uvm_km.c revision 1.72 1 1.72 yamt /* $NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
106 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 1.7 chuck *
108 1.7 chuck * most kernel private memory lives in kernel_object. the only exception
109 1.7 chuck * to this is for memory that belongs to submaps that must be protected
110 1.52 chs * by splvm(). pages in these submaps are not assigned to an object.
111 1.7 chuck *
112 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
113 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
114 1.47 chs * large chunks of a kernel object's space go unused either because
115 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
116 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
117 1.7 chuck * objects, the only part of the object that can ever be populated is the
118 1.7 chuck * offsets that are managed by the submap.
119 1.7 chuck *
120 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
121 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122 1.7 chuck * example:
123 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
126 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
127 1.47 chs * mapped at 0xf8235000.
128 1.7 chuck *
129 1.7 chuck * kernel object have one other special property: when the kernel virtual
130 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
131 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
132 1.7 chuck * this has to be done because there is no backing store for kernel pages
133 1.7 chuck * and no need to save them after they are no longer referenced.
134 1.7 chuck */
135 1.55 lukem
136 1.55 lukem #include <sys/cdefs.h>
137 1.72 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.72 2005/01/01 21:08:02 yamt Exp $");
138 1.55 lukem
139 1.55 lukem #include "opt_uvmhist.h"
140 1.7 chuck
141 1.1 mrg #include <sys/param.h>
142 1.71 yamt #include <sys/malloc.h>
143 1.1 mrg #include <sys/systm.h>
144 1.1 mrg #include <sys/proc.h>
145 1.72 yamt #include <sys/pool.h>
146 1.1 mrg
147 1.1 mrg #include <uvm/uvm.h>
148 1.1 mrg
149 1.1 mrg /*
150 1.1 mrg * global data structures
151 1.1 mrg */
152 1.1 mrg
153 1.49 chs struct vm_map *kernel_map = NULL;
154 1.1 mrg
155 1.1 mrg /*
156 1.1 mrg * local data structues
157 1.1 mrg */
158 1.1 mrg
159 1.71 yamt static struct vm_map_kernel kernel_map_store;
160 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
161 1.1 mrg
162 1.72 yamt #if !defined(PMAP_MAP_POOLPAGE)
163 1.72 yamt
164 1.72 yamt /*
165 1.72 yamt * kva cache
166 1.72 yamt *
167 1.72 yamt * XXX maybe it's better to do this at the uvm_map layer.
168 1.72 yamt */
169 1.72 yamt
170 1.72 yamt #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
171 1.72 yamt
172 1.72 yamt static void *km_vacache_alloc(struct pool *, int);
173 1.72 yamt static void km_vacache_free(struct pool *, void *);
174 1.72 yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
175 1.72 yamt
176 1.72 yamt /* XXX */
177 1.72 yamt #define KM_VACACHE_POOL_TO_MAP(pp) \
178 1.72 yamt ((struct vm_map *)((char *)(pp) - \
179 1.72 yamt offsetof(struct vm_map_kernel, vmk_vacache)))
180 1.72 yamt
181 1.72 yamt static void *
182 1.72 yamt km_vacache_alloc(struct pool *pp, int flags)
183 1.72 yamt {
184 1.72 yamt vaddr_t va;
185 1.72 yamt size_t size;
186 1.72 yamt struct vm_map *map;
187 1.72 yamt #if defined(DEBUG)
188 1.72 yamt vaddr_t loopva;
189 1.72 yamt #endif
190 1.72 yamt size = pp->pr_alloc->pa_pagesz;
191 1.72 yamt
192 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
193 1.72 yamt
194 1.72 yamt if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
195 1.72 yamt UVM_MAPFLAG(UVM_PROT_NONE, UVM_PROT_NONE, UVM_INH_NONE,
196 1.72 yamt UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
197 1.72 yamt ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
198 1.72 yamt return NULL;
199 1.72 yamt
200 1.72 yamt #if defined(DEBUG)
201 1.72 yamt for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
202 1.72 yamt if (pmap_extract(pmap_kernel(), loopva, NULL))
203 1.72 yamt panic("km_vacache_free: has mapping");
204 1.72 yamt }
205 1.72 yamt #endif
206 1.72 yamt
207 1.72 yamt return (void *)va;
208 1.72 yamt }
209 1.72 yamt
210 1.72 yamt static void
211 1.72 yamt km_vacache_free(struct pool *pp, void *v)
212 1.72 yamt {
213 1.72 yamt vaddr_t va = (vaddr_t)v;
214 1.72 yamt size_t size = pp->pr_alloc->pa_pagesz;
215 1.72 yamt struct vm_map *map;
216 1.72 yamt #if defined(DEBUG)
217 1.72 yamt vaddr_t loopva;
218 1.72 yamt
219 1.72 yamt for (loopva = va; loopva < va + size; loopva += PAGE_SIZE) {
220 1.72 yamt if (pmap_extract(pmap_kernel(), loopva, NULL))
221 1.72 yamt panic("km_vacache_free: has mapping");
222 1.72 yamt }
223 1.72 yamt #endif
224 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
225 1.72 yamt uvm_unmap(map, va, va + size);
226 1.72 yamt }
227 1.72 yamt
228 1.72 yamt /*
229 1.72 yamt * km_vacache_init: initialize kva cache.
