Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.8
      1  1.8      mrg /*	$NetBSD: uvm_km.c,v 1.8 1998/03/09 00:58:57 mrg Exp $	*/
      2  1.1      mrg 
      3  1.1      mrg /*
      4  1.1      mrg  * XXXCDC: "ROUGH DRAFT" QUALITY UVM PRE-RELEASE FILE!
      5  1.1      mrg  *         >>>USE AT YOUR OWN RISK, WORK IS NOT FINISHED<<<
      6  1.1      mrg  */
      7  1.1      mrg /*
      8  1.1      mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      9  1.1      mrg  * Copyright (c) 1991, 1993, The Regents of the University of California.
     10  1.1      mrg  *
     11  1.1      mrg  * All rights reserved.
     12  1.1      mrg  *
     13  1.1      mrg  * This code is derived from software contributed to Berkeley by
     14  1.1      mrg  * The Mach Operating System project at Carnegie-Mellon University.
     15  1.1      mrg  *
     16  1.1      mrg  * Redistribution and use in source and binary forms, with or without
     17  1.1      mrg  * modification, are permitted provided that the following conditions
     18  1.1      mrg  * are met:
     19  1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     20  1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     21  1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     22  1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     23  1.1      mrg  *    documentation and/or other materials provided with the distribution.
     24  1.1      mrg  * 3. All advertising materials mentioning features or use of this software
     25  1.1      mrg  *    must display the following acknowledgement:
     26  1.1      mrg  *	This product includes software developed by Charles D. Cranor,
     27  1.1      mrg  *      Washington University, the University of California, Berkeley and
     28  1.1      mrg  *      its contributors.
     29  1.1      mrg  * 4. Neither the name of the University nor the names of its contributors
     30  1.1      mrg  *    may be used to endorse or promote products derived from this software
     31  1.1      mrg  *    without specific prior written permission.
     32  1.1      mrg  *
     33  1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     34  1.1      mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     35  1.1      mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     36  1.1      mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     37  1.1      mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     38  1.1      mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     39  1.1      mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     40  1.1      mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     41  1.1      mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     42  1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     43  1.1      mrg  * SUCH DAMAGE.
     44  1.1      mrg  *
     45  1.1      mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     46  1.4      mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     47  1.1      mrg  *
     48  1.1      mrg  *
     49  1.1      mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     50  1.1      mrg  * All rights reserved.
     51  1.1      mrg  *
     52  1.1      mrg  * Permission to use, copy, modify and distribute this software and
     53  1.1      mrg  * its documentation is hereby granted, provided that both the copyright
     54  1.1      mrg  * notice and this permission notice appear in all copies of the
     55  1.1      mrg  * software, derivative works or modified versions, and any portions
     56  1.1      mrg  * thereof, and that both notices appear in supporting documentation.
     57  1.1      mrg  *
     58  1.1      mrg  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     59  1.1      mrg  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     60  1.1      mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     61  1.1      mrg  *
     62  1.1      mrg  * Carnegie Mellon requests users of this software to return to
     63  1.1      mrg  *
     64  1.1      mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     65  1.1      mrg  *  School of Computer Science
     66  1.1      mrg  *  Carnegie Mellon University
     67  1.1      mrg  *  Pittsburgh PA 15213-3890
     68  1.1      mrg  *
     69  1.1      mrg  * any improvements or extensions that they make and grant Carnegie the
     70  1.1      mrg  * rights to redistribute these changes.
     71  1.1      mrg  */
     72  1.6      mrg 
     73  1.6      mrg #include "opt_uvmhist.h"
     74  1.6      mrg #include "opt_pmap_new.h"
     75  1.1      mrg 
     76  1.1      mrg /*
     77  1.1      mrg  * uvm_km.c: handle kernel memory allocation and management
     78  1.1      mrg  */
     79  1.1      mrg 
     80  1.7    chuck /*
     81  1.7    chuck  * overview of kernel memory management:
     82  1.7    chuck  *
     83  1.7    chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     84  1.7    chuck  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     85  1.7    chuck  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     86  1.7    chuck  *
     87  1.7    chuck  * the kernel_map has several "submaps."   submaps can only appear in
     88  1.7    chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     89  1.7    chuck  * the management of a sub-range of the kernel's address space.  submaps
     90  1.7    chuck  * are typically allocated at boot time and are never released.   kernel
     91  1.7    chuck  * virtual address space that is mapped by a submap is locked by the
     92  1.7    chuck  * submap's lock -- not the kernel_map's lock.
     93  1.7    chuck  *
     94  1.7    chuck  * thus, the useful feature of submaps is that they allow us to break
     95  1.7    chuck  * up the locking and protection of the kernel address space into smaller
     96  1.7    chuck  * chunks.
     97  1.7    chuck  *
     98  1.7    chuck  * the vm system has several standard kernel submaps, including:
     99  1.7    chuck  *   kmem_map => contains only wired kernel memory for the kernel
    100  1.7    chuck  *		malloc.   *** access to kmem_map must be protected
    101  1.7    chuck  *		by splimp() because we are allowed to call malloc()
    102  1.7    chuck  *		at interrupt time ***
    103  1.7    chuck  *   mb_map => memory for large mbufs,  *** protected by splimp ***
    104  1.7    chuck  *   pager_map => used to map "buf" structures into kernel space
    105  1.7    chuck  *   exec_map => used during exec to handle exec args
    106  1.7    chuck  *   etc...
    107  1.7    chuck  *
    108  1.7    chuck  * the kernel allocates its private memory out of special uvm_objects whose
    109  1.7    chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    110  1.7    chuck  * are "special" and never die).   all kernel objects should be thought of
    111  1.7    chuck  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    112  1.7    chuck  * object is equal to the size of kernel virtual address space (i.e. the
    113  1.7    chuck  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    114  1.7    chuck  *
    115  1.7    chuck  * most kernel private memory lives in kernel_object.   the only exception
    116  1.7    chuck  * to this is for memory that belongs to submaps that must be protected
    117  1.7    chuck  * by splimp().    each of these submaps has their own private kernel
    118  1.7    chuck  * object (e.g. kmem_object, mb_object).
    119  1.7    chuck  *
    120  1.7    chuck  * note that just because a kernel object spans the entire kernel virutal
    121  1.7    chuck  * address space doesn't mean that it has to be mapped into the entire space.
