uvm_km.c revision 1.87 1 1.85 yamt /* $NetBSD: uvm_km.c,v 1.87 2006/05/03 14:12:01 yamt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
106 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 1.7 chuck *
108 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
109 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
110 1.47 chs * large chunks of a kernel object's space go unused either because
111 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
112 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
113 1.7 chuck * objects, the only part of the object that can ever be populated is the
114 1.7 chuck * offsets that are managed by the submap.
115 1.7 chuck *
116 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
117 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 1.7 chuck * example:
119 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
123 1.47 chs * mapped at 0xf8235000.
124 1.7 chuck *
125 1.7 chuck * kernel object have one other special property: when the kernel virtual
126 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
127 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
128 1.7 chuck * this has to be done because there is no backing store for kernel pages
129 1.7 chuck * and no need to save them after they are no longer referenced.
130 1.7 chuck */
131 1.55 lukem
132 1.55 lukem #include <sys/cdefs.h>
133 1.85 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.87 2006/05/03 14:12:01 yamt Exp $");
134 1.55 lukem
135 1.55 lukem #include "opt_uvmhist.h"
136 1.7 chuck
137 1.1 mrg #include <sys/param.h>
138 1.71 yamt #include <sys/malloc.h>
139 1.1 mrg #include <sys/systm.h>
140 1.1 mrg #include <sys/proc.h>
141 1.72 yamt #include <sys/pool.h>
142 1.1 mrg
143 1.1 mrg #include <uvm/uvm.h>
144 1.1 mrg
145 1.1 mrg /*
146 1.1 mrg * global data structures
147 1.1 mrg */
148 1.1 mrg
149 1.49 chs struct vm_map *kernel_map = NULL;
150 1.1 mrg
151 1.1 mrg /*
152 1.1 mrg * local data structues
153 1.1 mrg */
154 1.1 mrg
155 1.71 yamt static struct vm_map_kernel kernel_map_store;
156 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
157 1.1 mrg
158 1.72 yamt #if !defined(PMAP_MAP_POOLPAGE)
159 1.72 yamt
160 1.72 yamt /*
161 1.72 yamt * kva cache
162 1.72 yamt *
163 1.72 yamt * XXX maybe it's better to do this at the uvm_map layer.
164 1.72 yamt */
165 1.72 yamt
166 1.72 yamt #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
167 1.72 yamt
168 1.72 yamt static void *km_vacache_alloc(struct pool *, int);
169 1.72 yamt static void km_vacache_free(struct pool *, void *);
170 1.72 yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
171 1.72 yamt
172 1.72 yamt /* XXX */
173 1.72 yamt #define KM_VACACHE_POOL_TO_MAP(pp) \
174 1.72 yamt ((struct vm_map *)((char *)(pp) - \
175 1.72 yamt offsetof(struct vm_map_kernel, vmk_vacache)))
176 1.72 yamt
177 1.72 yamt static void *
178 1.72 yamt km_vacache_alloc(struct pool *pp, int flags)
179 1.72 yamt {
180 1.72 yamt vaddr_t va;
181 1.72 yamt size_t size;
182 1.72 yamt struct vm_map *map;
183 1.72 yamt size = pp->pr_alloc->pa_pagesz;
184 1.72 yamt
185 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
186 1.72 yamt
187 1.73 yamt va = vm_map_min(map); /* hint */
188 1.72 yamt if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 1.74 yamt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 1.72 yamt UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 1.72 yamt ((flags & PR_WAITOK) ? 0 : UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192 1.72 yamt return NULL;
193 1.72 yamt
194 1.72 yamt return (void *)va;
195 1.72 yamt }
196 1.72 yamt
197 1.72 yamt static void
198 1.72 yamt km_vacache_free(struct pool *pp, void *v)
199 1.72 yamt {
200 1.72 yamt vaddr_t va = (vaddr_t)v;
201 1.72 yamt size_t size = pp->pr_alloc->pa_pagesz;
202 1.72 yamt struct vm_map *map;
203 1.72 yamt
204 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
205 1.78 yamt uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206 1.72 yamt }
207 1.72 yamt
208 1.72 yamt /*
209 1.72 yamt * km_vacache_init: initialize kva cache.