230 1.72 yamt */
231 1.72 yamt
232 1.72 yamt static void
233 1.72 yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
234 1.72 yamt {
235 1.72 yamt struct vm_map_kernel *vmk;
236 1.72 yamt struct pool *pp;
237 1.72 yamt struct pool_allocator *pa;
238 1.72 yamt
239 1.72 yamt KASSERT(VM_MAP_IS_KERNEL(map));
240 1.72 yamt KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
241 1.72 yamt
242 1.72 yamt vmk = vm_map_to_kernel(map);
243 1.72 yamt pp = &vmk->vmk_vacache;
244 1.72 yamt pa = &vmk->vmk_vacache_allocator;
245 1.72 yamt memset(pa, 0, sizeof(*pa));
246 1.72 yamt pa->pa_alloc = km_vacache_alloc;
247 1.72 yamt pa->pa_free = km_vacache_free;
248 1.72 yamt pa->pa_pagesz = (unsigned int)size;
249 1.72 yamt pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
250 1.72 yamt
251 1.72 yamt /* XXX for now.. */
252 1.72 yamt pool_sethiwat(pp, 0);
253 1.72 yamt }
254 1.72 yamt
255 1.72 yamt void
256 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 1.72 yamt {
258 1.72 yamt
259 1.72 yamt map->flags |= VM_MAP_VACACHE;
260 1.72 yamt if (size == 0)
261 1.72 yamt size = KM_VACACHE_SIZE;
262 1.72 yamt km_vacache_init(map, name, size);
263 1.72 yamt }
264 1.72 yamt
265 1.72 yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
266 1.72 yamt
267 1.72 yamt void
268 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
269 1.72 yamt {
270 1.72 yamt
271 1.72 yamt /* nothing */
272 1.72 yamt }
273 1.72 yamt
274 1.72 yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
275 1.72 yamt
276 1.1 mrg /*
277 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
278 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
279 1.1 mrg *
280 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
281 1.62 thorpej * we assume that [min -> start] has already been allocated and that
282 1.62 thorpej * "end" is the end.
283 1.1 mrg */
284 1.1 mrg
285 1.8 mrg void
286 1.62 thorpej uvm_km_init(start, end)
287 1.62 thorpej vaddr_t start, end;
288 1.1 mrg {
289 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
290 1.27 thorpej
291 1.27 thorpej /*
292 1.27 thorpej * next, init kernel memory objects.
293 1.8 mrg */
294 1.1 mrg
295 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
296 1.34 chs uao_init();
297 1.62 thorpej uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
298 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
299 1.1 mrg
300 1.24 thorpej /*
301 1.56 thorpej * init the map and reserve any space that might already
302 1.56 thorpej * have been allocated kernel space before installing.
303 1.8 mrg */
304 1.1 mrg
305 1.71 yamt uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
306 1.71 yamt kernel_map_store.vmk_map.pmap = pmap_kernel();
307 1.70 yamt if (start != base) {
308 1.70 yamt int error;
309 1.70 yamt struct uvm_map_args args;
310 1.70 yamt
311 1.71 yamt error = uvm_map_prepare(&kernel_map_store.vmk_map,
312 1.71 yamt base, start - base,
313 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
314 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
315 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
316 1.70 yamt if (!error) {
317 1.70 yamt kernel_first_mapent_store.flags =
318 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
319 1.71 yamt error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
320 1.70 yamt &kernel_first_mapent_store);
321 1.70 yamt }
322 1.70 yamt
323 1.70 yamt if (error)
324 1.70 yamt panic(
325 1.70 yamt "uvm_km_init: could not reserve space for kernel");
326 1.70 yamt }
327 1.47 chs
328 1.8 mrg /*
329 1.8 mrg * install!
