Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.86
      1  1.85      yamt /*	$NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71   1.1       mrg  */
     72   1.1       mrg 
     73   1.7     chuck /*
     74   1.7     chuck  * overview of kernel memory management:
     75   1.7     chuck  *
     76   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  1.62   thorpej  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  1.62   thorpej  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79   1.7     chuck  *
     80  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     81   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     85   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86   1.7     chuck  *
     87   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89   1.7     chuck  * chunks.
     90   1.7     chuck  *
     91   1.7     chuck  * the vm system has several standard kernel submaps, including:
     92   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95   1.7     chuck  *		at interrupt time ***
     96  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98   1.7     chuck  *   exec_map => used during exec to handle exec args
     99   1.7     chuck  *   etc...
    100   1.7     chuck  *
    101   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  1.62   thorpej  * object is equal to the size of kernel virtual address space (i.e. the
    106  1.62   thorpej  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107   1.7     chuck  *
    108   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    109   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    110  1.47       chs  * large chunks of a kernel object's space go unused either because
    111  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    112   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    113   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    114   1.7     chuck  * offsets that are managed by the submap.
    115   1.7     chuck  *
    116   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    117  1.62   thorpej  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    118   1.7     chuck  * example:
    119  1.62   thorpej  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    120   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    121   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    122   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    123  1.47       chs  *   mapped at 0xf8235000.
    124   1.7     chuck  *
    125   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    126   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    127   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    128   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    129   1.7     chuck  * and no need to save them after they are no longer referenced.
    130   1.7     chuck  */
    131  1.55     lukem 
    132  1.55     lukem #include <sys/cdefs.h>
    133  1.85      yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.86 2006/04/05 21:56:24 yamt Exp $");
    134  1.55     lukem 
    135  1.55     lukem #include "opt_uvmhist.h"
    136   1.7     chuck 
    137   1.1       mrg #include <sys/param.h>
    138  1.71      yamt #include <sys/malloc.h>
    139   1.1       mrg #include <sys/systm.h>
    140   1.1       mrg #include <sys/proc.h>
    141  1.72      yamt #include <sys/pool.h>
    142   1.1       mrg 
    143   1.1       mrg #include <uvm/uvm.h>
    144   1.1       mrg 
    145   1.1       mrg /*
    146   1.1       mrg  * global data structures
    147   1.1       mrg  */
    148   1.1       mrg 
    149  1.49       chs struct vm_map *kernel_map = NULL;
    150   1.1       mrg 
    151   1.1       mrg /*
    152   1.1       mrg  * local data structues
    153   1.1       mrg  */
    154   1.1       mrg 
    155  1.71      yamt static struct vm_map_kernel	kernel_map_store;
    156  1.70      yamt static struct vm_map_entry	kernel_first_mapent_store;
    157   1.1       mrg 
    158  1.72      yamt #if !defined(PMAP_MAP_POOLPAGE)
    159  1.72      yamt 
    160  1.72      yamt /*
    161  1.72      yamt  * kva cache
    162  1.72      yamt  *
    163  1.72      yamt  * XXX maybe it's better to do this at the uvm_map layer.
    164  1.72      yamt  */
    165  1.72      yamt 
    166  1.72      yamt #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    167  1.72      yamt 
    168  1.72      yamt static void *km_vacache_alloc(struct pool *, int);
    169  1.72      yamt static void km_vacache_free(struct pool *, void *);
    170  1.72      yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
    171  1.72      yamt 
    172  1.72      yamt /* XXX */
    173  1.72      yamt #define	KM_VACACHE_POOL_TO_MAP(pp) \
    174  1.72      yamt 	((struct vm_map *)((char *)(pp) - \
    175  1.72      yamt 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    176  1.72      yamt 
    177  1.72      yamt static void *
    178  1.72      yamt km_vacache_alloc(struct pool *pp, int flags)
    179  1.72      yamt {
    180  1.72      yamt 	vaddr_t va;
    181  1.72      yamt 	size_t size;
    182  1.72      yamt 	struct vm_map *map;
    183  1.72      yamt 	size = pp->pr_alloc->pa_pagesz;
    184  1.72      yamt 
    185  1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    186  1.72      yamt 
    187  1.73      yamt 	va = vm_map_min(map); /* hint */
    188  1.72      yamt 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    189  1.74      yamt 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    190  1.72      yamt 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    191  1.72      yamt 	    ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    192  1.72      yamt 		return NULL;
    193  1.72      yamt 
    194  1.72      yamt 	return (void *)va;
    195  1.72      yamt }
    196  1.72      yamt 
    197  1.72      yamt static void
    198  1.72      yamt km_vacache_free(struct pool *pp, void *v)
    199  1.72      yamt {
    200  1.72      yamt 	vaddr_t va = (vaddr_t)v;
    201  1.72      yamt 	size_t size = pp->pr_alloc->pa_pagesz;
    202  1.72      yamt 	struct vm_map *map;
    203  1.72      yamt 
    204  1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    205  1.78      yamt 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    206  1.72      yamt }
    207  1.72      yamt 
    208  1.72      yamt /*
    209  1.72      yamt  * km_vacache_init: initialize kva cache.
