setup for call
406 1.8 mrg */
407 1.8 mrg
408 1.8 mrg size = round_page(size);
409 1.8 mrg kva = vm_map_min(map); /* hint */
410 1.1 mrg
411 1.8 mrg /*
412 1.8 mrg * allocate some virtual space
413 1.8 mrg */
414 1.8 mrg
415 1.66 pk if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
416 1.66 pk UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
417 1.66 pk UVM_ADV_RANDOM,
418 1.70 yamt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
419 1.70 yamt | UVM_FLAG_QUANTUM))
420 1.43 chs != 0)) {
421 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
422 1.8 mrg return(0);
423 1.8 mrg }
424 1.8 mrg
425 1.8 mrg /*
426 1.8 mrg * if all we wanted was VA, return now
427 1.8 mrg */
428 1.8 mrg
429 1.8 mrg if (flags & UVM_KMF_VALLOC) {
430 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
431 1.8 mrg return(kva);
432 1.8 mrg }
433 1.40 chs
434 1.8 mrg /*
435 1.8 mrg * recover object offset from virtual address
436 1.8 mrg */
437 1.8 mrg
438 1.8 mrg offset = kva - vm_map_min(kernel_map);
439 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
440 1.8 mrg
441 1.8 mrg /*
442 1.8 mrg * now allocate and map in the memory... note that we are the only ones
443 1.8 mrg * whom should ever get a handle on this area of VM.
444 1.8 mrg */
445 1.8 mrg
446 1.8 mrg loopva = kva;
447 1.44 thorpej loopsize = size;
448 1.44 thorpej while (loopsize) {
449 1.52 chs if (obj) {
450 1.52 chs simple_lock(&obj->vmobjlock);
451 1.52 chs }
452 1.52 chs pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
453 1.45 thorpej if (__predict_true(pg != NULL)) {
454 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
455 1.8 mrg UVM_PAGE_OWN(pg, NULL);
456 1.8 mrg }
457 1.52 chs if (obj) {
458 1.52 chs simple_unlock(&obj->vmobjlock);
459 1.52 chs }
460 1.47 chs
461 1.8 mrg /*
462 1.8 mrg * out of memory?
463 1.8 mrg */
464 1.8 mrg
465 1.35 thorpej if (__predict_false(pg == NULL)) {
466 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
467 1.63 pk ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
468 1.8 mrg /* free everything! */
469 1.17 chuck uvm_unmap(map, kva, kva + size);
470 1.58 chs return (0);
471 1.8 mrg } else {
472 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
473 1.8 mrg continue;
474 1.8 mrg }
475 1.8 mrg }
476 1.47 chs
477 1.8 mrg /*
478 1.52 chs * map it in
479 1.8 mrg */
480 1.40 chs
481 1.52 chs if (obj == NULL) {
482 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
483 1.57 thorpej VM_PROT_READ | VM_PROT_WRITE);
484 1.24 thorpej } else {
485 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
486 1.33 thorpej UVM_PROT_ALL,
487 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
488 1.24 thorpej }
489 1.8 mrg loopva += PAGE_SIZE;
490 1.8 mrg offset += PAGE_SIZE;
491 1.44 thorpej loopsize -= PAGE_SIZE;
492 1.8 mrg }
493 1.69 junyoung
494 1.51 chris pmap_update(pmap_kernel());
495 1.69 junyoung
496 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
497 1.8 mrg return(kva);
498 1.1 mrg }
499 1.1 mrg
500 1.1 mrg /*
501 1.1 mrg * uvm_km_free: free an area of kernel memory
502 1.1 mrg */
503 1.1 mrg
504 1.8 mrg void
505 1.8 mrg uvm_km_free(map, addr, size)
506 1.49 chs struct vm_map *map;
507 1.14 eeh vaddr_t addr;
508 1.14 eeh vsize_t size;
509 1.8 mrg {
510 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
511 1.1 mrg }
512 1.1 mrg
513 1.1 mrg /*
514 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
515 1.1 mrg * anyone waiting for vm space.