330 1.8 mrg */
331 1.8 mrg
332 1.71 yamt kernel_map = &kernel_map_store.vmk_map;
333 1.72 yamt uvm_km_vacache_init(kernel_map, "kvakernel", 0);
334 1.1 mrg }
335 1.1 mrg
336 1.1 mrg /*
337 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
338 1.1 mrg * is allocated all references to that area of VM must go through it. this
339 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
340 1.1 mrg *
341 1.5 thorpej * => if `fixed' is true, *min specifies where the region described
342 1.5 thorpej * by the submap must start
343 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
344 1.1 mrg * alloc a new map
345 1.1 mrg */
346 1.8 mrg struct vm_map *
347 1.25 thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
348 1.8 mrg struct vm_map *map;
349 1.52 chs vaddr_t *min, *max; /* IN/OUT, OUT */
350 1.14 eeh vsize_t size;
351 1.25 thorpej int flags;
352 1.8 mrg boolean_t fixed;
353 1.71 yamt struct vm_map_kernel *submap;
354 1.8 mrg {
355 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
356 1.1 mrg
357 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
358 1.71 yamt
359 1.8 mrg size = round_page(size); /* round up to pagesize */
360 1.1 mrg
361 1.8 mrg /*
362 1.8 mrg * first allocate a blank spot in the parent map
363 1.8 mrg */
364 1.8 mrg
365 1.39 thorpej if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
366 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
367 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
368 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
369 1.8 mrg }
370 1.8 mrg
371 1.8 mrg /*
372 1.8 mrg * set VM bounds (min is filled in by uvm_map)
373 1.8 mrg */
374 1.1 mrg
375 1.8 mrg *max = *min + size;
376 1.5 thorpej
377 1.8 mrg /*
378 1.8 mrg * add references to pmap and create or init the submap
379 1.8 mrg */
380 1.1 mrg
381 1.8 mrg pmap_reference(vm_map_pmap(map));
382 1.8 mrg if (submap == NULL) {
383 1.71 yamt submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
384 1.8 mrg if (submap == NULL)
385 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
386 1.8 mrg }
387 1.71 yamt uvm_map_setup_kernel(submap, *min, *max, flags);
388 1.71 yamt submap->vmk_map.pmap = vm_map_pmap(map);
389 1.1 mrg
390 1.8 mrg /*
391 1.8 mrg * now let uvm_map_submap plug in it...
392 1.8 mrg */
393 1.1 mrg
394 1.71 yamt if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
395 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
396 1.1 mrg
397 1.71 yamt return(&submap->vmk_map);
398 1.1 mrg }
399 1.1 mrg
400 1.1 mrg /*
401 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
402 1.1 mrg *
403 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
404 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
405 1.1 mrg */
406 1.1 mrg
407 1.8 mrg void
408 1.8 mrg uvm_km_pgremove(uobj, start, end)
409 1.8 mrg struct uvm_object *uobj;
410 1.14 eeh vaddr_t start, end;
411 1.1 mrg {
412 1.53 chs struct vm_page *pg;
413 1.52 chs voff_t curoff, nextoff;
414 1.53 chs int swpgonlydelta = 0;
415 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
416 1.1 mrg
417 1.40 chs KASSERT(uobj->pgops == &aobj_pager);
418 1.40 chs simple_lock(&uobj->vmobjlock);
419 1.3 chs
420 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
421 1.52 chs nextoff = curoff + PAGE_SIZE;
422 1.52 chs pg = uvm_pagelookup(uobj, curoff);
423 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
424 1.52 chs pg->flags |= PG_WANTED;
425 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
426 1.52 chs "km_pgrm", 0);
427 1.52 chs simple_lock(&uobj->vmobjlock);
428 1.52 chs nextoff = curoff;
429 1.8 mrg continue;
430 1.52 chs }
431 1.8 mrg
432 1.52 chs /*
433 1.52 chs * free the swap slot, then the page.