    210  1.72      yamt  */
    211  1.72      yamt 
    212  1.72      yamt static void
    213  1.72      yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
    214  1.72      yamt {
    215  1.72      yamt 	struct vm_map_kernel *vmk;
    216  1.72      yamt 	struct pool *pp;
    217  1.72      yamt 	struct pool_allocator *pa;
    218  1.72      yamt 
    219  1.72      yamt 	KASSERT(VM_MAP_IS_KERNEL(map));
    220  1.72      yamt 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    221  1.72      yamt 
    222  1.72      yamt 	vmk = vm_map_to_kernel(map);
    223  1.72      yamt 	pp = &vmk->vmk_vacache;
    224  1.72      yamt 	pa = &vmk->vmk_vacache_allocator;
    225  1.72      yamt 	memset(pa, 0, sizeof(*pa));
    226  1.72      yamt 	pa->pa_alloc = km_vacache_alloc;
    227  1.72      yamt 	pa->pa_free = km_vacache_free;
    228  1.72      yamt 	pa->pa_pagesz = (unsigned int)size;
    229  1.72      yamt 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
    230  1.72      yamt 
    231  1.72      yamt 	/* XXX for now.. */
    232  1.72      yamt 	pool_sethiwat(pp, 0);
    233  1.72      yamt }
    234  1.72      yamt 
    235  1.72      yamt void
    236  1.72      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    237  1.72      yamt {
    238  1.72      yamt 
    239  1.72      yamt 	map->flags |= VM_MAP_VACACHE;
    240  1.72      yamt 	if (size == 0)
    241  1.72      yamt 		size = KM_VACACHE_SIZE;
    242  1.72      yamt 	km_vacache_init(map, name, size);
    243  1.72      yamt }
    244  1.72      yamt 
    245  1.72      yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
    246  1.72      yamt 
    247  1.72      yamt void
    248  1.72      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    249  1.72      yamt {
    250  1.72      yamt 
    251  1.72      yamt 	/* nothing */
    252  1.72      yamt }
    253  1.72      yamt 
    254  1.72      yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
    255  1.72      yamt 
    256   1.1       mrg /*
    257   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    258   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    259   1.1       mrg  *
    260  1.62   thorpej  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    261  1.82  christos  *    we assume that [vmin -> start] has already been allocated and that
    262  1.62   thorpej  *    "end" is the end.
    263   1.1       mrg  */
    264   1.1       mrg 
    265   1.8       mrg void
    266  1.83   thorpej uvm_km_init(vaddr_t start, vaddr_t end)
    267   1.1       mrg {
    268  1.62   thorpej 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    269  1.27   thorpej 
    270  1.27   thorpej 	/*
    271  1.27   thorpej 	 * next, init kernel memory objects.
    272   1.8       mrg 	 */
    273   1.1       mrg 
    274   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    275  1.34       chs 	uao_init();
    276  1.62   thorpej 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    277  1.62   thorpej 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    278   1.1       mrg 
    279  1.24   thorpej 	/*
    280  1.56   thorpej 	 * init the map and reserve any space that might already
    281  1.56   thorpej 	 * have been allocated kernel space before installing.