    122  1.7    chuck  * large chunks of a kernel object's space go unused either because
    123  1.7    chuck  * that area of kernel VM is unmapped, or there is some other type of
    124  1.7    chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    125  1.7    chuck  * objects, the only part of the object that can ever be populated is the
    126  1.7    chuck  * offsets that are managed by the submap.
    127  1.7    chuck  *
    128  1.7    chuck  * note that the "offset" in a kernel object is always the kernel virtual
    129  1.7    chuck  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    130  1.7    chuck  * example:
    131  1.7    chuck  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    132  1.7    chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    133  1.7    chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    134  1.7    chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    135  1.7    chuck  *   mapped at 0xf8235000.
    136  1.7    chuck  *
    137  1.7    chuck  * note that the offsets in kmem_object and mb_object also follow this
    138  1.7    chuck  * rule.   this means that the offsets for kmem_object must fall in the
    139  1.7    chuck  * range of [vm_map_min(kmem_object) - vm_map_min(kernel_map)] to
    140  1.7    chuck  * [vm_map_max(kmem_object) - vm_map_min(kernel_map)], so the offsets
    141  1.7    chuck  * in those objects will typically not start at zero.
    142  1.7    chuck  *
    143  1.7    chuck  * kernel object have one other special property: when the kernel virtual
    144  1.7    chuck  * memory mapping them is unmapped, the backing memory in the object is
    145  1.7    chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    146  1.7    chuck  * this has to be done because there is no backing store for kernel pages
    147  1.7    chuck  * and no need to save them after they are no longer referenced.
    148  1.7    chuck  */
    149  1.7    chuck 
    150  1.1      mrg #include <sys/param.h>
    151  1.1      mrg #include <sys/systm.h>
    152  1.1      mrg #include <sys/proc.h>
    153  1.1      mrg 
    154  1.1      mrg #include <vm/vm.h>
    155  1.1      mrg #include <vm/vm_page.h>
    156  1.1      mrg #include <vm/vm_kern.h>
    157  1.1      mrg 
    158  1.1      mrg #include <uvm/uvm.h>
    159  1.1      mrg 
    160  1.1      mrg /*
    161  1.1      mrg  * global data structures
    162  1.1      mrg  */
    163  1.1      mrg 
    164  1.1      mrg vm_map_t kernel_map = NULL;
    165  1.1      mrg 
    166  1.1      mrg /*
    167  1.1      mrg  * local functions
    168  1.1      mrg  */
    169  1.1      mrg 
    170  1.1      mrg static int uvm_km_get __P((struct uvm_object *, vm_offset_t,
    171  1.8      mrg 													 vm_page_t *, int *, int, vm_prot_t, int, int));
    172  1.1      mrg /*
    173  1.1      mrg  * local data structues
    174  1.1      mrg  */
    175  1.1      mrg 
    176  1.1      mrg static struct vm_map		kernel_map_store;
    177  1.1      mrg static struct uvm_object	kmem_object_store;
    178  1.1      mrg static struct uvm_object	mb_object_store;
    179  1.1      mrg 
    180  1.1      mrg static struct uvm_pagerops km_pager = {
    181  1.8      mrg 	NULL,	/* init */
    182  1.8      mrg 	NULL, /* attach */
    183  1.8      mrg 	NULL, /* reference */
    184  1.8      mrg 	NULL, /* detach */
    185  1.8      mrg 	NULL, /* fault */
    186  1.8      mrg 	NULL, /* flush */
    187  1.8      mrg 	uvm_km_get, /* get */
    188  1.8      mrg 	/* ... rest are NULL */
    189  1.1      mrg };
    190  1.1      mrg 
    191  1.1      mrg /*
    192  1.1      mrg  * uvm_km_get: pager get function for kernel objects
    193  1.1      mrg  *
    194  1.1      mrg  * => currently we do not support pageout to the swap area, so this
    195  1.1      mrg  *    pager is very simple.    eventually we may want an anonymous
    196  1.1      mrg  *    object pager which will do paging.
    197  1.7    chuck  * => XXXCDC: this pager should be phased out in favor of the aobj pager
    198  1.1      mrg  */
    199  1.1      mrg 
    200  1.1      mrg 
    201  1.8      mrg static int
    202  1.8      mrg uvm_km_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
    203  1.8      mrg 	struct uvm_object *uobj;
    204  1.8      mrg 	vm_offset_t offset;
    205  1.8      mrg 	struct vm_page **pps;
    206  1.8      mrg 	int *npagesp;
    207  1.8      mrg 	int centeridx, advice, flags;
    208  1.8      mrg 	vm_prot_t access_type;
    209  1.8      mrg {
    210  1.8      mrg 	vm_offset_t current_offset;
    211  1.8      mrg 	vm_page_t ptmp;
    212  1.8      mrg 	int lcv, gotpages, maxpages;
    213  1.8      mrg 	boolean_t done;
    214  1.8      mrg 	UVMHIST_FUNC("uvm_km_get"); UVMHIST_CALLED(maphist);
    215  1.8      mrg 
    216  1.8      mrg 	UVMHIST_LOG(maphist, "flags=%d", flags,0,0,0);
    217  1.8      mrg 
    218  1.8      mrg 	/*
    219  1.8      mrg 	 * get number of pages
    220  1.8      mrg 	 */
    221  1.8      mrg 
    222  1.8      mrg 	maxpages = *npagesp;
    223  1.8      mrg 
    224  1.8      mrg 	/*
    225  1.8      mrg 	 * step 1: handled the case where fault data structures are locked.
    226  1.8      mrg 	 */
    227  1.8      mrg 
    228  1.8      mrg 	if (flags & PGO_LOCKED) {
    229  1.8      mrg 
    230  1.8      mrg 		/*
    231  1.8      mrg 		 * step 1a: get pages that are already resident.   only do
    232  1.8      mrg 		 * this if the data structures are locked (i.e. the first time
    233  1.8      mrg 		 * through).
