Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.76.4.2
      1  1.76.4.2      yamt /*	$NetBSD: uvm_km.c,v 1.76.4.2 2005/01/25 12:58:28 yamt Exp $	*/
      2       1.1       mrg 
      3      1.47       chs /*
      4       1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5      1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6       1.1       mrg  *
      7       1.1       mrg  * All rights reserved.
      8       1.1       mrg  *
      9       1.1       mrg  * This code is derived from software contributed to Berkeley by
     10       1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11       1.1       mrg  *
     12       1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13       1.1       mrg  * modification, are permitted provided that the following conditions
     14       1.1       mrg  * are met:
     15       1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16       1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17       1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18       1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19       1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20       1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21       1.1       mrg  *    must display the following acknowledgement:
     22       1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23      1.47       chs  *      Washington University, the University of California, Berkeley and
     24       1.1       mrg  *      its contributors.
     25       1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26       1.1       mrg  *    may be used to endorse or promote products derived from this software
     27       1.1       mrg  *    without specific prior written permission.
     28       1.1       mrg  *
     29       1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30       1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31       1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32       1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33       1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34       1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35       1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36       1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37       1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38       1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39       1.1       mrg  * SUCH DAMAGE.
     40       1.1       mrg  *
     41       1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42       1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43       1.1       mrg  *
     44       1.1       mrg  *
     45       1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46       1.1       mrg  * All rights reserved.
     47      1.47       chs  *
     48       1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49       1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50       1.1       mrg  * notice and this permission notice appear in all copies of the
     51       1.1       mrg  * software, derivative works or modified versions, and any portions
     52       1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53      1.47       chs  *
     54      1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55      1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56       1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57      1.47       chs  *
     58       1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59       1.1       mrg  *
     60       1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61       1.1       mrg  *  School of Computer Science
     62       1.1       mrg  *  Carnegie Mellon University
     63       1.1       mrg  *  Pittsburgh PA 15213-3890
     64       1.1       mrg  *
     65       1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66       1.1       mrg  * rights to redistribute these changes.
     67       1.1       mrg  */
     68       1.6       mrg 
     69       1.1       mrg /*
     70       1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71       1.1       mrg  */
     72       1.1       mrg 
     73       1.7     chuck /*
     74       1.7     chuck  * overview of kernel memory management:
     75       1.7     chuck  *
     76       1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77      1.62   thorpej  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78      1.62   thorpej  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79       1.7     chuck  *
     80      1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     81       1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82       1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83       1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84      1.47       chs  * virtual address space that is mapped by a submap is locked by the
     85       1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86       1.7     chuck  *
     87       1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88       1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89       1.7     chuck  * chunks.
     90       1.7     chuck  *
     91       1.7     chuck  * the vm system has several standard kernel submaps, including:
     92       1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93       1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94      1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95       1.7     chuck  *		at interrupt time ***
     96      1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97       1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98       1.7     chuck  *   exec_map => used during exec to handle exec args
     99       1.7     chuck  *   etc...
    100       1.7     chuck  *
    101       1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102       1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103       1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104      1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105      1.62   thorpej  * object is equal to the size of kernel virtual address space (i.e. the
    106      1.62   thorpej  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107       1.7     chuck  *
    108       1.7     chuck  * most kernel private memory lives in kernel_object.   the only exception
    109       1.7     chuck  * to this is for memory that belongs to submaps that must be protected
    110      1.52       chs  * by splvm().  pages in these submaps are not assigned to an object.
    111       1.7     chuck  *
    112       1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    113       1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    114      1.47       chs  * large chunks of a kernel object's space go unused either because
    115      1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    116       1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    117       1.7     chuck  * objects, the only part of the object that can ever be populated is the
    118       1.7     chuck  * offsets that are managed by the submap.
    119       1.7     chuck  *
    120       1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    121      1.62   thorpej  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    122       1.7     chuck  * example:
    123      1.62   thorpej  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    124       1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    125       1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    126       1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    127      1.47       chs  *   mapped at 0xf8235000.
    128       1.7     chuck  *
    129       1.7     chuck  * kernel object have one other special property: when the kernel virtual
    130       1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    131       1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    132       1.7     chuck  * this has to be done because there is no backing store for kernel pages
    133       1.7     chuck  * and no need to save them after they are no longer referenced.