    282   1.8       mrg 	 */
    283   1.1       mrg 
    284  1.71      yamt 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    285  1.71      yamt 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    286  1.70      yamt 	if (start != base) {
    287  1.70      yamt 		int error;
    288  1.70      yamt 		struct uvm_map_args args;
    289  1.70      yamt 
    290  1.71      yamt 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    291  1.71      yamt 		    base, start - base,
    292  1.70      yamt 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    293  1.62   thorpej 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    294  1.70      yamt 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    295  1.70      yamt 		if (!error) {
    296  1.70      yamt 			kernel_first_mapent_store.flags =
    297  1.70      yamt 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    298  1.71      yamt 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    299  1.70      yamt 			    &kernel_first_mapent_store);
    300  1.70      yamt 		}
    301  1.70      yamt 
    302  1.70      yamt 		if (error)
    303  1.70      yamt 			panic(
    304  1.70      yamt 			    "uvm_km_init: could not reserve space for kernel");
    305  1.70      yamt 	}
    306  1.47       chs 
    307   1.8       mrg 	/*
    308   1.8       mrg 	 * install!
    309   1.8       mrg 	 */
    310   1.8       mrg 
    311  1.71      yamt 	kernel_map = &kernel_map_store.vmk_map;
    312  1.72      yamt 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    313   1.1       mrg }
    314   1.1       mrg 
    315   1.1       mrg /*
    316   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    317   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    318   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    319   1.1       mrg  *
    320  1.82  christos  * => if `fixed' is true, *vmin specifies where the region described
    321   1.5   thorpej  *      by the submap must start
    322   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    323   1.1       mrg  *	alloc a new map
    324   1.1       mrg  */
    325  1.78      yamt 
    326   1.8       mrg struct vm_map *
    327  1.83   thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    328  1.83   thorpej     vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
    329  1.83   thorpej     struct vm_map_kernel *submap)
    330   1.8       mrg {
    331   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    332   1.1       mrg 
    333  1.71      yamt 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    334  1.71      yamt 
    335   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    336   1.1       mrg 
    337   1.8       mrg 	/*
    338   1.8       mrg 	 * first allocate a blank spot in the parent map
    339   1.8       mrg 	 */
    340   1.8       mrg 
    341  1.82  christos 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    342   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    343  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    344   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    345   1.8       mrg 	}
    346   1.8       mrg 
    347   1.8       mrg 	/*
    348  1.82  christos 	 * set VM bounds (vmin is filled in by uvm_map)
    349   1.8       mrg 	 */
    350   1.1       mrg 
    351  1.82  christos 	*vmax = *vmin + size;
    352   1.5   thorpej 
    353   1.8       mrg 	/*
    354   1.8       mrg 	 * add references to pmap and create or init the submap
    355   1.8       mrg 	 */
    356   1.1       mrg 
    357   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    358   1.8       mrg 	if (submap == NULL) {
    359  1.71      yamt 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    360   1.8       mrg 		if (submap == NULL)
    361   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    362   1.8       mrg 	}
    363  1.82  christos 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
    364  1.71      yamt 	submap->vmk_map.pmap = vm_map_pmap(map);
    365   1.1       mrg 
    366   1.8       mrg 	/*
    367   1.8       mrg 	 * now let uvm_map_submap plug in it...