434 1.52 chs */
435 1.8 mrg
436 1.53 chs if (pg == NULL &&
437 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
438 1.53 chs swpgonlydelta++;
439 1.53 chs }
440 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
441 1.53 chs if (pg != NULL) {
442 1.53 chs uvm_lock_pageq();
443 1.53 chs uvm_pagefree(pg);
444 1.53 chs uvm_unlock_pageq();
445 1.53 chs }
446 1.8 mrg }
447 1.8 mrg simple_unlock(&uobj->vmobjlock);
448 1.8 mrg
449 1.54 chs if (swpgonlydelta > 0) {
450 1.54 chs simple_lock(&uvm.swap_data_lock);
451 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
452 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
453 1.54 chs simple_unlock(&uvm.swap_data_lock);
454 1.54 chs }
455 1.24 thorpej }
456 1.24 thorpej
457 1.24 thorpej
458 1.24 thorpej /*
459 1.24 thorpej * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
460 1.52 chs * maps
461 1.24 thorpej *
462 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
463 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
464 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
465 1.52 chs * be on the active or inactive queues (because they have no object).
466 1.24 thorpej */
467 1.24 thorpej
468 1.24 thorpej void
469 1.52 chs uvm_km_pgremove_intrsafe(start, end)
470 1.24 thorpej vaddr_t start, end;
471 1.24 thorpej {
472 1.52 chs struct vm_page *pg;
473 1.52 chs paddr_t pa;
474 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
475 1.24 thorpej
476 1.52 chs for (; start < end; start += PAGE_SIZE) {
477 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
478 1.24 thorpej continue;
479 1.40 chs }
480 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
481 1.52 chs KASSERT(pg);
482 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483 1.52 chs uvm_pagefree(pg);
484 1.24 thorpej }
485 1.1 mrg }
486 1.1 mrg
487 1.1 mrg
488 1.1 mrg /*
489 1.1 mrg * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
490 1.1 mrg *
491 1.1 mrg * => we map wired memory into the specified map using the obj passed in
492 1.1 mrg * => NOTE: we can return NULL even if we can wait if there is not enough
493 1.1 mrg * free VM space in the map... caller should be prepared to handle
494 1.1 mrg * this case.
495 1.1 mrg * => we return KVA of memory allocated
496 1.66 pk * => align,prefer - passed on to uvm_map()
497 1.1 mrg * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
498 1.1 mrg * lock the map
499 1.1 mrg */
500 1.1 mrg
501 1.14 eeh vaddr_t
502 1.66 pk uvm_km_kmemalloc1(map, obj, size, align, prefer, flags)
503 1.49 chs struct vm_map *map;
504 1.8 mrg struct uvm_object *obj;
505 1.14 eeh vsize_t size;
506 1.66 pk vsize_t align;
507 1.66 pk voff_t prefer;
508 1.8 mrg int flags;
509 1.1 mrg {
510 1.14 eeh vaddr_t kva, loopva;
511 1.14 eeh vaddr_t offset;
512 1.44 thorpej vsize_t loopsize;
513 1.8 mrg struct vm_page *pg;
514 1.8 mrg UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
515 1.1 mrg
516 1.8 mrg UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
517 1.40 chs map, obj, size, flags);
518 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
519 1.1 mrg
520 1.8 mrg /*
521 1.8 mrg * setup for call
522 1.8 mrg */
523 1.8 mrg
524 1.8 mrg size = round_page(size);
525 1.8 mrg kva = vm_map_min(map); /* hint */
526 1.1 mrg
527 1.8 mrg /*
528 1.8 mrg * allocate some virtual space
529 1.8 mrg */
530 1.8 mrg
531 1.66 pk if (__predict_false(uvm_map(map, &kva, size, obj, prefer, align,
532 1.66 pk UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
533 1.66 pk UVM_ADV_RANDOM,
534 1.70 yamt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))
535 1.70 yamt | UVM_FLAG_QUANTUM))
536 1.43 chs != 0)) {
537 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
538 1.8 mrg return(0);
539 1.8 mrg }
540 1.8 mrg
541 1.8 mrg /*
542 1.8 mrg * if all we wanted was VA, return now
543 1.8 mrg */
544 1.8 mrg
545 1.8 mrg if (flags & UVM_KMF_VALLOC) {
546 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
547 1.8 mrg return(kva);
548 1.8 mrg }
549 1.40 chs
550 1.8 mrg /*
551 1.8 mrg * recover object offset from virtual address
552 1.8 mrg */
553 1.8 mrg
554 1.8 mrg offset = kva - vm_map_min(kernel_map);
555 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
556 1.8 mrg
557 1.8 mrg /*
558 1.8 mrg * now allocate and map in the memory... note that we are the only ones
559 1.8 mrg * whom should ever get a handle on this area of VM.