    134       1.7     chuck  */
    135      1.55     lukem 
    136      1.55     lukem #include <sys/cdefs.h>
    137  1.76.4.2      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.76.4.2 2005/01/25 12:58:28 yamt Exp $");
    138      1.55     lukem 
    139      1.55     lukem #include "opt_uvmhist.h"
    140       1.7     chuck 
    141       1.1       mrg #include <sys/param.h>
    142      1.71      yamt #include <sys/malloc.h>
    143       1.1       mrg #include <sys/systm.h>
    144       1.1       mrg #include <sys/proc.h>
    145      1.72      yamt #include <sys/pool.h>
    146       1.1       mrg 
    147       1.1       mrg #include <uvm/uvm.h>
    148       1.1       mrg 
    149       1.1       mrg /*
    150       1.1       mrg  * global data structures
    151       1.1       mrg  */
    152       1.1       mrg 
    153      1.49       chs struct vm_map *kernel_map = NULL;
    154       1.1       mrg 
    155       1.1       mrg /*
    156       1.1       mrg  * local data structues
    157       1.1       mrg  */
    158       1.1       mrg 
    159      1.71      yamt static struct vm_map_kernel	kernel_map_store;
    160      1.70      yamt static struct vm_map_entry	kernel_first_mapent_store;
    161       1.1       mrg 
    162      1.72      yamt #if !defined(PMAP_MAP_POOLPAGE)
    163      1.72      yamt 
    164      1.72      yamt /*
    165      1.72      yamt  * kva cache
    166      1.72      yamt  *
    167      1.72      yamt  * XXX maybe it's better to do this at the uvm_map layer.
    168      1.72      yamt  */
    169      1.72      yamt 
    170      1.72      yamt #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    171      1.72      yamt 
    172      1.72      yamt static void *km_vacache_alloc(struct pool *, int);
    173      1.72      yamt static void km_vacache_free(struct pool *, void *);
    174      1.72      yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
    175      1.72      yamt 
    176      1.72      yamt /* XXX */
    177      1.72      yamt #define	KM_VACACHE_POOL_TO_MAP(pp) \
    178      1.72      yamt 	((struct vm_map *)((char *)(pp) - \
    179      1.72      yamt 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    180      1.72      yamt 
    181      1.72      yamt static void *
    182      1.72      yamt km_vacache_alloc(struct pool *pp, int flags)
    183      1.72      yamt {
    184      1.72      yamt 	vaddr_t va;
    185      1.72      yamt 	size_t size;
    186      1.72      yamt 	struct vm_map *map;
    187      1.72      yamt 	size = pp->pr_alloc->pa_pagesz;
    188      1.72      yamt 
    189      1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    190      1.72      yamt 
    191      1.73      yamt 	va = vm_map_min(map); /* hint */
    192      1.72      yamt 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    193      1.74      yamt 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    194      1.72      yamt 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    195      1.72      yamt 	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    196      1.72      yamt 		return NULL;
    197      1.72      yamt 
    198      1.72      yamt 	return (void *)va;
    199      1.72      yamt }
    200      1.72      yamt 
    201      1.72      yamt static void
    202      1.72      yamt km_vacache_free(struct pool *pp, void *v)
    203      1.72      yamt {
    204      1.72      yamt 	vaddr_t va = (vaddr_t)v;
    205      1.72      yamt 	size_t size = pp->pr_alloc->pa_pagesz;
    206      1.72      yamt 	struct vm_map *map;
    207      1.72      yamt 
    208      1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    209  1.76.4.2      yamt 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    210      1.72      yamt }
    211      1.72      yamt 
    212      1.72      yamt /*
    213      1.72      yamt  * km_vacache_init: initialize kva cache.