    368   1.8       mrg 	 */
    369   1.1       mrg 
    370  1.82  christos 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
    371   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    372   1.1       mrg 
    373  1.71      yamt 	return(&submap->vmk_map);
    374   1.1       mrg }
    375   1.1       mrg 
    376   1.1       mrg /*
    377   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    378   1.1       mrg  *
    379   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    380   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    381   1.1       mrg  */
    382   1.1       mrg 
    383   1.8       mrg void
    384  1.83   thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    385   1.1       mrg {
    386  1.78      yamt 	struct uvm_object * const uobj = uvm.kernel_object;
    387  1.78      yamt 	const voff_t start = startva - vm_map_min(kernel_map);
    388  1.78      yamt 	const voff_t end = endva - vm_map_min(kernel_map);
    389  1.53       chs 	struct vm_page *pg;
    390  1.52       chs 	voff_t curoff, nextoff;
    391  1.53       chs 	int swpgonlydelta = 0;
    392   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    393   1.1       mrg 
    394  1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    395  1.78      yamt 	KASSERT(startva < endva);
    396  1.86      yamt 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    397  1.78      yamt 
    398  1.40       chs 	simple_lock(&uobj->vmobjlock);
    399   1.3       chs 
    400  1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    401  1.52       chs 		nextoff = curoff + PAGE_SIZE;
    402  1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    403  1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    404  1.52       chs 			pg->flags |= PG_WANTED;
    405  1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    406  1.52       chs 				    "km_pgrm", 0);
    407  1.52       chs 			simple_lock(&uobj->vmobjlock);
    408  1.52       chs 			nextoff = curoff;
    409   1.8       mrg 			continue;
    410  1.52       chs 		}
    411   1.8       mrg 
    412  1.52       chs 		/*
    413  1.52       chs 		 * free the swap slot, then the page.
    414  1.52       chs 		 */
    415   1.8       mrg 
    416  1.53       chs 		if (pg == NULL &&
    417  1.64        pk 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    418  1.53       chs 			swpgonlydelta++;
    419  1.53       chs 		}
    420  1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    421  1.53       chs 		if (pg != NULL) {
    422  1.53       chs 			uvm_lock_pageq();
    423  1.53       chs 			uvm_pagefree(pg);
    424  1.53       chs 			uvm_unlock_pageq();
    425  1.53       chs 		}
    426   1.8       mrg 	}
    427   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    428   1.8       mrg 
    429  1.54       chs 	if (swpgonlydelta > 0) {
    430  1.54       chs 		simple_lock(&uvm.swap_data_lock);
    431  1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    432  1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    433  1.54       chs 		simple_unlock(&uvm.swap_data_lock);
    434  1.54       chs 	}
    435  1.24   thorpej }
    436  1.24   thorpej 
    437  1.24   thorpej 
    438  1.24   thorpej /*
    439  1.78      yamt  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    440  1.78      yamt  *    regions.
    441  1.24   thorpej  *
    442  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    443  1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    444  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    445  1.52       chs  *    be on the active or inactive queues (because they have no object).
    446  1.24   thorpej  */
    447  1.24   thorpej 
    448  1.24   thorpej void
    449  1.83   thorpej uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
    450  1.24   thorpej {
    451  1.52       chs 	struct vm_page *pg;
    452  1.52       chs 	paddr_t pa;
    453  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    454  1.24   thorpej 
    455  1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    456  1.78      yamt 	KASSERT(start < end);
    457  1.86      yamt 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    458  1.78      yamt 
    459  1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    460  1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    461  1.24   thorpej 			continue;
    462  1.40       chs 		}
    463  1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    464  1.52       chs 		KASSERT(pg);
    465  1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    466  1.52       chs 		uvm_pagefree(pg);
    467  1.24   thorpej 	}
    468   1.1       mrg }
    469   1.1       mrg 
    470  1.78      yamt #if defined(DEBUG)
    471  1.78      yamt void
    472  1.78      yamt uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
    473  1.78      yamt {
    474  1.78      yamt 	vaddr_t va;
    475  1.78      yamt 	paddr_t pa;
    476  1.78      yamt 
    477  1.78      yamt 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    478  1.78      yamt 	KDASSERT(start < end);
    479  1.85      yamt 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    480  1.78      yamt 
    481  1.78      yamt 	for (va = start; va < end; va += PAGE_SIZE) {
    482  1.78      yamt 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    483  1.81    simonb 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    484  1.81    simonb 			    (void *)va, (long long)pa);
    485  1.78      yamt 		}
    486  1.78      yamt 		if (!intrsafe) {
    487  1.78      yamt 			const struct vm_page *pg;
    488  1.78      yamt 
    489  1.78      yamt 			simple_lock(&uvm.kernel_object->vmobjlock);
    490  1.78      yamt 			pg = uvm_pagelookup(uvm.kernel_object,
    491  1.78      yamt 			    va - vm_map_min(kernel_map));
    492  1.78      yamt 			simple_unlock(&uvm.kernel_object->vmobjlock);
    493  1.78      yamt 			if (pg) {
    494  1.78      yamt 				panic("uvm_km_check_empty: "
    495  1.78      yamt 				    "has page hashed at %p", (const void *)va);
    496  1.78      yamt 			}
    497  1.78      yamt 		}
    498  1.78      yamt 	}
    499  1.78      yamt }
    500  1.78      yamt #endif /* defined(DEBUG) */
    501   1.1       mrg 
    502   1.1       mrg /*
    503  1.78      yamt  * uvm_km_alloc: allocate an area of kernel memory.