560 1.8 mrg */
561 1.8 mrg
562 1.8 mrg loopva = kva;
563 1.44 thorpej loopsize = size;
564 1.44 thorpej while (loopsize) {
565 1.52 chs if (obj) {
566 1.52 chs simple_lock(&obj->vmobjlock);
567 1.52 chs }
568 1.52 chs pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
569 1.45 thorpej if (__predict_true(pg != NULL)) {
570 1.8 mrg pg->flags &= ~PG_BUSY; /* new page */
571 1.8 mrg UVM_PAGE_OWN(pg, NULL);
572 1.8 mrg }
573 1.52 chs if (obj) {
574 1.52 chs simple_unlock(&obj->vmobjlock);
575 1.52 chs }
576 1.47 chs
577 1.8 mrg /*
578 1.8 mrg * out of memory?
579 1.8 mrg */
580 1.8 mrg
581 1.35 thorpej if (__predict_false(pg == NULL)) {
582 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
583 1.63 pk ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
584 1.8 mrg /* free everything! */
585 1.17 chuck uvm_unmap(map, kva, kva + size);
586 1.58 chs return (0);
587 1.8 mrg } else {
588 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
589 1.8 mrg continue;
590 1.8 mrg }
591 1.8 mrg }
592 1.47 chs
593 1.8 mrg /*
594 1.52 chs * map it in
595 1.8 mrg */
596 1.40 chs
597 1.52 chs if (obj == NULL) {
598 1.24 thorpej pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
599 1.57 thorpej VM_PROT_READ | VM_PROT_WRITE);
600 1.24 thorpej } else {
601 1.24 thorpej pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
602 1.33 thorpej UVM_PROT_ALL,
603 1.33 thorpej PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
604 1.24 thorpej }
605 1.8 mrg loopva += PAGE_SIZE;
606 1.8 mrg offset += PAGE_SIZE;
607 1.44 thorpej loopsize -= PAGE_SIZE;
608 1.8 mrg }
609 1.69 junyoung
610 1.51 chris pmap_update(pmap_kernel());
611 1.69 junyoung
612 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
613 1.8 mrg return(kva);
614 1.1 mrg }
615 1.1 mrg
616 1.1 mrg /*
617 1.1 mrg * uvm_km_free: free an area of kernel memory
618 1.1 mrg */
619 1.1 mrg
620 1.8 mrg void
621 1.8 mrg uvm_km_free(map, addr, size)
622 1.49 chs struct vm_map *map;
623 1.14 eeh vaddr_t addr;
624 1.14 eeh vsize_t size;
625 1.8 mrg {
626 1.17 chuck uvm_unmap(map, trunc_page(addr), round_page(addr+size));
627 1.1 mrg }
628 1.1 mrg
629 1.1 mrg /*
630 1.1 mrg * uvm_km_free_wakeup: free an area of kernel memory and wake up
631 1.1 mrg * anyone waiting for vm space.
632 1.1 mrg *
633 1.1 mrg * => XXX: "wanted" bit + unlock&wait on other end?
634 1.1 mrg */
635 1.1 mrg
636 1.8 mrg void
637 1.8 mrg uvm_km_free_wakeup(map, addr, size)
638 1.49 chs struct vm_map *map;
639 1.14 eeh vaddr_t addr;
640 1.14 eeh vsize_t size;
641 1.1 mrg {
642 1.49 chs struct vm_map_entry *dead_entries;
643 1.1 mrg
644 1.8 mrg vm_map_lock(map);
645 1.47 chs uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
646 1.70 yamt &dead_entries, NULL);
647 1.31 thorpej wakeup(map);
648 1.8 mrg vm_map_unlock(map);
649 1.8 mrg if (dead_entries != NULL)
650 1.8 mrg uvm_unmap_detach(dead_entries, 0);
651 1.1 mrg }
652 1.1 mrg
653 1.1 mrg /*
654 1.1 mrg * uvm_km_alloc1: allocate wired down memory in the kernel map.