    214      1.72      yamt  */
    215      1.72      yamt 
    216      1.72      yamt static void
    217      1.72      yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
    218      1.72      yamt {
    219      1.72      yamt 	struct vm_map_kernel *vmk;
    220      1.72      yamt 	struct pool *pp;
    221      1.72      yamt 	struct pool_allocator *pa;
    222      1.72      yamt 
    223      1.72      yamt 	KASSERT(VM_MAP_IS_KERNEL(map));
    224      1.72      yamt 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    225      1.72      yamt 
    226      1.72      yamt 	vmk = vm_map_to_kernel(map);
    227      1.72      yamt 	pp = &vmk->vmk_vacache;
    228      1.72      yamt 	pa = &vmk->vmk_vacache_allocator;
    229      1.72      yamt 	memset(pa, 0, sizeof(*pa));
    230      1.72      yamt 	pa->pa_alloc = km_vacache_alloc;
    231      1.72      yamt 	pa->pa_free = km_vacache_free;
    232      1.72      yamt 	pa->pa_pagesz = (unsigned int)size;
    233      1.72      yamt 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
    234      1.72      yamt 
    235      1.72      yamt 	/* XXX for now.. */
    236      1.72      yamt 	pool_sethiwat(pp, 0);
    237      1.72      yamt }
    238      1.72      yamt 
    239      1.72      yamt void
    240      1.72      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    241      1.72      yamt {
    242      1.72      yamt 
    243      1.72      yamt 	map->flags |= VM_MAP_VACACHE;
    244      1.72      yamt 	if (size == 0)
    245      1.72      yamt 		size = KM_VACACHE_SIZE;
    246      1.72      yamt 	km_vacache_init(map, name, size);
    247      1.72      yamt }
    248      1.72      yamt 
    249      1.72      yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
    250      1.72      yamt 
    251      1.72      yamt void
    252      1.72      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    253      1.72      yamt {
    254      1.72      yamt 
    255      1.72      yamt 	/* nothing */
    256      1.72      yamt }
    257      1.72      yamt 
    258      1.72      yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
    259      1.72      yamt 
    260       1.1       mrg /*
    261       1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    262       1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    263       1.1       mrg  *
    264      1.62   thorpej  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    265      1.62   thorpej  *    we assume that [min -> start] has already been allocated and that
    266      1.62   thorpej  *    "end" is the end.
    267       1.1       mrg  */
    268       1.1       mrg 
    269       1.8       mrg void
    270      1.62   thorpej uvm_km_init(start, end)
    271      1.62   thorpej 	vaddr_t start, end;
    272       1.1       mrg {
    273      1.62   thorpej 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    274      1.27   thorpej 
    275      1.27   thorpej 	/*
    276      1.27   thorpej 	 * next, init kernel memory objects.
    277       1.8       mrg 	 */
    278       1.1       mrg 
    279       1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    280      1.34       chs 	uao_init();
    281      1.62   thorpej 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    282      1.62   thorpej 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    283       1.1       mrg 
    284      1.24   thorpej 	/*
    285      1.56   thorpej 	 * init the map and reserve any space that might already
    286      1.56   thorpej 	 * have been allocated kernel space before installing.
    287       1.8       mrg 	 */
    288       1.1       mrg 
    289      1.71      yamt 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    290      1.71      yamt 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    291      1.70      yamt 	if (start != base) {
    292      1.70      yamt 		int error;
    293      1.70      yamt 		struct uvm_map_args args;
    294      1.70      yamt 
    295      1.71      yamt 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    296      1.71      yamt 		    base, start - base,
    297      1.70      yamt 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    298      1.62   thorpej 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    299      1.70      yamt 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    300      1.70      yamt 		if (!error) {
    301      1.70      yamt 			kernel_first_mapent_store.flags =
    302      1.70      yamt 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    303      1.71      yamt 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    304      1.70      yamt 			    &kernel_first_mapent_store);
    305      1.70      yamt 		}
    306      1.70      yamt 
    307      1.70      yamt 		if (error)
    308      1.70      yamt 			panic(
    309      1.70      yamt 			    "uvm_km_init: could not reserve space for kernel");
    310      1.70      yamt 	}
    311      1.47       chs 
    312       1.8       mrg 	/*
    313       1.8       mrg 	 * install!