516 1.1 mrg *
517 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
518 1.1 mrg */
519 1.1 mrg
520 1.8 mrg void
521 1.8 mrg uvm_km_free_wakeup(map, addr, size)
522 1.49 chs struct vm_map *map;
523 1.14 eeh vaddr_t addr;
524 1.14 eeh vsize_t size;
525 1.1 mrg {
526 1.49 chs struct vm_map_entry *dead_entries;
527 1.1 mrg
528 1.8 mrg vm_map_lock(map);
529 1.47 chs uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
530 1.70 yamt &dead_entries, NULL);
531 1.31 thorpej wakeup(map);
532 1.8 mrg vm_map_unlock(map);
533 1.8 mrg if (dead_entries != NULL)
534 1.8 mrg uvm_unmap_detach(dead_entries, 0);
535 1.1 mrg }
536 1.1 mrg
537 1.1 mrg /*
538 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
539 1.1 mrg *
540 1.1 mrg * => we can sleep if needed
541 1.1 mrg */
542 1.1 mrg
543 1.14 eeh vaddr_t
544 1.8 mrg uvm_km_alloc1(map, size, zeroit)
545 1.49 chs struct vm_map *map;
546 1.14 eeh vsize_t size;
547 1.8 mrg boolean_t zeroit;
548 1.1 mrg {
549 1.14 eeh vaddr_t kva, loopva, offset;
550 1.8 mrg struct vm_page *pg;
551 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
552 1.1 mrg
553 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
554 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
555 1.1 mrg
556 1.8 mrg size = round_page(size);
557 1.8 mrg kva = vm_map_min(map); /* hint */
558 1.1 mrg
559 1.8 mrg /*
560 1.8 mrg * allocate some virtual space
561 1.8 mrg */
562 1.1 mrg
563 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
564 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
565 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
566 1.70 yamt UVM_FLAG_QUANTUM)) != 0)) {
567 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
568 1.8 mrg return(0);
569 1.8 mrg }
570 1.8 mrg
571 1.8 mrg /*
572 1.8 mrg * recover object offset from virtual address
573 1.8 mrg */
574 1.8 mrg
575 1.8 mrg offset = kva - vm_map_min(kernel_map);
576 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
577 1.8 mrg
578 1.8 mrg /*
579 1.52 chs * now allocate the memory.
580 1.8 mrg */
581 1.8 mrg
582 1.8 mrg loopva = kva;
583 1.8 mrg while (size) {
584 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
585 1.52 chs KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
586 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
587 1.8 mrg if (pg) {
588 1.52 chs pg->flags &= ~PG_BUSY;
589 1.8 mrg UVM_PAGE_OWN(pg, NULL);
590 1.8 mrg }
591 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
592 1.52 chs if (pg == NULL) {
593 1.52 chs uvm_wait("km_alloc1w");
594 1.8 mrg continue;
595 1.8 mrg }
596 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
597 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
598 1.8 mrg loopva += PAGE_SIZE;
599 1.8 mrg offset += PAGE_SIZE;
600 1.8 mrg size -= PAGE_SIZE;
601 1.8 mrg }
602 1.51 chris pmap_update(map->pmap);
603 1.46 thorpej
604 1.8 mrg /*
605 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
606 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
607 1.8 mrg */
608 1.1 mrg
609 1.8 mrg if (zeroit)
610 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
611 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
612 1.8 mrg return(kva);
613 1.1 mrg }
614 1.1 mrg
615 1.1 mrg /*
616 1.65 pk * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
617 1.1 mrg *
618 1.1 mrg * => memory is not allocated until fault time
619 1.65 pk * => the align, prefer and flags parameters are passed on to uvm_map().
620 1.65 pk *
621 1.65 pk * Note: this function is also the backend for these macros:
622 1.65 pk * uvm_km_valloc
623 1.65 pk * uvm_km_valloc_wait
624 1.65 pk * uvm_km_valloc_prefer
625 1.65 pk * uvm_km_valloc_prefer_wait
626 1.65 pk * uvm_km_valloc_align
627 1.1 mrg */
628 1.1 mrg
629 1.14 eeh vaddr_t
630 1.65 pk uvm_km_valloc1(map, size, align, prefer, flags)
631 1.49 chs struct vm_map *map;
632 1.41 nisimura vsize_t size;
633 1.41 nisimura vsize_t align;
634 1.65 pk voff_t prefer;
635 1.65 pk uvm_flag_t flags;
636 1.41 nisimura {
637 1.14 eeh vaddr_t kva;
638 1.65 pk UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
639 1.65 pk
640 1.65 pk UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
641 1.65 pk map, size, align, prefer);
642 1.1 mrg
643 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
644 1.1 mrg
645 1.8 mrg size = round_page(size);
646 1.8 mrg /*
647 1.65 pk * Check if requested size is larger than the map, in which
648 1.65 pk * case we can't succeed.
649 1.8 mrg */
650 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
651 1.65 pk return (0);
652 1.8 mrg
653 1.70 yamt flags |= UVM_FLAG_QUANTUM;
654 1.52 chs for (;;) {
655 1.8 mrg kva = vm_map_min(map); /* hint */
656 1.8 mrg
657 1.8 mrg /*
658 1.8 mrg * allocate some virtual space. will be demand filled
659 1.8 mrg * by kernel_object.