    234  1.8      mrg 		 */
    235  1.8      mrg 
    236  1.8      mrg 		done = TRUE;	/* be optimistic */
    237  1.8      mrg 		gotpages = 0;	/* # of pages we got so far */
    238  1.8      mrg 
    239  1.8      mrg 		for (lcv = 0, current_offset = offset ;
    240  1.8      mrg 		    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    241  1.8      mrg 
    242  1.8      mrg 			/* do we care about this page?  if not, skip it */
    243  1.8      mrg 			if (pps[lcv] == PGO_DONTCARE)
    244  1.8      mrg 				continue;
    245  1.8      mrg 
    246  1.8      mrg 			/* lookup page */
    247  1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    248  1.8      mrg 
    249  1.8      mrg 			/* null?  attempt to allocate the page */
    250  1.8      mrg 			if (ptmp == NULL) {
    251  1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    252  1.8      mrg 				    NULL);
    253  1.8      mrg 				if (ptmp) {
    254  1.8      mrg 					/* new page */
    255  1.8      mrg 					ptmp->flags &= ~(PG_BUSY|PG_FAKE);
    256  1.8      mrg 					UVM_PAGE_OWN(ptmp, NULL);
    257  1.8      mrg 					/* XXX: prevents pageout attempts */
    258  1.8      mrg 					ptmp->wire_count = 1;
    259  1.8      mrg 					uvm_pagezero(ptmp);
    260  1.8      mrg 				}
    261  1.8      mrg 			}
    262  1.8      mrg 
    263  1.8      mrg 			/*
    264  1.8      mrg 			 * to be useful must get a non-busy, non-released page
    265  1.8      mrg 			 */
    266  1.8      mrg 			if (ptmp == NULL ||
    267  1.8      mrg 			    (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    268  1.8      mrg 				if (lcv == centeridx ||
    269  1.8      mrg 				    (flags & PGO_ALLPAGES) != 0)
    270  1.8      mrg 					/* need to do a wait or I/O! */
    271  1.8      mrg 					done = FALSE;
    272  1.8      mrg 				continue;
    273  1.8      mrg 			}
    274  1.8      mrg 
    275  1.8      mrg 			/*
    276  1.8      mrg 			 * useful page: busy/lock it and plug it in our
    277  1.8      mrg 			 * result array
    278  1.8      mrg 			 */
    279  1.8      mrg 
    280  1.8      mrg 			/* caller must un-busy this page */
    281  1.8      mrg 			ptmp->flags |= PG_BUSY;
    282  1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get1");
    283  1.8      mrg 			pps[lcv] = ptmp;
    284  1.8      mrg 			gotpages++;
    285  1.8      mrg 
    286  1.8      mrg 		}	/* "for" lcv loop */
    287  1.8      mrg 
    288  1.8      mrg 		/*
    289  1.8      mrg 		 * step 1b: now we've either done everything needed or we
    290  1.8      mrg 		 * to unlock and do some waiting or I/O.
    291  1.8      mrg 		 */
    292  1.8      mrg 
    293  1.8      mrg 		UVMHIST_LOG(maphist, "<- done (done=%d)", done, 0,0,0);
    294  1.8      mrg 
    295  1.8      mrg 		*npagesp = gotpages;
    296  1.8      mrg 		if (done)
    297  1.8      mrg 			return(VM_PAGER_OK);		/* bingo! */
    298  1.8      mrg 		else
    299  1.8      mrg 			return(VM_PAGER_UNLOCK);	/* EEK!   Need to
    300  1.8      mrg 							 * unlock and I/O */
    301  1.8      mrg 	}
    302  1.8      mrg 
    303  1.8      mrg 	/*
    304  1.8      mrg 	 * step 2: get non-resident or busy pages.
    305  1.8      mrg 	 * object is locked.   data structures are unlocked.
    306  1.8      mrg 	 */
    307  1.8      mrg 
    308  1.8      mrg 	for (lcv = 0, current_offset = offset ;
    309  1.8      mrg 	    lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
    310  1.8      mrg 
    311  1.8      mrg 		/* skip over pages we've already gotten or don't want */
    312  1.8      mrg 		/* skip over pages we don't _have_ to get */
    313  1.8      mrg 		if (pps[lcv] != NULL ||
    314  1.8      mrg 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
    315  1.8      mrg 			continue;
    316  1.8      mrg 
    317  1.8      mrg 		/*
    318  1.8      mrg 		 * we have yet to locate the current page (pps[lcv]).   we
    319  1.8      mrg 		 * first look for a page that is already at the current offset.
    320  1.8      mrg 		 * if we find a page, we check to see if it is busy or
    321  1.8      mrg 		 * released.  if that is the case, then we sleep on the page
    322  1.8      mrg 		 * until it is no longer busy or released and repeat the
    323  1.8      mrg 		 * lookup.    if the page we found is neither busy nor
    324  1.8      mrg 		 * released, then we busy it (so we own it) and plug it into
    325  1.8      mrg 		 * pps[lcv].   this 'break's the following while loop and
    326  1.8      mrg 		 * indicates we are ready to move on to the next page in the
    327  1.8      mrg 		 * "lcv" loop above.
    328  1.8      mrg 		 *
    329  1.8      mrg 		 * if we exit the while loop with pps[lcv] still set to NULL,
    330  1.8      mrg 		 * then it means that we allocated a new busy/fake/clean page
    331  1.8      mrg 		 * ptmp in the object and we need to do I/O to fill in the
    332  1.8      mrg 		 * data.
    333  1.8      mrg 		 */
    334  1.8      mrg 
    335  1.8      mrg 		while (pps[lcv] == NULL) {	/* top of "pps" while loop */
    336  1.8      mrg 
    337  1.8      mrg 			/* look for a current page */
    338  1.8      mrg 			ptmp = uvm_pagelookup(uobj, current_offset);
    339  1.8      mrg 
    340  1.8      mrg 			/* nope?   allocate one now (if we can) */
    341  1.8      mrg 			if (ptmp == NULL) {
    342  1.8      mrg 
    343  1.8      mrg 				ptmp = uvm_pagealloc(uobj, current_offset,
    344  1.8      mrg 				    NULL);	/* alloc */
    345  1.8      mrg 
    346  1.8      mrg 				/* out of RAM? */
    347  1.8      mrg 				if (ptmp == NULL) {
    348  1.8      mrg 					simple_unlock(&uobj->vmobjlock);
    349  1.8      mrg 					uvm_wait("kmgetwait1");
    350  1.8      mrg 					simple_lock(&uobj->vmobjlock);
    351  1.8      mrg 					/* goto top of pps while loop */
    352  1.8      mrg 					continue;
    353  1.8      mrg 				}
    354  1.8      mrg 
    355  1.8      mrg 				/*
    356  1.8      mrg 				 * got new page ready for I/O.  break pps
    357  1.8      mrg 				 * while loop.  pps[lcv] is still NULL.