    314       1.8       mrg 	 */
    315       1.8       mrg 
    316      1.71      yamt 	kernel_map = &kernel_map_store.vmk_map;
    317      1.72      yamt 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    318       1.1       mrg }
    319       1.1       mrg 
    320       1.1       mrg /*
    321       1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    322       1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    323       1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    324       1.1       mrg  *
    325       1.5   thorpej  * => if `fixed' is true, *min specifies where the region described
    326       1.5   thorpej  *      by the submap must start
    327       1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    328       1.1       mrg  *	alloc a new map
    329       1.1       mrg  */
    330       1.8       mrg struct vm_map *
    331      1.25   thorpej uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
    332       1.8       mrg 	struct vm_map *map;
    333      1.52       chs 	vaddr_t *min, *max;		/* IN/OUT, OUT */
    334      1.14       eeh 	vsize_t size;
    335      1.25   thorpej 	int flags;
    336       1.8       mrg 	boolean_t fixed;
    337      1.71      yamt 	struct vm_map_kernel *submap;
    338       1.8       mrg {
    339       1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    340       1.1       mrg 
    341      1.71      yamt 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    342      1.71      yamt 
    343       1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    344       1.1       mrg 
    345       1.8       mrg 	/*
    346       1.8       mrg 	 * first allocate a blank spot in the parent map
    347       1.8       mrg 	 */
    348       1.8       mrg 
    349      1.39   thorpej 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    350       1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    351      1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    352       1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    353       1.8       mrg 	}
    354       1.8       mrg 
    355       1.8       mrg 	/*
    356       1.8       mrg 	 * set VM bounds (min is filled in by uvm_map)
    357       1.8       mrg 	 */
    358       1.1       mrg 
    359       1.8       mrg 	*max = *min + size;
    360       1.5   thorpej 
    361       1.8       mrg 	/*
    362       1.8       mrg 	 * add references to pmap and create or init the submap
    363       1.8       mrg 	 */
    364       1.1       mrg 
    365       1.8       mrg 	pmap_reference(vm_map_pmap(map));
    366       1.8       mrg 	if (submap == NULL) {
    367      1.71      yamt 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    368       1.8       mrg 		if (submap == NULL)
    369       1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    370       1.8       mrg 	}
    371      1.71      yamt 	uvm_map_setup_kernel(submap, *min, *max, flags);
    372      1.71      yamt 	submap->vmk_map.pmap = vm_map_pmap(map);
    373       1.1       mrg 
    374       1.8       mrg 	/*
    375       1.8       mrg 	 * now let uvm_map_submap plug in it...
    376       1.8       mrg 	 */
    377       1.1       mrg 
    378      1.71      yamt 	if (uvm_map_submap(map, *min, *max, &submap->vmk_map) != 0)
    379       1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    380       1.1       mrg 
    381      1.71      yamt 	return(&submap->vmk_map);
    382       1.1       mrg }
    383       1.1       mrg 
    384       1.1       mrg /*
    385       1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    386       1.1       mrg  *
    387       1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    388       1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    389       1.1       mrg  */
    390       1.1       mrg 
    391       1.8       mrg void
    392  1.76.4.2      yamt uvm_km_pgremove(startva, endva)
    393  1.76.4.2      yamt 	vaddr_t startva, endva;
    394       1.1       mrg {
    395  1.76.4.2      yamt 	struct uvm_object * const uobj = uvm.kernel_object;
    396  1.76.4.2      yamt 	const voff_t start = startva - vm_map_min(kernel_map);
    397  1.76.4.2      yamt 	const voff_t end = endva - vm_map_min(kernel_map);
    398      1.53       chs 	struct vm_page *pg;
    399      1.52       chs 	voff_t curoff, nextoff;
    400      1.53       chs 	int swpgonlydelta = 0;
    401       1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    402       1.1       mrg 
    403  1.76.4.2      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    404  1.76.4.2      yamt 	KASSERT(startva < endva);
    405  1.76.4.2      yamt 	KASSERT(endva < VM_MAX_KERNEL_ADDRESS);
    406  1.76.4.2      yamt 
    407      1.40       chs 	simple_lock(&uobj->vmobjlock);
    408       1.3       chs 
    409      1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    410      1.52       chs 		nextoff = curoff + PAGE_SIZE;
    411      1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    412      1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    413      1.52       chs 			pg->flags |= PG_WANTED;
    414      1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    415      1.52       chs 				    "km_pgrm", 0);
    416      1.52       chs 			simple_lock(&uobj->vmobjlock);
    417      1.52       chs 			nextoff = curoff;
    418       1.8       mrg 			continue;
    419      1.52       chs 		}
    420       1.8       mrg 
    421      1.52       chs 		/*
    422      1.52       chs 		 * free the swap slot, then the page.
    423      1.52       chs 		 */
    424       1.8       mrg 
    425      1.53       chs 		if (pg == NULL &&
    426      1.64        pk 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    427      1.53       chs 			swpgonlydelta++;
    428      1.53       chs 		}
    429      1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    430      1.53       chs 		if (pg != NULL) {
    431      1.53       chs 			uvm_lock_pageq();
    432      1.53       chs 			uvm_pagefree(pg);
    433      1.53       chs 			uvm_unlock_pageq();
    434      1.53       chs 		}
    435       1.8       mrg 	}
    436       1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    437       1.8       mrg 
    438      1.54       chs 	if (swpgonlydelta > 0) {
    439      1.54       chs 		simple_lock(&uvm.swap_data_lock);
    440      1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    441      1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    442      1.54       chs 		simple_unlock(&uvm.swap_data_lock);
    443      1.54       chs 	}
    444      1.24   thorpej }
    445      1.24   thorpej 
    446      1.24   thorpej 
    447      1.24   thorpej /*
    448      1.24   thorpej  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
    449      1.52       chs  *    maps
    450      1.24   thorpej  *
    451      1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    452      1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    453      1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    454      1.52       chs  *    be on the active or inactive queues (because they have no object).