655 1.1 mrg *
656 1.1 mrg * => we can sleep if needed
657 1.1 mrg */
658 1.1 mrg
659 1.14 eeh vaddr_t
660 1.8 mrg uvm_km_alloc1(map, size, zeroit)
661 1.49 chs struct vm_map *map;
662 1.14 eeh vsize_t size;
663 1.8 mrg boolean_t zeroit;
664 1.1 mrg {
665 1.14 eeh vaddr_t kva, loopva, offset;
666 1.8 mrg struct vm_page *pg;
667 1.8 mrg UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
668 1.1 mrg
669 1.8 mrg UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
670 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
671 1.1 mrg
672 1.8 mrg size = round_page(size);
673 1.8 mrg kva = vm_map_min(map); /* hint */
674 1.1 mrg
675 1.8 mrg /*
676 1.8 mrg * allocate some virtual space
677 1.8 mrg */
678 1.1 mrg
679 1.35 thorpej if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
680 1.39 thorpej UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
681 1.35 thorpej UVM_INH_NONE, UVM_ADV_RANDOM,
682 1.70 yamt UVM_FLAG_QUANTUM)) != 0)) {
683 1.8 mrg UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
684 1.8 mrg return(0);
685 1.8 mrg }
686 1.8 mrg
687 1.8 mrg /*
688 1.8 mrg * recover object offset from virtual address
689 1.8 mrg */
690 1.8 mrg
691 1.8 mrg offset = kva - vm_map_min(kernel_map);
692 1.8 mrg UVMHIST_LOG(maphist," kva=0x%x, offset=0x%x", kva, offset,0,0);
693 1.8 mrg
694 1.8 mrg /*
695 1.52 chs * now allocate the memory.
696 1.8 mrg */
697 1.8 mrg
698 1.8 mrg loopva = kva;
699 1.8 mrg while (size) {
700 1.8 mrg simple_lock(&uvm.kernel_object->vmobjlock);
701 1.52 chs KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
702 1.23 chs pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
703 1.8 mrg if (pg) {
704 1.52 chs pg->flags &= ~PG_BUSY;
705 1.8 mrg UVM_PAGE_OWN(pg, NULL);
706 1.8 mrg }
707 1.8 mrg simple_unlock(&uvm.kernel_object->vmobjlock);
708 1.52 chs if (pg == NULL) {
709 1.52 chs uvm_wait("km_alloc1w");
710 1.8 mrg continue;
711 1.8 mrg }
712 1.8 mrg pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
713 1.33 thorpej UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
714 1.8 mrg loopva += PAGE_SIZE;
715 1.8 mrg offset += PAGE_SIZE;
716 1.8 mrg size -= PAGE_SIZE;
717 1.8 mrg }
718 1.51 chris pmap_update(map->pmap);
719 1.46 thorpej
720 1.8 mrg /*
721 1.8 mrg * zero on request (note that "size" is now zero due to the above loop
722 1.8 mrg * so we need to subtract kva from loopva to reconstruct the size).
723 1.8 mrg */
724 1.1 mrg
725 1.8 mrg if (zeroit)
726 1.13 perry memset((caddr_t)kva, 0, loopva - kva);
727 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
728 1.8 mrg return(kva);
729 1.1 mrg }
730 1.1 mrg
731 1.1 mrg /*
732 1.65 pk * uvm_km_valloc1: allocate zero-fill memory in the kernel's address space
733 1.1 mrg *
734 1.1 mrg * => memory is not allocated until fault time
735 1.65 pk * => the align, prefer and flags parameters are passed on to uvm_map().
736 1.65 pk *
737 1.65 pk * Note: this function is also the backend for these macros:
738 1.65 pk * uvm_km_valloc
739 1.65 pk * uvm_km_valloc_wait
740 1.65 pk * uvm_km_valloc_prefer
741 1.65 pk * uvm_km_valloc_prefer_wait
742 1.65 pk * uvm_km_valloc_align
743 1.1 mrg */
744 1.1 mrg
745 1.14 eeh vaddr_t
746 1.65 pk uvm_km_valloc1(map, size, align, prefer, flags)
747 1.49 chs struct vm_map *map;
748 1.41 nisimura vsize_t size;
749 1.41 nisimura vsize_t align;
750 1.65 pk voff_t prefer;
751 1.65 pk uvm_flag_t flags;
752 1.41 nisimura {
753 1.14 eeh vaddr_t kva;
754 1.65 pk UVMHIST_FUNC("uvm_km_valloc1"); UVMHIST_CALLED(maphist);
755 1.65 pk
756 1.65 pk UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x, align=0x%x, prefer=0x%x)",
757 1.65 pk map, size, align, prefer);
758 1.1 mrg
759 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
760 1.1 mrg
761 1.8 mrg size = round_page(size);
762 1.8 mrg /*
763 1.65 pk * Check if requested size is larger than the map, in which
764 1.65 pk * case we can't succeed.