    504   1.1       mrg  *
    505  1.78      yamt  * => NOTE: we can return 0 even if we can wait if there is not enough
    506   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    507   1.1       mrg  *	this case.
    508   1.1       mrg  * => we return KVA of memory allocated
    509   1.1       mrg  */
    510   1.1       mrg 
    511  1.14       eeh vaddr_t
    512  1.83   thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    513   1.1       mrg {
    514  1.14       eeh 	vaddr_t kva, loopva;
    515  1.14       eeh 	vaddr_t offset;
    516  1.44   thorpej 	vsize_t loopsize;
    517   1.8       mrg 	struct vm_page *pg;
    518  1.78      yamt 	struct uvm_object *obj;
    519  1.78      yamt 	int pgaflags;
    520  1.78      yamt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    521   1.1       mrg 
    522  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    523  1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    524  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    525  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    526   1.1       mrg 
    527   1.8       mrg 	/*
    528   1.8       mrg 	 * setup for call
    529   1.8       mrg 	 */
    530   1.8       mrg 
    531  1.78      yamt 	kva = vm_map_min(map);	/* hint */
    532   1.8       mrg 	size = round_page(size);
    533  1.78      yamt 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
    534  1.78      yamt 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    535  1.78      yamt 		    map, obj, size, flags);
    536   1.1       mrg 
    537   1.8       mrg 	/*
    538   1.8       mrg 	 * allocate some virtual space
    539   1.8       mrg 	 */
    540   1.8       mrg 
    541  1.78      yamt 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    542  1.78      yamt 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    543  1.78      yamt 	    UVM_ADV_RANDOM,
    544  1.78      yamt 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    545  1.78      yamt 	    | UVM_FLAG_QUANTUM)) != 0)) {
    546   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    547   1.8       mrg 		return(0);
    548   1.8       mrg 	}
    549   1.8       mrg 
    550   1.8       mrg 	/*
    551   1.8       mrg 	 * if all we wanted was VA, return now
    552   1.8       mrg 	 */
    553   1.8       mrg 
    554  1.78      yamt 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    555   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    556   1.8       mrg 		return(kva);
    557   1.8       mrg 	}
    558  1.40       chs 
    559   1.8       mrg 	/*
    560   1.8       mrg 	 * recover object offset from virtual address
    561   1.8       mrg 	 */
    562   1.8       mrg 
    563   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    564   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    565   1.8       mrg 
    566   1.8       mrg 	/*
    567   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    568   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    569   1.8       mrg 	 */
    570   1.8       mrg 
    571   1.8       mrg 	loopva = kva;
    572  1.44   thorpej 	loopsize = size;
    573  1.78      yamt 
    574  1.78      yamt 	pgaflags = UVM_PGA_USERESERVE;
    575  1.78      yamt 	if (flags & UVM_KMF_ZERO)
    576  1.78      yamt 		pgaflags |= UVM_PGA_ZERO;
    577  1.44   thorpej 	while (loopsize) {
    578  1.78      yamt 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    579  1.78      yamt 
    580  1.78      yamt 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    581  1.47       chs 
    582   1.8       mrg 		/*
    583   1.8       mrg 		 * out of memory?