    455      1.24   thorpej  */
    456      1.24   thorpej 
    457      1.24   thorpej void
    458      1.52       chs uvm_km_pgremove_intrsafe(start, end)
    459      1.24   thorpej 	vaddr_t start, end;
    460      1.24   thorpej {
    461      1.52       chs 	struct vm_page *pg;
    462      1.52       chs 	paddr_t pa;
    463      1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    464      1.24   thorpej 
    465  1.76.4.2      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    466  1.76.4.2      yamt 	KASSERT(start < end);
    467  1.76.4.2      yamt 	KASSERT(end < VM_MAX_KERNEL_ADDRESS);
    468  1.76.4.2      yamt 
    469      1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    470      1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    471      1.24   thorpej 			continue;
    472      1.40       chs 		}
    473      1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    474      1.52       chs 		KASSERT(pg);
    475      1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    476      1.52       chs 		uvm_pagefree(pg);
    477      1.24   thorpej 	}
    478       1.1       mrg }
    479       1.1       mrg 
    480  1.76.4.2      yamt #if defined(DEBUG)
    481  1.76.4.2      yamt void
    482  1.76.4.2      yamt uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
    483  1.76.4.2      yamt {
    484  1.76.4.2      yamt 	vaddr_t va;
    485  1.76.4.2      yamt 
    486  1.76.4.2      yamt 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    487  1.76.4.2      yamt 	KDASSERT(start < end);
    488  1.76.4.2      yamt 	KDASSERT(end < VM_MAX_KERNEL_ADDRESS);
    489  1.76.4.2      yamt 
    490  1.76.4.2      yamt 	for (va = start; va < end; va += PAGE_SIZE) {
    491  1.76.4.2      yamt 		if (pmap_extract(pmap_kernel(), va, NULL)) {
    492  1.76.4.2      yamt 			panic("uvm_map_km_check_empty: has page mapped at %p",
    493  1.76.4.2      yamt 			    (const void *)va);
    494  1.76.4.2      yamt 		}
    495  1.76.4.2      yamt 		if (!intrsafe) {
    496  1.76.4.2      yamt 			const struct vm_page *pg;
    497  1.76.4.2      yamt 
    498  1.76.4.2      yamt 			simple_lock(&uvm.kernel_object->vmobjlock);
    499  1.76.4.2      yamt 			pg = uvm_pagelookup(uvm.kernel_object,
    500  1.76.4.2      yamt 			    va - vm_map_min(kernel_map));
    501  1.76.4.2      yamt 			simple_unlock(&uvm.kernel_object->vmobjlock);
    502  1.76.4.2      yamt 			if (pg) {
    503  1.76.4.2      yamt 				panic("uvm_map_km_check_empty: "
    504  1.76.4.2      yamt 				    "has page hashed at %p", (const void *)va);
    505  1.76.4.2      yamt 			}
    506  1.76.4.2      yamt 		}
    507  1.76.4.2      yamt 	}
    508  1.76.4.2      yamt }
    509  1.76.4.2      yamt #endif /* defined(DEBUG) */
    510       1.1       mrg 
    511       1.1       mrg /*
    512  1.76.4.2      yamt  * uvm_km_alloc: allocate an area of kernel memory.
    513       1.1       mrg  *
    514       1.1       mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    515       1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    516       1.1       mrg  *	this case.