660 1.8 mrg */
661 1.8 mrg
662 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
663 1.65 pk prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
664 1.65 pk UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
665 1.43 chs == 0)) {
666 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
667 1.65 pk return (kva);
668 1.8 mrg }
669 1.8 mrg
670 1.8 mrg /*
671 1.8 mrg * failed. sleep for a while (on map)
672 1.8 mrg */
673 1.65 pk if ((flags & UVM_KMF_NOWAIT) != 0)
674 1.65 pk return (0);
675 1.8 mrg
676 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
677 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
678 1.8 mrg }
679 1.8 mrg /*NOTREACHED*/
680 1.38 jeffs }
681 1.38 jeffs
682 1.66 pk /* Function definitions for binary compatibility */
683 1.66 pk vaddr_t
684 1.66 pk uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
685 1.66 pk vsize_t sz, int flags)
686 1.66 pk {
687 1.66 pk return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
688 1.66 pk }
689 1.66 pk
690 1.66 pk vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
691 1.66 pk {
692 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
693 1.66 pk }
694 1.66 pk
695 1.66 pk vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
696 1.66 pk {
697 1.66 pk return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
698 1.66 pk }
699 1.66 pk
700 1.66 pk vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
701 1.66 pk {
702 1.66 pk return uvm_km_valloc1(map, sz, 0, prefer, 0);
703 1.66 pk }
704 1.66 pk
705 1.66 pk vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
706 1.66 pk {
707 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
708 1.66 pk }
709 1.66 pk
710 1.10 thorpej /* Sanity; must specify both or none. */
711 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
712 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
713 1.10 thorpej #error Must specify MAP and UNMAP together.
714 1.10 thorpej #endif
715 1.10 thorpej
716 1.10 thorpej /*
717 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
718 1.10 thorpej *
719 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
720 1.10 thorpej */
721 1.10 thorpej
722 1.11 thorpej /* ARGSUSED */
723 1.14 eeh vaddr_t
724 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
725 1.49 chs struct vm_map *map;
726 1.12 thorpej struct uvm_object *obj;
727 1.15 thorpej boolean_t waitok;
728 1.10 thorpej {
729 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
730 1.10 thorpej struct vm_page *pg;
731 1.14 eeh vaddr_t va;
732 1.10 thorpej
733 1.15 thorpej again:
734 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
735 1.35 thorpej if (__predict_false(pg == NULL)) {
736 1.15 thorpej if (waitok) {
737 1.15 thorpej uvm_wait("plpg");
738 1.15 thorpej goto again;
739 1.15 thorpej } else
740 1.15 thorpej return (0);
741 1.15 thorpej }
742 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
743 1.35 thorpej if (__predict_false(va == 0))
744 1.10 thorpej uvm_pagefree(pg);
745 1.10 thorpej return (va);
746 1.10 thorpej #else
747 1.14 eeh vaddr_t va;
748 1.10 thorpej int s;
749 1.10 thorpej
750 1.16 thorpej /*
751 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
752 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
753 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
754 1.16 thorpej * accessed in interrupt context).
755 1.16 thorpej *
756 1.16 thorpej * XXX We may want to consider changing the interface to this
757 1.16 thorpej * XXX function.
758 1.16 thorpej */
759 1.16 thorpej
760 1.42 thorpej s = splvm();
761 1.60 bouyer va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
762 1.60 bouyer waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
763 1.10 thorpej splx(s);
764 1.10 thorpej return (va);
765 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
766 1.10 thorpej }
767 1.10 thorpej
768 1.10 thorpej /*
769 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
770 1.10 thorpej *
771 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
772 1.10 thorpej */
773 1.10 thorpej
774 1.11 thorpej /* ARGSUSED */
775 1.10 thorpej void
776 1.11 thorpej uvm_km_free_poolpage1(map, addr)
777 1.49 chs struct vm_map *map;
778 1.14 eeh vaddr_t addr;
779 1.10 thorpej {
780 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
781 1.14 eeh paddr_t pa;
782 1.10 thorpej
783 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
784 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
785 1.10 thorpej #else
786 1.10 thorpej int s;
787 1.16 thorpej
788 1.16 thorpej /*
789 1.42 thorpej * NOTE: We may be called with a map that doens't require splvm
790 1.16 thorpej * protection (e.g. kernel_map). However, it does not hurt to
791 1.42 thorpej * go to splvm in this case (since unprocted maps will never be
792 1.16 thorpej * accessed in interrupt context).
793 1.16 thorpej *
794 1.16 thorpej * XXX We may want to consider changing the interface to this
795 1.16 thorpej * XXX function.
796 1.16 thorpej */
797 1.10 thorpej
798 1.42 thorpej s = splvm();
799 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
800 1.10 thorpej splx(s);
801 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
802 1.1 mrg }
803