    358  1.8      mrg 				 */
    359  1.8      mrg 				break;
    360  1.8      mrg 			}
    361  1.8      mrg 
    362  1.8      mrg 			/* page is there, see if we need to wait on it */
    363  1.8      mrg 			if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
    364  1.8      mrg 				ptmp->flags |= PG_WANTED;
    365  1.8      mrg 				UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock, 0,
    366  1.8      mrg 				    "uvn_get",0);
    367  1.8      mrg 				simple_lock(&uobj->vmobjlock);
    368  1.8      mrg 				continue;	/* goto top of pps while loop */
    369  1.8      mrg 			}
    370  1.8      mrg 
    371  1.8      mrg 			/*
    372  1.8      mrg 			 * if we get here then the page has become resident
    373  1.8      mrg 			 * and unbusy between steps 1 and 2.  we busy it now
    374  1.8      mrg 			 * (so we own it) and set pps[lcv] (so that we exit
    375  1.8      mrg 			 * the while loop).  caller must un-busy.
    376  1.8      mrg 			 */
    377  1.8      mrg 			ptmp->flags |= PG_BUSY;
    378  1.8      mrg 			UVM_PAGE_OWN(ptmp, "uvm_km_get2");
    379  1.8      mrg 			pps[lcv] = ptmp;
    380  1.8      mrg 		}
    381  1.8      mrg 
    382  1.8      mrg 		/*
    383  1.8      mrg 		 * if we own the a valid page at the correct offset, pps[lcv]
    384  1.8      mrg 		 * will point to it.   nothing more to do except go to the
    385  1.8      mrg 		 * next page.
    386  1.8      mrg 		 */
    387  1.8      mrg 
    388  1.8      mrg 		if (pps[lcv])
    389  1.8      mrg 			continue;			/* next lcv */
    390  1.8      mrg 
    391  1.8      mrg 		/*
    392  1.8      mrg 		 * we have a "fake/busy/clean" page that we just allocated.
    393  1.8      mrg 		 * do the needed "i/o" (in this case that means zero it).
    394  1.8      mrg 		 */
    395  1.8      mrg 
    396  1.8      mrg 		uvm_pagezero(ptmp);
    397  1.8      mrg 		ptmp->flags &= ~(PG_FAKE);
    398  1.8      mrg 		ptmp->wire_count = 1;	/* XXX: prevents pageout attempts */
    399  1.8      mrg 		pps[lcv] = ptmp;
    400  1.1      mrg 
    401  1.8      mrg 	}	/* lcv loop */
    402  1.1      mrg 
    403  1.8      mrg 	/*
    404  1.8      mrg 	 * finally, unlock object and return.
    405  1.8      mrg 	 */
    406  1.8      mrg 
    407  1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    408  1.8      mrg 	UVMHIST_LOG(maphist, "<- done (OK)",0,0,0,0);
    409  1.8      mrg 	return(VM_PAGER_OK);
    410  1.1      mrg }
    411  1.1      mrg 
    412  1.1      mrg /*
    413  1.1      mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    414  1.1      mrg  * KVM already allocated for text, data, bss, and static data structures).
    415  1.1      mrg  *
    416  1.1      mrg  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    417  1.1      mrg  *    we assume that [min -> start] has already been allocated and that
    418  1.1      mrg  *    "end" is the end.
    419  1.1      mrg  */
    420  1.1      mrg 
    421  1.8      mrg void
    422  1.8      mrg uvm_km_init(start, end)
    423  1.8      mrg 	vm_offset_t start, end;
    424  1.1      mrg {
    425  1.8      mrg 	vm_offset_t base = VM_MIN_KERNEL_ADDRESS;
    426  1.1      mrg 
    427  1.8      mrg 	/*
    428  1.8      mrg 	 * first, init kernel memory objects.
    429  1.8      mrg 	 */
    430  1.1      mrg 
    431  1.8      mrg 	/* kernel_object: for pageable anonymous kernel memory */
    432  1.8      mrg 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    433  1.3      chs 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    434  1.1      mrg 
    435  1.8      mrg 	/* kmem_object: for malloc'd memory (wired, protected by splimp) */
    436  1.8      mrg 	simple_lock_init(&kmem_object_store.vmobjlock);
    437  1.8      mrg 	kmem_object_store.pgops = &km_pager;
    438  1.8      mrg 	TAILQ_INIT(&kmem_object_store.memq);
    439  1.8      mrg 	kmem_object_store.uo_npages = 0;
    440  1.8      mrg 	/* we are special.  we never die */
    441  1.8      mrg 	kmem_object_store.uo_refs = UVM_OBJ_KERN;
    442  1.8      mrg 	uvmexp.kmem_object = &kmem_object_store;
    443  1.8      mrg 
    444  1.8      mrg 	/* mb_object: for mbuf memory (always wired, protected by splimp) */
    445  1.8      mrg 	simple_lock_init(&mb_object_store.vmobjlock);
    446  1.8      mrg 	mb_object_store.pgops = &km_pager;
    447  1.8      mrg 	TAILQ_INIT(&mb_object_store.memq);
    448  1.8      mrg 	mb_object_store.uo_npages = 0;
    449  1.8      mrg 	/* we are special.  we never die */
    450  1.8      mrg 	mb_object_store.uo_refs = UVM_OBJ_KERN;
    451  1.8      mrg 	uvmexp.mb_object = &mb_object_store;
    452  1.8      mrg 
    453  1.8      mrg 	/*
    454  1.8      mrg 	 * init the map and reserve allready allocated kernel space
    455  1.8      mrg 	 * before installing.
    456  1.8      mrg 	 */
    457  1.1      mrg 
    458  1.8      mrg 	uvm_map_setup(&kernel_map_store, base, end, FALSE);
    459  1.8      mrg 	kernel_map_store.pmap = pmap_kernel();
    460  1.8      mrg 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
    461  1.8      mrg 	    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
    462  1.8      mrg 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != KERN_SUCCESS)
    463  1.8      mrg 		panic("uvm_km_init: could not reserve space for kernel");
    464  1.8      mrg 
    465  1.8      mrg 	/*
    466  1.8      mrg 	 * install!