    584   1.8       mrg 		 */
    585   1.8       mrg 
    586  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    587  1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    588  1.80      yamt 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    589   1.8       mrg 				/* free everything! */
    590  1.78      yamt 				uvm_km_free(map, kva, size,
    591  1.78      yamt 				    flags & UVM_KMF_TYPEMASK);
    592  1.58       chs 				return (0);
    593   1.8       mrg 			} else {
    594   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    595   1.8       mrg 				continue;
    596   1.8       mrg 			}
    597   1.8       mrg 		}
    598  1.47       chs 
    599  1.78      yamt 		pg->flags &= ~PG_BUSY;	/* new page */
    600  1.78      yamt 		UVM_PAGE_OWN(pg, NULL);
    601  1.78      yamt 
    602   1.8       mrg 		/*
    603  1.52       chs 		 * map it in
    604   1.8       mrg 		 */
    605  1.40       chs 
    606  1.78      yamt 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    607  1.78      yamt 		    VM_PROT_READ | VM_PROT_WRITE);
    608   1.8       mrg 		loopva += PAGE_SIZE;
    609   1.8       mrg 		offset += PAGE_SIZE;
    610  1.44   thorpej 		loopsize -= PAGE_SIZE;
    611   1.8       mrg 	}
    612  1.69  junyoung 
    613  1.51     chris        	pmap_update(pmap_kernel());
    614  1.69  junyoung 
    615   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    616   1.8       mrg 	return(kva);
    617   1.1       mrg }
    618   1.1       mrg 
    619   1.1       mrg /*
    620   1.1       mrg  * uvm_km_free: free an area of kernel memory
    621   1.1       mrg  */
    622   1.1       mrg 
    623   1.8       mrg void
    624  1.83   thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    625   1.8       mrg {
    626   1.1       mrg 
    627  1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    628  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    629  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    630  1.78      yamt 	KASSERT((addr & PAGE_MASK) == 0);
    631  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    632   1.1       mrg 
    633   1.8       mrg 	size = round_page(size);
    634   1.1       mrg 
    635  1.78      yamt 	if (flags & UVM_KMF_PAGEABLE) {
    636  1.78      yamt 		uvm_km_pgremove(addr, addr + size);
    637  1.78      yamt 		pmap_remove(pmap_kernel(), addr, addr + size);
    638  1.78      yamt 	} else if (flags & UVM_KMF_WIRED) {
    639  1.78      yamt 		uvm_km_pgremove_intrsafe(addr, addr + size);
    640  1.78      yamt 		pmap_kremove(addr, size);
    641   1.8       mrg 	}
    642   1.8       mrg 
    643  1.78      yamt 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    644  1.66        pk }
    645  1.66        pk 
    646  1.10   thorpej /* Sanity; must specify both or none. */
    647  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    648  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    649  1.10   thorpej #error Must specify MAP and UNMAP together.
    650  1.10   thorpej #endif
    651  1.10   thorpej 
    652  1.10   thorpej /*
    653  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    654  1.10   thorpej  *
    655  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    656  1.10   thorpej  */
    657  1.10   thorpej 
    658  1.11   thorpej /* ARGSUSED */
    659  1.14       eeh vaddr_t
    660  1.83   thorpej uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
    661  1.72      yamt {
    662  1.72      yamt #if defined(PMAP_MAP_POOLPAGE)
    663  1.78      yamt 	return uvm_km_alloc_poolpage(map, waitok);
    664  1.72      yamt #else
    665  1.72      yamt 	struct vm_page *pg;
    666  1.72      yamt 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    667  1.72      yamt 	vaddr_t va;
    668  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    669  1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    670  1.72      yamt 
    671  1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0)
    672  1.78      yamt 		return uvm_km_alloc_poolpage(map, waitok);
    673  1.72      yamt 
    674  1.72      yamt 	if (intrsafe)
    675  1.72      yamt 		s = splvm();
    676  1.72      yamt 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    677  1.72      yamt 	if (intrsafe)
    678  1.72      yamt 		splx(s);
    679  1.72      yamt 	if (va == 0)
    680  1.72      yamt 		return 0;
    681  1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    682  1.72      yamt again:
    683  1.72      yamt 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    684  1.72      yamt 	if (__predict_false(pg == NULL)) {
    685  1.72      yamt 		if (waitok) {
    686  1.72      yamt 			uvm_wait("plpg");
    687  1.72      yamt 			goto again;
    688  1.72      yamt 		} else {