765 1.8 mrg */
766 1.8 mrg if (size > vm_map_max(map) - vm_map_min(map))
767 1.65 pk return (0);
768 1.8 mrg
769 1.70 yamt flags |= UVM_FLAG_QUANTUM;
770 1.52 chs for (;;) {
771 1.8 mrg kva = vm_map_min(map); /* hint */
772 1.8 mrg
773 1.8 mrg /*
774 1.8 mrg * allocate some virtual space. will be demand filled
775 1.8 mrg * by kernel_object.
776 1.8 mrg */
777 1.8 mrg
778 1.35 thorpej if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
779 1.65 pk prefer, align, UVM_MAPFLAG(UVM_PROT_ALL,
780 1.65 pk UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, flags))
781 1.43 chs == 0)) {
782 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
783 1.65 pk return (kva);
784 1.8 mrg }
785 1.8 mrg
786 1.8 mrg /*
787 1.8 mrg * failed. sleep for a while (on map)
788 1.8 mrg */
789 1.65 pk if ((flags & UVM_KMF_NOWAIT) != 0)
790 1.65 pk return (0);
791 1.8 mrg
792 1.8 mrg UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
793 1.8 mrg tsleep((caddr_t)map, PVM, "vallocwait", 0);
794 1.8 mrg }
795 1.8 mrg /*NOTREACHED*/
796 1.38 jeffs }
797 1.38 jeffs
798 1.66 pk /* Function definitions for binary compatibility */
799 1.66 pk vaddr_t
800 1.66 pk uvm_km_kmemalloc(struct vm_map *map, struct uvm_object *obj,
801 1.66 pk vsize_t sz, int flags)
802 1.66 pk {
803 1.66 pk return uvm_km_kmemalloc1(map, obj, sz, 0, UVM_UNKNOWN_OFFSET, flags);
804 1.66 pk }
805 1.66 pk
806 1.66 pk vaddr_t uvm_km_valloc(struct vm_map *map, vsize_t sz)
807 1.66 pk {
808 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
809 1.66 pk }
810 1.66 pk
811 1.66 pk vaddr_t uvm_km_valloc_align(struct vm_map *map, vsize_t sz, vsize_t align)
812 1.66 pk {
813 1.66 pk return uvm_km_valloc1(map, sz, align, UVM_UNKNOWN_OFFSET, UVM_KMF_NOWAIT);
814 1.66 pk }
815 1.66 pk
816 1.66 pk vaddr_t uvm_km_valloc_prefer_wait(struct vm_map *map, vsize_t sz, voff_t prefer)
817 1.66 pk {
818 1.66 pk return uvm_km_valloc1(map, sz, 0, prefer, 0);
819 1.66 pk }
820 1.66 pk
821 1.66 pk vaddr_t uvm_km_valloc_wait(struct vm_map *map, vsize_t sz)
822 1.66 pk {
823 1.66 pk return uvm_km_valloc1(map, sz, 0, UVM_UNKNOWN_OFFSET, 0);
824 1.66 pk }
825 1.66 pk
826 1.10 thorpej /* Sanity; must specify both or none. */
827 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
828 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
829 1.10 thorpej #error Must specify MAP and UNMAP together.
830 1.10 thorpej #endif
831 1.10 thorpej
832 1.10 thorpej /*
833 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
834 1.10 thorpej *
835 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
836 1.10 thorpej */
837 1.10 thorpej
838 1.11 thorpej /* ARGSUSED */
839 1.14 eeh vaddr_t
840 1.72 yamt uvm_km_alloc_poolpage_cache(map, obj, waitok)
841 1.72 yamt struct vm_map *map;
842 1.72 yamt struct uvm_object *obj;
843 1.72 yamt boolean_t waitok;
844 1.72 yamt {
845 1.72 yamt #if defined(PMAP_MAP_POOLPAGE)
846 1.72 yamt return uvm_km_alloc_poolpage1(map, obj, waitok);
847 1.72 yamt #else
848 1.72 yamt struct vm_page *pg;
849 1.72 yamt struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
850 1.72 yamt vaddr_t va;
851 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
852 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
853 1.72 yamt
854 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0)
855 1.72 yamt return uvm_km_alloc_poolpage1(map, obj, waitok);
856 1.72 yamt
857 1.72 yamt if (intrsafe)
858 1.72 yamt s = splvm();
859 1.72 yamt va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
860 1.72 yamt if (intrsafe)
861 1.72 yamt splx(s);
862 1.72 yamt if (va == 0)
863 1.72 yamt return 0;
864 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
865 1.72 yamt again:
866 1.72 yamt pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
867 1.72 yamt if (__predict_false(pg == NULL)) {
868 1.72 yamt if (waitok) {
869 1.72 yamt uvm_wait("plpg");
870 1.72 yamt goto again;
871 1.72 yamt } else {
872 1.72 yamt if (intrsafe)
873 1.72 yamt s = splvm();
874 1.72 yamt pool_put(pp, (void *)va);