    467  1.8      mrg 	 */
    468  1.8      mrg 
    469  1.8      mrg 	kernel_map = &kernel_map_store;
    470  1.1      mrg }
    471  1.1      mrg 
    472  1.1      mrg /*
    473  1.1      mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    474  1.1      mrg  * is allocated all references to that area of VM must go through it.  this
    475  1.1      mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    476  1.1      mrg  *
    477  1.5  thorpej  * => if `fixed' is true, *min specifies where the region described
    478  1.5  thorpej  *      by the submap must start
    479  1.1      mrg  * => if submap is non NULL we use that as the submap, otherwise we
    480  1.1      mrg  *	alloc a new map
    481  1.1      mrg  */
    482  1.8      mrg struct vm_map *
    483  1.8      mrg uvm_km_suballoc(map, min, max, size, pageable, fixed, submap)
    484  1.8      mrg 	struct vm_map *map;
    485  1.8      mrg 	vm_offset_t *min, *max;		/* OUT, OUT */
    486  1.8      mrg 	vm_size_t size;
    487  1.8      mrg 	boolean_t pageable;
    488  1.8      mrg 	boolean_t fixed;
    489  1.8      mrg 	struct vm_map *submap;
    490  1.8      mrg {
    491  1.8      mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    492  1.1      mrg 
    493  1.8      mrg 	size = round_page(size);	/* round up to pagesize */
    494  1.1      mrg 
    495  1.8      mrg 	/*
    496  1.8      mrg 	 * first allocate a blank spot in the parent map
    497  1.8      mrg 	 */
    498  1.8      mrg 
    499  1.8      mrg 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET,
    500  1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    501  1.8      mrg 	    UVM_ADV_RANDOM, mapflags)) != KERN_SUCCESS) {
    502  1.8      mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    503  1.8      mrg 	}
    504  1.8      mrg 
    505  1.8      mrg 	/*
    506  1.8      mrg 	 * set VM bounds (min is filled in by uvm_map)
    507  1.8      mrg 	 */
    508  1.1      mrg 
    509  1.8      mrg 	*max = *min + size;
    510  1.5  thorpej 
    511  1.8      mrg 	/*
    512  1.8      mrg 	 * add references to pmap and create or init the submap
    513  1.8      mrg 	 */
    514  1.1      mrg 
    515  1.8      mrg 	pmap_reference(vm_map_pmap(map));
    516  1.8      mrg 	if (submap == NULL) {
    517  1.8      mrg 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, pageable);
    518  1.8      mrg 		if (submap == NULL)
    519  1.8      mrg 			panic("uvm_km_suballoc: unable to create submap");
    520  1.8      mrg 	} else {
    521  1.8      mrg 		uvm_map_setup(submap, *min, *max, pageable);
    522  1.8      mrg 		submap->pmap = vm_map_pmap(map);
    523  1.8      mrg 	}
    524  1.1      mrg 
    525  1.8      mrg 	/*
    526  1.8      mrg 	 * now let uvm_map_submap plug in it...
    527  1.8      mrg 	 */
    528  1.1      mrg 
    529  1.8      mrg 	if (uvm_map_submap(map, *min, *max, submap) != KERN_SUCCESS)
    530  1.8      mrg 		panic("uvm_km_suballoc: submap allocation failed");
    531  1.1      mrg 
    532  1.8      mrg 	return(submap);
    533  1.1      mrg }
    534  1.1      mrg 
    535  1.1      mrg /*
    536  1.1      mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    537  1.1      mrg  *
    538  1.1      mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    539  1.1      mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    540  1.1      mrg  */
    541  1.1      mrg 
    542  1.1      mrg #define UKM_HASH_PENALTY 4      /* a guess */
    543  1.1      mrg 
    544  1.8      mrg void
    545  1.8      mrg uvm_km_pgremove(uobj, start, end)
    546  1.8      mrg 	struct uvm_object *uobj;
    547  1.8      mrg 	vm_offset_t start, end;
    548  1.1      mrg {
    549  1.8      mrg 	boolean_t by_list, is_aobj;
    550  1.8      mrg 	struct vm_page *pp, *ppnext;
    551  1.8      mrg 	vm_offset_t curoff;
    552  1.8      mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    553  1.1      mrg 
    554  1.8      mrg 	simple_lock(&uobj->vmobjlock);		/* lock object */
    555  1.1      mrg 
    556  1.8      mrg 	/* is uobj an aobj? */
    557  1.8      mrg 	is_aobj = uobj->pgops == &aobj_pager;
    558  1.3      chs 
    559  1.8      mrg 	/* choose cheapest traversal */
    560  1.8      mrg 	by_list = (uobj->uo_npages <=
    561  1.1      mrg 	     ((end - start) / PAGE_SIZE) * UKM_HASH_PENALTY);
    562  1.1      mrg 
    563  1.8      mrg 	if (by_list)
    564  1.8      mrg 		goto loop_by_list;
    565  1.1      mrg 
    566  1.8      mrg 	/* by hash */
    567  1.1      mrg 
    568  1.8      mrg 	for (curoff = start ; curoff < end ; curoff += PAGE_SIZE) {
    569  1.8      mrg 		pp = uvm_pagelookup(uobj, curoff);
    570  1.8      mrg 		if (pp == NULL)
    571  1.8      mrg 			continue;
    572  1.8      mrg 
    573  1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    574  1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    575  1.8      mrg 		/* now do the actual work */
    576  1.8      mrg 		if (pp->flags & PG_BUSY)
    577  1.8      mrg 			/* owner must check for this when done */
    578  1.8      mrg 			pp->flags |= PG_RELEASED;
    579  1.8      mrg 		else {
    580  1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    581  1.8      mrg 
    582  1.8      mrg 			/*
    583  1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    584  1.8      mrg 			 */
    585  1.8      mrg 			if (is_aobj) {
    586  1.8      mrg 				int slot = uao_set_swslot(uobj,
    587  1.8      mrg 				    curoff / PAGE_SIZE, 0);
    588  1.8      mrg 
    589  1.8      mrg 				if (slot)
    590  1.8      mrg 					uvm_swap_free(slot, 1);
    591  1.8      mrg 			}
    592  1.8      mrg 
    593  1.8      mrg 			uvm_lock_pageq();
    594  1.8      mrg 			uvm_pagefree(pp);
    595  1.8      mrg 			uvm_unlock_pageq();
    596  1.8      mrg 		}
    597  1.8      mrg 		/* done */
    598  1.8      mrg 
    599  1.8      mrg 	}
    600  1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    601  1.8      mrg 	return;
    602  1.1      mrg 
    603  1.1      mrg loop_by_list:
    604  1.1      mrg 
    605  1.8      mrg 	for (pp = uobj->memq.tqh_first ; pp != NULL ; pp = ppnext) {
    606  1.8      mrg 
    607  1.8      mrg 		ppnext = pp->listq.tqe_next;
    608  1.8      mrg 		if (pp->offset < start || pp->offset >= end) {
    609  1.8      mrg 			continue;
    610  1.8      mrg 		}
    611  1.8      mrg 
    612  1.8      mrg 		UVMHIST_LOG(maphist,"  page 0x%x, busy=%d", pp,
    613  1.8      mrg 		    pp->flags & PG_BUSY, 0, 0);
    614  1.8      mrg 		/* now do the actual work */
    615  1.8      mrg 		if (pp->flags & PG_BUSY)
    616  1.8      mrg 			/* owner must check for this when done */
    617  1.8      mrg 			pp->flags |= PG_RELEASED;
    618  1.8      mrg 		else {
    619  1.8      mrg 			pmap_page_protect(PMAP_PGARG(pp), VM_PROT_NONE);
    620  1.8      mrg 
    621  1.8      mrg 			/*
    622  1.8      mrg 			 * if this kernel object is an aobj, free the swap slot.