    689  1.72      yamt 			if (intrsafe)
    690  1.72      yamt 				s = splvm();
    691  1.72      yamt 			pool_put(pp, (void *)va);
    692  1.72      yamt 			if (intrsafe)
    693  1.72      yamt 				splx(s);
    694  1.72      yamt 			return 0;
    695  1.72      yamt 		}
    696  1.72      yamt 	}
    697  1.79      yamt 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
    698  1.72      yamt 	pmap_update(pmap_kernel());
    699  1.72      yamt 
    700  1.72      yamt 	return va;
    701  1.72      yamt #endif /* PMAP_MAP_POOLPAGE */
    702  1.72      yamt }
    703  1.72      yamt 
    704  1.72      yamt vaddr_t
    705  1.83   thorpej uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
    706  1.10   thorpej {
    707  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    708  1.10   thorpej 	struct vm_page *pg;
    709  1.14       eeh 	vaddr_t va;
    710  1.10   thorpej 
    711  1.15   thorpej  again:
    712  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    713  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    714  1.15   thorpej 		if (waitok) {
    715  1.15   thorpej 			uvm_wait("plpg");
    716  1.15   thorpej 			goto again;
    717  1.15   thorpej 		} else
    718  1.15   thorpej 			return (0);
    719  1.15   thorpej 	}
    720  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    721  1.35   thorpej 	if (__predict_false(va == 0))
    722  1.10   thorpej 		uvm_pagefree(pg);
    723  1.10   thorpej 	return (va);
    724  1.10   thorpej #else
    725  1.14       eeh 	vaddr_t va;
    726  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    727  1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    728  1.16   thorpej 
    729  1.72      yamt 	if (intrsafe)
    730  1.72      yamt 		s = splvm();
    731  1.78      yamt 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    732  1.78      yamt 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
    733  1.72      yamt 	if (intrsafe)
    734  1.72      yamt 		splx(s);
    735  1.10   thorpej 	return (va);
    736  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    737  1.10   thorpej }
    738  1.10   thorpej 
    739  1.10   thorpej /*
    740  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    741  1.10   thorpej  *
    742  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    743  1.10   thorpej  */
    744  1.10   thorpej 
    745  1.11   thorpej /* ARGSUSED */
    746  1.10   thorpej void
    747  1.83   thorpej uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
    748  1.72      yamt {
    749  1.72      yamt #if defined(PMAP_UNMAP_POOLPAGE)
    750  1.78      yamt 	uvm_km_free_poolpage(map, addr);
    751  1.72      yamt #else
    752  1.72      yamt 	struct pool *pp;
    753  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    754  1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    755  1.72      yamt 
    756  1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    757  1.78      yamt 		uvm_km_free_poolpage(map, addr);
    758  1.72      yamt 		return;
    759  1.72      yamt 	}
    760  1.72      yamt 
    761  1.72      yamt 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    762  1.72      yamt 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    763  1.72      yamt 	pmap_kremove(addr, PAGE_SIZE);
    764  1.72      yamt #if defined(DEBUG)
    765  1.72      yamt 	pmap_update(pmap_kernel());
    766  1.72      yamt #endif
    767  1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    768  1.72      yamt 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    769  1.72      yamt 	if (intrsafe)
    770  1.72      yamt 		s = splvm();
    771  1.72      yamt 	pool_put(pp, (void *)addr);
    772  1.72      yamt 	if (intrsafe)
    773  1.72      yamt 		splx(s);
    774  1.72      yamt #endif
    775  1.72      yamt }
    776  1.72      yamt 
    777  1.72      yamt /* ARGSUSED */
    778  1.72      yamt void
    779  1.83   thorpej uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    780  1.10   thorpej {
    781  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    782  1.14       eeh 	paddr_t pa;
    783  1.10   thorpej 
    784  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    785  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    786  1.10   thorpej #else
    787  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    788  1.72      yamt 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    789  1.10   thorpej 
    790  1.72      yamt 	if (intrsafe)
    791  1.72      yamt 		s = splvm();
    792  1.78      yamt 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    793  1.72      yamt 	if (intrsafe)
    794  1.72      yamt 		splx(s);
    795  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    796   1.1       mrg }
    797