    517       1.1       mrg  * => we return KVA of memory allocated
    518       1.1       mrg  */
    519       1.1       mrg 
    520      1.14       eeh vaddr_t
    521  1.76.4.2      yamt uvm_km_alloc(map, size, align, flags)
    522      1.49       chs 	struct vm_map *map;
    523      1.14       eeh 	vsize_t size;
    524      1.66        pk 	vsize_t align;
    525  1.76.4.2      yamt 	uvm_flag_t flags;
    526       1.1       mrg {
    527      1.14       eeh 	vaddr_t kva, loopva;
    528      1.14       eeh 	vaddr_t offset;
    529      1.44   thorpej 	vsize_t loopsize;
    530       1.8       mrg 	struct vm_page *pg;
    531  1.76.4.2      yamt 	struct uvm_object *obj;
    532  1.76.4.2      yamt 	int pgaflags;
    533  1.76.4.2      yamt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    534       1.1       mrg 
    535       1.8       mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    536      1.40       chs 		    map, obj, size, flags);
    537      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    538       1.1       mrg 
    539  1.76.4.2      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    540  1.76.4.2      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    541  1.76.4.2      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    542  1.76.4.2      yamt 
    543       1.8       mrg 	/*
    544       1.8       mrg 	 * setup for call
    545       1.8       mrg 	 */
    546       1.8       mrg 
    547       1.8       mrg 	kva = vm_map_min(map);	/* hint */
    548  1.76.4.2      yamt 	size = round_page(size);
    549  1.76.4.2      yamt 
    550  1.76.4.2      yamt 	if (flags & UVM_KMF_PAGEABLE)
    551  1.76.4.2      yamt 		obj = uvm.kernel_object;
    552  1.76.4.2      yamt 	else
    553  1.76.4.2      yamt 		obj = NULL;
    554       1.1       mrg 
    555       1.8       mrg 	/*
    556       1.8       mrg 	 * allocate some virtual space
    557       1.8       mrg 	 */
    558       1.8       mrg 
    559  1.76.4.2      yamt 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    560  1.76.4.2      yamt 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    561  1.76.4.2      yamt 	    UVM_ADV_RANDOM,
    562  1.76.4.2      yamt 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    563  1.76.4.2      yamt 	    | UVM_FLAG_QUANTUM)) != 0)) {
    564       1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    565       1.8       mrg 		return(0);
    566       1.8       mrg 	}
    567       1.8       mrg 
    568       1.8       mrg 	/*
    569       1.8       mrg 	 * if all we wanted was VA, return now
    570       1.8       mrg 	 */
    571       1.8       mrg 
    572  1.76.4.2      yamt 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    573       1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    574       1.8       mrg 		return(kva);
    575       1.8       mrg 	}
    576      1.40       chs 
    577       1.8       mrg 	/*
    578       1.8       mrg 	 * recover object offset from virtual address
    579       1.8       mrg 	 */
    580       1.8       mrg 
    581       1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    582       1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    583       1.8       mrg 
    584       1.8       mrg 	/*
    585       1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    586       1.8       mrg 	 * whom should ever get a handle on this area of VM.
    587       1.8       mrg 	 */
    588       1.8       mrg 
    589       1.8       mrg 	loopva = kva;
    590      1.44   thorpej 	loopsize = size;
    591  1.76.4.2      yamt 
    592  1.76.4.2      yamt 	pgaflags = UVM_PGA_USERESERVE;
    593  1.76.4.2      yamt 	if (flags & UVM_KMF_ZERO)
    594  1.76.4.2      yamt 		pgaflags |= UVM_PGA_ZERO;
    595      1.44   thorpej 	while (loopsize) {
    596  1.76.4.2      yamt 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    597  1.76.4.2      yamt 
    598  1.76.4.2      yamt 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    599      1.47       chs 
    600       1.8       mrg 		/*
    601       1.8       mrg 		 * out of memory?
    602       1.8       mrg 		 */
    603       1.8       mrg 
    604      1.35   thorpej 		if (__predict_false(pg == NULL)) {
    605      1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    606      1.63        pk 			    ((flags & UVM_KMF_CANFAIL) && uvm_swapisfull())) {
    607       1.8       mrg 				/* free everything! */
    608  1.76.4.2      yamt 				uvm_km_free(map, kva, size,
    609  1.76.4.2      yamt 				    flags & UVM_KMF_TYPEMASK);
    610      1.58       chs 				return (0);
    611       1.8       mrg 			} else {
    612       1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    613       1.8       mrg 				continue;
    614       1.8       mrg 			}
    615       1.8       mrg 		}
    616      1.47       chs 
    617  1.76.4.2      yamt 		pg->flags &= ~PG_BUSY;	/* new page */
    618  1.76.4.2      yamt 		UVM_PAGE_OWN(pg, NULL);
    619  1.76.4.2      yamt 
    620       1.8       mrg 		/*