    623  1.8      mrg 			 */
    624  1.8      mrg 			if (is_aobj) {
    625  1.8      mrg 				int slot = uao_set_swslot(uobj,
    626  1.8      mrg 				    pp->offset / PAGE_SIZE, 0);
    627  1.8      mrg 
    628  1.8      mrg 				if (slot)
    629  1.8      mrg 					uvm_swap_free(slot, 1);
    630  1.8      mrg 			}
    631  1.8      mrg 
    632  1.8      mrg 			uvm_lock_pageq();
    633  1.8      mrg 			uvm_pagefree(pp);
    634  1.8      mrg 			uvm_unlock_pageq();
    635  1.8      mrg 		}
    636  1.8      mrg 		/* done */
    637  1.1      mrg 
    638  1.8      mrg 	}
    639  1.8      mrg 	simple_unlock(&uobj->vmobjlock);
    640  1.8      mrg 	return;
    641  1.1      mrg }
    642  1.1      mrg 
    643  1.1      mrg 
    644  1.1      mrg /*
    645  1.1      mrg  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
    646  1.1      mrg  *
    647  1.1      mrg  * => we map wired memory into the specified map using the obj passed in
    648  1.1      mrg  * => NOTE: we can return NULL even if we can wait if there is not enough
    649  1.1      mrg  *	free VM space in the map... caller should be prepared to handle
    650  1.1      mrg  *	this case.
    651  1.1      mrg  * => we return KVA of memory allocated
    652  1.1      mrg  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
    653  1.1      mrg  *	lock the map
    654  1.1      mrg  */
    655  1.1      mrg 
    656  1.8      mrg vm_offset_t
    657  1.8      mrg uvm_km_kmemalloc(map, obj, size, flags)
    658  1.8      mrg 	vm_map_t map;
    659  1.8      mrg 	struct uvm_object *obj;
    660  1.8      mrg 	vm_size_t size;
    661  1.8      mrg 	int flags;
    662  1.1      mrg {
    663  1.8      mrg 	vm_offset_t kva, loopva;
    664  1.8      mrg 	vm_offset_t offset;
    665  1.8      mrg 	struct vm_page *pg;
    666  1.8      mrg 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
    667  1.1      mrg 
    668  1.1      mrg 
    669  1.8      mrg 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    670  1.1      mrg 	map, obj, size, flags);
    671  1.1      mrg #ifdef DIAGNOSTIC
    672  1.8      mrg 	/* sanity check */
    673  1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    674  1.8      mrg 		panic("uvm_km_kmemalloc: invalid map");
    675  1.1      mrg #endif
    676  1.1      mrg 
    677  1.8      mrg 	/*
    678  1.8      mrg 	 * setup for call
    679  1.8      mrg 	 */
    680  1.8      mrg 
    681  1.8      mrg 	size = round_page(size);
    682  1.8      mrg 	kva = vm_map_min(map);	/* hint */
    683  1.1      mrg 
    684  1.8      mrg 	/*
    685  1.8      mrg 	 * allocate some virtual space
    686  1.8      mrg 	 */
    687  1.8      mrg 
    688  1.8      mrg 	if (uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    689  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    690  1.1      mrg 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
    691  1.8      mrg 			!= KERN_SUCCESS) {
    692  1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    693  1.8      mrg 		return(0);
    694  1.8      mrg 	}
    695  1.8      mrg 
    696  1.8      mrg 	/*
    697  1.8      mrg 	 * if all we wanted was VA, return now
    698  1.8      mrg 	 */
    699  1.8      mrg 
    700  1.8      mrg 	if (flags & UVM_KMF_VALLOC) {
    701  1.8      mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    702  1.8      mrg 		return(kva);
    703  1.8      mrg 	}
    704  1.8      mrg 	/*
    705  1.8      mrg 	 * recover object offset from virtual address
    706  1.8      mrg 	 */
    707  1.8      mrg 
    708  1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    709  1.8      mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    710  1.8      mrg 
    711  1.8      mrg 	/*
    712  1.8      mrg 	 * now allocate and map in the memory... note that we are the only ones
    713  1.8      mrg 	 * whom should ever get a handle on this area of VM.
    714  1.8      mrg 	 */
    715  1.8      mrg 
    716  1.8      mrg 	loopva = kva;
    717  1.8      mrg 	while (size) {
    718  1.8      mrg 		simple_lock(&obj->vmobjlock);
    719  1.8      mrg 		pg = uvm_pagealloc(obj, offset, NULL);
    720  1.8      mrg 		if (pg) {
    721  1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    722  1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    723  1.8      mrg 
    724  1.8      mrg 			pg->wire_count = 1;
    725  1.8      mrg 			uvmexp.wired++;
    726  1.8      mrg 		}
    727  1.8      mrg 		simple_unlock(&obj->vmobjlock);
    728  1.8      mrg 
    729  1.8      mrg 		/*
    730  1.8      mrg 		 * out of memory?