875 1.72 yamt if (intrsafe)
876 1.72 yamt splx(s);
877 1.72 yamt return 0;
878 1.72 yamt }
879 1.72 yamt }
880 1.72 yamt pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
881 1.72 yamt VM_PROT_READ|VM_PROT_WRITE);
882 1.72 yamt pmap_update(pmap_kernel());
883 1.72 yamt
884 1.72 yamt return va;
885 1.72 yamt #endif /* PMAP_MAP_POOLPAGE */
886 1.72 yamt }
887 1.72 yamt
888 1.72 yamt vaddr_t
889 1.15 thorpej uvm_km_alloc_poolpage1(map, obj, waitok)
890 1.49 chs struct vm_map *map;
891 1.12 thorpej struct uvm_object *obj;
892 1.15 thorpej boolean_t waitok;
893 1.10 thorpej {
894 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
895 1.10 thorpej struct vm_page *pg;
896 1.14 eeh vaddr_t va;
897 1.10 thorpej
898 1.15 thorpej again:
899 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
900 1.35 thorpej if (__predict_false(pg == NULL)) {
901 1.15 thorpej if (waitok) {
902 1.15 thorpej uvm_wait("plpg");
903 1.15 thorpej goto again;
904 1.15 thorpej } else
905 1.15 thorpej return (0);
906 1.15 thorpej }
907 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
908 1.35 thorpej if (__predict_false(va == 0))
909 1.10 thorpej uvm_pagefree(pg);
910 1.10 thorpej return (va);
911 1.10 thorpej #else
912 1.14 eeh vaddr_t va;
913 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
914 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
915 1.16 thorpej
916 1.72 yamt if (intrsafe)
917 1.72 yamt s = splvm();
918 1.60 bouyer va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
919 1.60 bouyer waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
920 1.72 yamt if (intrsafe)
921 1.72 yamt splx(s);
922 1.10 thorpej return (va);
923 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
924 1.10 thorpej }
925 1.10 thorpej
926 1.10 thorpej /*
927 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
928 1.10 thorpej *
929 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
930 1.10 thorpej */
931 1.10 thorpej
932 1.11 thorpej /* ARGSUSED */
933 1.10 thorpej void
934 1.72 yamt uvm_km_free_poolpage_cache(map, addr)
935 1.72 yamt struct vm_map *map;
936 1.72 yamt vaddr_t addr;
937 1.72 yamt {
938 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
939 1.72 yamt uvm_km_free_poolpage1(map, addr);
940 1.72 yamt #else
941 1.72 yamt struct pool *pp;
942 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
943 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
944 1.72 yamt
945 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0) {
946 1.72 yamt uvm_km_free_poolpage1(map, addr);
947 1.72 yamt return;
948 1.72 yamt }
949 1.72 yamt
950 1.72 yamt KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
951 1.72 yamt uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
952 1.72 yamt pmap_kremove(addr, PAGE_SIZE);
953 1.72 yamt #if defined(DEBUG)
954 1.72 yamt pmap_update(pmap_kernel());
955 1.72 yamt #endif
956 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
957 1.72 yamt pp = &vm_map_to_kernel(map)->vmk_vacache;
958 1.72 yamt if (intrsafe)
959 1.72 yamt s = splvm();
960 1.72 yamt pool_put(pp, (void *)addr);
961 1.72 yamt if (intrsafe)
962 1.72 yamt splx(s);
963 1.72 yamt #endif
964 1.72 yamt }
965 1.72 yamt
966 1.72 yamt /* ARGSUSED */
967 1.72 yamt void
968 1.11 thorpej uvm_km_free_poolpage1(map, addr)
969 1.49 chs struct vm_map *map;
970 1.14 eeh vaddr_t addr;
971 1.10 thorpej {
972 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
973 1.14 eeh paddr_t pa;
974 1.10 thorpej
975 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
976 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
977 1.10 thorpej #else
978 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
979 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
980 1.10 thorpej
981 1.72 yamt if (intrsafe)
982 1.72 yamt s = splvm();
983 1.11 thorpej uvm_km_free(map, addr, PAGE_SIZE);
984 1.72 yamt if (intrsafe)
985 1.72 yamt splx(s);
986 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
987 1.1 mrg }
988