    621      1.52       chs 		 * map it in
    622       1.8       mrg 		 */
    623      1.40       chs 
    624  1.76.4.2      yamt 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    625  1.76.4.2      yamt 		    VM_PROT_READ | VM_PROT_WRITE);
    626       1.8       mrg 		loopva += PAGE_SIZE;
    627       1.8       mrg 		offset += PAGE_SIZE;
    628      1.44   thorpej 		loopsize -= PAGE_SIZE;
    629       1.8       mrg 	}
    630      1.69  junyoung 
    631      1.51     chris        	pmap_update(pmap_kernel());
    632      1.69  junyoung 
    633       1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    634       1.8       mrg 	return(kva);
    635       1.1       mrg }
    636       1.1       mrg 
    637       1.1       mrg /*
    638       1.1       mrg  * uvm_km_free: free an area of kernel memory
    639       1.1       mrg  */
    640       1.1       mrg 
    641       1.8       mrg void
    642  1.76.4.2      yamt uvm_km_free(map, addr, size, flags)
    643      1.49       chs 	struct vm_map *map;
    644      1.14       eeh 	vaddr_t addr;
    645      1.14       eeh 	vsize_t size;
    646      1.65        pk 	uvm_flag_t flags;
    647      1.41  nisimura {
    648       1.1       mrg 
    649  1.76.4.2      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    650  1.76.4.2      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    651  1.76.4.2      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    652  1.76.4.2      yamt 	KASSERT((addr & PAGE_MASK) == 0);
    653      1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    654       1.1       mrg 
    655       1.8       mrg 	size = round_page(size);
    656       1.8       mrg 
    657  1.76.4.2      yamt 	if (flags & UVM_KMF_PAGEABLE) {
    658  1.76.4.2      yamt 		uvm_km_pgremove(addr, addr + size);
    659  1.76.4.2      yamt 		pmap_remove(pmap_kernel(), addr, addr + size);
    660  1.76.4.2      yamt 	} else {
    661  1.76.4.2      yamt 		uvm_km_pgremove_intrsafe(addr, addr + size);
    662  1.76.4.2      yamt 		pmap_kremove(addr, size);
    663  1.76.4.2      yamt 	}
    664       1.8       mrg 
    665  1.76.4.2      yamt 	uvm_unmap1(map, trunc_page(addr), round_page(addr+size),
    666  1.76.4.2      yamt 	    UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    667      1.38     jeffs }
    668      1.38     jeffs 
    669      1.10   thorpej /* Sanity; must specify both or none. */
    670      1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    671      1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    672      1.10   thorpej #error Must specify MAP and UNMAP together.
    673      1.10   thorpej #endif
    674      1.10   thorpej 
    675      1.10   thorpej /*
    676      1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    677      1.10   thorpej  *
    678      1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    679      1.10   thorpej  */
    680      1.10   thorpej 
    681      1.11   thorpej /* ARGSUSED */
    682      1.14       eeh vaddr_t
    683  1.76.4.2      yamt uvm_km_alloc_poolpage_cache(map, waitok)
    684      1.72      yamt 	struct vm_map *map;
    685      1.72      yamt 	boolean_t waitok;
    686      1.72      yamt {
    687      1.72      yamt #if defined(PMAP_MAP_POOLPAGE)
    688  1.76.4.2      yamt 	return uvm_km_alloc_poolpage(map, waitok);
    689      1.72      yamt #else
    690      1.72      yamt 	struct vm_page *pg;
    691      1.72      yamt 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    692      1.72      yamt 	vaddr_t va;
    693      1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    694      1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    695      1.72      yamt 
    696      1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0)
    697  1.76.4.2      yamt 		return uvm_km_alloc_poolpage(map, waitok);
    698      1.72      yamt 
    699      1.72      yamt 	if (intrsafe)
    700      1.72      yamt 		s = splvm();
    701      1.72      yamt 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    702      1.72      yamt 	if (intrsafe)
    703      1.72      yamt 		splx(s);
    704      1.72      yamt 	if (va == 0)
    705      1.72      yamt 		return 0;
    706      1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    707      1.72      yamt again:
    708      1.72      yamt 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    709      1.72      yamt 	if (__predict_false(pg == NULL)) {
    710      1.72      yamt 		if (waitok) {
    711      1.72      yamt 			uvm_wait("plpg");
    712      1.72      yamt 			goto again;
    713      1.72      yamt 		} else {
    714      1.72      yamt 			if (intrsafe)
    715      1.72      yamt 				s = splvm();
    716      1.72      yamt 			pool_put(pp, (void *)va);
    717      1.72      yamt 			if (intrsafe)
    718      1.72      yamt 				splx(s);
    719      1.72      yamt 			return 0;
    720      1.72      yamt 		}
    721      1.72      yamt 	}
    722      1.72      yamt 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