    731  1.8      mrg 		 */
    732  1.8      mrg 
    733  1.8      mrg 		if (pg == NULL) {
    734  1.8      mrg 			if (flags & UVM_KMF_NOWAIT) {
    735  1.8      mrg 				/* free everything! */
    736  1.8      mrg 				uvm_unmap(map, kva, kva + size, 0);
    737  1.8      mrg 				return(0);
    738  1.8      mrg 			} else {
    739  1.8      mrg 				uvm_wait("km_getwait2");	/* sleep here */
    740  1.8      mrg 				continue;
    741  1.8      mrg 			}
    742  1.8      mrg 		}
    743  1.8      mrg 
    744  1.8      mrg 		/*
    745  1.8      mrg 		 * map it in: note that we call pmap_enter with the map and
    746  1.8      mrg 		 * object unlocked in case we are kmem_map/kmem_object
    747  1.8      mrg 		 * (because if pmap_enter wants to allocate out of kmem_object
    748  1.8      mrg 		 * it will need to lock it itself!)
    749  1.8      mrg 		 */
    750  1.1      mrg #if defined(PMAP_NEW)
    751  1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), VM_PROT_ALL);
    752  1.1      mrg #else
    753  1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    754  1.8      mrg 		    UVM_PROT_ALL, TRUE);
    755  1.1      mrg #endif
    756  1.8      mrg 		loopva += PAGE_SIZE;
    757  1.8      mrg 		offset += PAGE_SIZE;
    758  1.8      mrg 		size -= PAGE_SIZE;
    759  1.8      mrg 	}
    760  1.1      mrg 
    761  1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    762  1.8      mrg 	return(kva);
    763  1.1      mrg }
    764  1.1      mrg 
    765  1.1      mrg /*
    766  1.1      mrg  * uvm_km_free: free an area of kernel memory
    767  1.1      mrg  */
    768  1.1      mrg 
    769  1.8      mrg void
    770  1.8      mrg uvm_km_free(map, addr, size)
    771  1.8      mrg 	vm_map_t map;
    772  1.8      mrg 	vm_offset_t addr;
    773  1.8      mrg 	vm_size_t size;
    774  1.8      mrg {
    775  1.1      mrg 
    776  1.8      mrg 	uvm_unmap(map, trunc_page(addr), round_page(addr+size), 1);
    777  1.1      mrg }
    778  1.1      mrg 
    779  1.1      mrg /*
    780  1.1      mrg  * uvm_km_free_wakeup: free an area of kernel memory and wake up
    781  1.1      mrg  * anyone waiting for vm space.
    782  1.1      mrg  *
    783  1.1      mrg  * => XXX: "wanted" bit + unlock&wait on other end?
    784  1.1      mrg  */
    785  1.1      mrg 
    786  1.8      mrg void
    787  1.8      mrg uvm_km_free_wakeup(map, addr, size)
    788  1.8      mrg 	vm_map_t map;
    789  1.8      mrg 	vm_offset_t addr;
    790  1.8      mrg 	vm_size_t size;
    791  1.1      mrg {
    792  1.8      mrg 	vm_map_entry_t dead_entries;
    793  1.1      mrg 
    794  1.8      mrg 	vm_map_lock(map);
    795  1.8      mrg 	(void)uvm_unmap_remove(map, trunc_page(addr), round_page(addr+size), 1,
    796  1.1      mrg 			 &dead_entries);
    797  1.8      mrg 	thread_wakeup(map);
    798  1.8      mrg 	vm_map_unlock(map);
    799  1.1      mrg 
    800  1.8      mrg 	if (dead_entries != NULL)
    801  1.8      mrg 		uvm_unmap_detach(dead_entries, 0);
    802  1.1      mrg }
    803  1.1      mrg 
    804  1.1      mrg /*
    805  1.1      mrg  * uvm_km_alloc1: allocate wired down memory in the kernel map.
    806  1.1      mrg  *
    807  1.1      mrg  * => we can sleep if needed
    808  1.1      mrg  */
    809  1.1      mrg 
    810  1.8      mrg vm_offset_t
    811  1.8      mrg uvm_km_alloc1(map, size, zeroit)
    812  1.8      mrg 	vm_map_t map;
    813  1.8      mrg 	vm_size_t size;
    814  1.8      mrg 	boolean_t zeroit;
    815  1.1      mrg {
    816  1.8      mrg 	vm_offset_t kva, loopva, offset;
    817  1.8      mrg 	struct vm_page *pg;
    818  1.8      mrg 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
    819  1.1      mrg 
    820  1.8      mrg 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
    821  1.1      mrg 
    822  1.1      mrg #ifdef DIAGNOSTIC
    823  1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    824  1.8      mrg 		panic("uvm_km_alloc1");
    825  1.1      mrg #endif
    826  1.1      mrg 
    827  1.8      mrg 	size = round_page(size);
    828  1.8      mrg 	kva = vm_map_min(map);		/* hint */
    829  1.1      mrg 
    830  1.8      mrg 	/*
    831  1.8      mrg 	 * allocate some virtual space
    832  1.8      mrg 	 */
    833  1.1      mrg 
    834  1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    835  1.1      mrg 	      UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    836  1.1      mrg 			  UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    837  1.8      mrg 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
    838  1.8      mrg 		return(0);
    839  1.8      mrg 	}
    840  1.8      mrg 
    841  1.8      mrg 	/*
    842  1.8      mrg 	 * recover object offset from virtual address
    843  1.8      mrg 	 */
    844  1.8      mrg 
    845  1.8      mrg 	offset = kva - vm_map_min(kernel_map);
    846  1.8      mrg 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
    847  1.8      mrg 
    848  1.8      mrg 	/*
    849  1.8      mrg 	 * now allocate the memory.  we must be careful about released pages.
    850  1.8      mrg 	 */
    851  1.8      mrg 
    852  1.8      mrg 	loopva = kva;
    853  1.8      mrg 	while (size) {
    854  1.8      mrg 		simple_lock(&uvm.kernel_object->vmobjlock);
    855  1.8      mrg 		pg = uvm_pagelookup(uvm.kernel_object, offset);
    856  1.8      mrg 
    857  1.8      mrg 		/*
    858  1.8      mrg 		 * if we found a page in an unallocated region, it must be
    859  1.8      mrg 		 * released
    860  1.8      mrg 		 */
    861  1.8      mrg 		if (pg) {
    862  1.8      mrg 			if ((pg->flags & PG_RELEASED) == 0)
    863  1.8      mrg 				panic("uvm_km_alloc1: non-released page");
    864  1.8      mrg 			pg->flags |= PG_WANTED;
    865  1.8      mrg 			UVM_UNLOCK_AND_WAIT(pg, &uvm.kernel_object->vmobjlock,
    866  1.8      mrg 			    0, "km_alloc", 0);
    867  1.8      mrg 			continue;   /* retry */
    868  1.8      mrg 		}
    869  1.8      mrg 
    870  1.8      mrg 		/* allocate ram */
    871  1.8      mrg 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL);
    872  1.8      mrg 		if (pg) {
    873  1.8      mrg 			pg->flags &= ~PG_BUSY;	/* new page */
    874  1.8      mrg 			UVM_PAGE_OWN(pg, NULL);
    875  1.8      mrg 		}
    876  1.8      mrg 		simple_unlock(&uvm.kernel_object->vmobjlock);
    877  1.8      mrg 		if (pg == NULL) {
    878  1.8      mrg 			uvm_wait("km_alloc1w");	/* wait for memory */
    879  1.8      mrg 			continue;
    880  1.8      mrg 		}
    881  1.8      mrg 
    882  1.8      mrg 		/* map it in */
    883  1.1      mrg #if defined(PMAP_NEW)
    884  1.8      mrg 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), UVM_PROT_ALL);
    885  1.1      mrg #else
    886  1.8      mrg 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
    887  1.8      mrg 		    UVM_PROT_ALL, TRUE);
    888  1.1      mrg #endif
    889  1.8      mrg 		loopva += PAGE_SIZE;
    890  1.8      mrg 		offset += PAGE_SIZE;
    891  1.8      mrg 		size -= PAGE_SIZE;
    892  1.8      mrg 	}
    893  1.8      mrg 
    894  1.8      mrg 	/*
    895  1.8      mrg 	 * zero on request (note that "size" is now zero due to the above loop
    896  1.8      mrg 	 * so we need to subtract kva from loopva to reconstruct the size).
    897  1.8      mrg 	 */
    898  1.1      mrg 
    899  1.8      mrg 	if (zeroit)
    900  1.8      mrg 		bzero((caddr_t)kva, loopva - kva);
    901  1.1      mrg 
    902  1.8      mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    903  1.8      mrg 	return(kva);
    904  1.1      mrg }
    905  1.1      mrg 
    906  1.1      mrg /*
    907  1.1      mrg  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
    908  1.1      mrg  *
    909  1.1      mrg  * => memory is not allocated until fault time
    910  1.1      mrg  */
    911  1.1      mrg 
    912  1.8      mrg vm_offset_t
    913  1.8      mrg uvm_km_valloc(map, size)
    914  1.8      mrg 	vm_map_t map;
    915  1.8      mrg 	vm_size_t size;
    916  1.1      mrg {
    917  1.8      mrg 	vm_offset_t kva;
    918  1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
    919  1.1      mrg 
    920  1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    921  1.1      mrg 
    922  1.1      mrg #ifdef DIAGNOSTIC
    923  1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    924  1.8      mrg 		panic("uvm_km_valloc");
    925  1.1      mrg #endif
    926  1.1      mrg 
    927  1.8      mrg 	size = round_page(size);
    928  1.8      mrg 	kva = vm_map_min(map);		/* hint */
    929  1.1      mrg 
    930  1.8      mrg 	/*
    931  1.8      mrg 	 * allocate some virtual space.  will be demand filled by kernel_object.
    932  1.8      mrg 	 */
    933  1.1      mrg 
    934  1.8      mrg 	if (uvm_map(map, &kva, size, uvm.kernel_object, UVM_UNKNOWN_OFFSET,
    935  1.8      mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    936  1.8      mrg 	    UVM_ADV_RANDOM, 0)) != KERN_SUCCESS) {
    937  1.8      mrg 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
    938  1.8      mrg 		return(0);
    939  1.8      mrg 	}
    940  1.1      mrg 
    941  1.8      mrg 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
    942  1.8      mrg 	return(kva);
    943  1.1      mrg }
    944  1.1      mrg 
    945  1.1      mrg /*
    946  1.1      mrg  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
    947  1.1      mrg  *
    948  1.1      mrg  * => memory is not allocated until fault time
    949  1.1      mrg  * => if no room in map, wait for space to free, unless requested size
    950  1.1      mrg  *    is larger than map (in which case we return 0)
    951  1.1      mrg  */
    952  1.1      mrg 
    953  1.8      mrg vm_offset_t
    954  1.8      mrg uvm_km_valloc_wait(map, size)
    955  1.8      mrg 	vm_map_t map;
    956  1.8      mrg 	vm_size_t size;
    957  1.1      mrg {
    958  1.8      mrg 	vm_offset_t kva;
    959  1.8      mrg 	UVMHIST_FUNC("uvm_km_valloc_wait"); UVMHIST_CALLED(maphist);
    960  1.1      mrg 
    961  1.8      mrg 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
    962  1.1      mrg 
    963  1.1      mrg #ifdef DIAGNOSTIC
    964  1.8      mrg 	if (vm_map_pmap(map) != pmap_kernel())
    965  1.8      mrg 		panic("uvm_km_valloc_wait");
    966  1.1      mrg #endif
    967  1.1      mrg 
    968  1.8      mrg 	size = round_page(size);
    969  1.8      mrg 	if (size > vm_map_max(map) - vm_map_min(map))
    970  1.8      mrg 		return(0);
    971  1.8      mrg 
    972  1.8      mrg 	while (1) {
    973  1.8      mrg 		kva = vm_map_min(map);		/* hint */
    974  1.8      mrg 
    975  1.8      mrg 		/*
    976  1.8      mrg 		 * allocate some virtual space.   will be demand filled
    977  1.8      mrg 		 * by kernel_object.
    978  1.8      mrg 		 */
    979  1.8      mrg 
    980  1.8      mrg 		if (uvm_map(map, &kva, size, uvm.kernel_object,
    981  1.8      mrg 		    UVM_UNKNOWN_OFFSET, UVM_MAPFLAG(UVM_PROT_ALL,
    982  1.8      mrg 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
    983  1.8      mrg 		    == KERN_SUCCESS) {
    984  1.8      mrg 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    985  1.8      mrg 			return(kva);
    986  1.8      mrg 		}
    987  1.8      mrg 
    988  1.8      mrg 		/*
    989  1.8      mrg 		 * failed.  sleep for a while (on map)
    990  1.8      mrg 		 */
    991  1.8      mrg 
    992  1.8      mrg 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
    993  1.8      mrg 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
    994  1.8      mrg 	}
    995  1.8      mrg 	/*NOTREACHED*/
    996  1.1      mrg }
    997