    723      1.72      yamt 	    VM_PROT_READ|VM_PROT_WRITE);
    724      1.72      yamt 	pmap_update(pmap_kernel());
    725      1.72      yamt 
    726      1.72      yamt 	return va;
    727      1.72      yamt #endif /* PMAP_MAP_POOLPAGE */
    728      1.72      yamt }
    729      1.72      yamt 
    730      1.72      yamt vaddr_t
    731  1.76.4.2      yamt uvm_km_alloc_poolpage(map, waitok)
    732      1.49       chs 	struct vm_map *map;
    733      1.15   thorpej 	boolean_t waitok;
    734      1.10   thorpej {
    735      1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    736      1.10   thorpej 	struct vm_page *pg;
    737      1.14       eeh 	vaddr_t va;
    738      1.10   thorpej 
    739      1.15   thorpej  again:
    740      1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    741      1.35   thorpej 	if (__predict_false(pg == NULL)) {
    742      1.15   thorpej 		if (waitok) {
    743      1.15   thorpej 			uvm_wait("plpg");
    744      1.15   thorpej 			goto again;
    745      1.15   thorpej 		} else
    746      1.15   thorpej 			return (0);
    747      1.15   thorpej 	}
    748      1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    749      1.35   thorpej 	if (__predict_false(va == 0))
    750      1.10   thorpej 		uvm_pagefree(pg);
    751      1.10   thorpej 	return (va);
    752      1.10   thorpej #else
    753      1.14       eeh 	vaddr_t va;
    754      1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    755      1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    756      1.16   thorpej 
    757      1.72      yamt 	if (intrsafe)
    758      1.72      yamt 		s = splvm();
    759  1.76.4.2      yamt 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    760  1.76.4.2      yamt 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
    761      1.72      yamt 	if (intrsafe)
    762      1.72      yamt 		splx(s);
    763      1.10   thorpej 	return (va);
    764      1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    765      1.10   thorpej }
    766      1.10   thorpej 
    767      1.10   thorpej /*
    768      1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    769      1.10   thorpej  *
    770      1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    771      1.10   thorpej  */
    772      1.10   thorpej 
    773      1.11   thorpej /* ARGSUSED */
    774      1.10   thorpej void
    775      1.72      yamt uvm_km_free_poolpage_cache(map, addr)
    776      1.72      yamt 	struct vm_map *map;
    777      1.72      yamt 	vaddr_t addr;
    778      1.72      yamt {
    779      1.72      yamt #if defined(PMAP_UNMAP_POOLPAGE)
    780  1.76.4.2      yamt 	uvm_km_free_poolpage(map, addr);
    781      1.72      yamt #else
    782      1.72      yamt 	struct pool *pp;
    783      1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    784      1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    785      1.72      yamt 
    786      1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    787  1.76.4.2      yamt 		uvm_km_free_poolpage(map, addr);
    788      1.72      yamt 		return;
    789      1.72      yamt 	}
    790      1.72      yamt 
    791      1.72      yamt 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    792      1.72      yamt 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    793      1.72      yamt 	pmap_kremove(addr, PAGE_SIZE);
    794      1.72      yamt #if defined(DEBUG)
    795      1.72      yamt 	pmap_update(pmap_kernel());
    796      1.72      yamt #endif
    797      1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    798      1.72      yamt 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    799      1.72      yamt 	if (intrsafe)
    800      1.72      yamt 		s = splvm();
    801      1.72      yamt 	pool_put(pp, (void *)addr);
    802      1.72      yamt 	if (intrsafe)
    803      1.72      yamt 		splx(s);
    804      1.72      yamt #endif
    805      1.72      yamt }
    806      1.72      yamt 
    807      1.72      yamt /* ARGSUSED */
    808      1.72      yamt void
    809  1.76.4.2      yamt uvm_km_free_poolpage(map, addr)
    810      1.49       chs 	struct vm_map *map;
    811      1.14       eeh 	vaddr_t addr;
    812      1.10   thorpej {
    813      1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    814      1.14       eeh 	paddr_t pa;
    815      1.10   thorpej 
    816      1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    817      1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    818      1.10   thorpej #else
    819      1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    820      1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    821      1.10   thorpej 
    822      1.72      yamt 	if (intrsafe)
    823      1.72      yamt 		s = splvm();
    824  1.76.4.2      yamt 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    825      1.72      yamt 	if (intrsafe)
    826      1.72      yamt 		splx(s);
    827      1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    828       1.1       mrg }
    829