210 1.72 yamt */
211 1.72 yamt
212 1.72 yamt static void
213 1.72 yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 1.72 yamt {
215 1.72 yamt struct vm_map_kernel *vmk;
216 1.72 yamt struct pool *pp;
217 1.72 yamt struct pool_allocator *pa;
218 1.72 yamt
219 1.72 yamt KASSERT(VM_MAP_IS_KERNEL(map));
220 1.72 yamt KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
221 1.72 yamt
222 1.72 yamt vmk = vm_map_to_kernel(map);
223 1.72 yamt pp = &vmk->vmk_vacache;
224 1.72 yamt pa = &vmk->vmk_vacache_allocator;
225 1.72 yamt memset(pa, 0, sizeof(*pa));
226 1.72 yamt pa->pa_alloc = km_vacache_alloc;
227 1.72 yamt pa->pa_free = km_vacache_free;
228 1.72 yamt pa->pa_pagesz = (unsigned int)size;
229 1.72 yamt pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
230 1.72 yamt
231 1.72 yamt /* XXX for now.. */
232 1.72 yamt pool_sethiwat(pp, 0);
233 1.72 yamt }
234 1.72 yamt
235 1.72 yamt void
236 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237 1.72 yamt {
238 1.72 yamt
239 1.72 yamt map->flags |= VM_MAP_VACACHE;
240 1.72 yamt if (size == 0)
241 1.72 yamt size = KM_VACACHE_SIZE;
242 1.72 yamt km_vacache_init(map, name, size);
243 1.72 yamt }
244 1.72 yamt
245 1.72 yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
246 1.72 yamt
247 1.72 yamt void
248 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249 1.72 yamt {
250 1.72 yamt
251 1.72 yamt /* nothing */
252 1.72 yamt }
253 1.72 yamt
254 1.72 yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
255 1.72 yamt
256 1.1 mrg /*
257 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
258 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
259 1.1 mrg *
260 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
261 1.82 christos * we assume that [vmin -> start] has already been allocated and that
262 1.62 thorpej * "end" is the end.
263 1.1 mrg */
264 1.1 mrg
265 1.8 mrg void
266 1.83 thorpej uvm_km_init(vaddr_t start, vaddr_t end)
267 1.1 mrg {
268 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
269 1.27 thorpej
270 1.27 thorpej /*
271 1.27 thorpej * next, init kernel memory objects.
272 1.8 mrg */
273 1.1 mrg
274 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
275 1.34 chs uao_init();
276 1.62 thorpej uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
277 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
278 1.1 mrg
279 1.24 thorpej /*
280 1.56 thorpej * init the map and reserve any space that might already
281 1.56 thorpej * have been allocated kernel space before installing.
282 1.8 mrg */
283 1.1 mrg
284 1.71 yamt uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
285 1.71 yamt kernel_map_store.vmk_map.pmap = pmap_kernel();
286 1.70 yamt if (start != base) {
287 1.70 yamt int error;
288 1.70 yamt struct uvm_map_args args;
289 1.70 yamt
290 1.71 yamt error = uvm_map_prepare(&kernel_map_store.vmk_map,
291 1.71 yamt base, start - base,
292 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
293 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
294 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
295 1.70 yamt if (!error) {
296 1.70 yamt kernel_first_mapent_store.flags =
297 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
298 1.71 yamt error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
299 1.70 yamt &kernel_first_mapent_store);
300 1.70 yamt }
301 1.70 yamt
302 1.70 yamt if (error)
303 1.70 yamt panic(
304 1.70 yamt "uvm_km_init: could not reserve space for kernel");
305 1.70 yamt }
306 1.47 chs
307 1.8 mrg /*
308 1.8 mrg * install!
309 1.8 mrg */
310 1.8 mrg
311 1.71 yamt kernel_map = &kernel_map_store.vmk_map;
312 1.72 yamt uvm_km_vacache_init(kernel_map, "kvakernel", 0);
313 1.1 mrg }
314 1.1 mrg
315 1.1 mrg /*
316 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
317 1.1 mrg * is allocated all references to that area of VM must go through it. this
318 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
319 1.1 mrg *
320 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
321 1.5 thorpej * by the submap must start
322 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
323 1.1 mrg * alloc a new map
324 1.1 mrg */
325 1.78 yamt
326 1.8 mrg struct vm_map *
327 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
328 1.83 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
329 1.83 thorpej struct vm_map_kernel *submap)
330 1.8 mrg {
331 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
332 1.1 mrg
333 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
334 1.71 yamt
335 1.8 mrg size = round_page(size); /* round up to pagesize */
336 1.87 yamt size += uvm_mapent_overhead(size, flags);
337 1.1 mrg
338 1.8 mrg /*
339 1.8 mrg * first allocate a blank spot in the parent map
340 1.8 mrg */
341 1.8 mrg
342 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
343 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
344 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
345 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
346 1.8 mrg }
347 1.8 mrg
348 1.8 mrg /*
349 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
350 1.8 mrg */
351 1.1 mrg
352 1.82 christos *vmax = *vmin + size;
353 1.5 thorpej
354 1.8 mrg /*
355 1.8 mrg * add references to pmap and create or init the submap
356 1.8 mrg */
357 1.1 mrg
358 1.8 mrg pmap_reference(vm_map_pmap(map));
359 1.8 mrg if (submap == NULL) {
360 1.71 yamt submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
361 1.8 mrg if (submap == NULL)
362 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
363 1.8 mrg }
364 1.82 christos uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
365 1.71 yamt submap->vmk_map.pmap = vm_map_pmap(map);
366 1.1 mrg
367 1.8 mrg /*
368 1.8 mrg * now let uvm_map_submap plug in it...
369 1.8 mrg */
370 1.1 mrg
371 1.82 christos if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
372 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
373 1.1 mrg
374 1.71 yamt return(&submap->vmk_map);
375 1.1 mrg }
376 1.1 mrg
377 1.1 mrg /*
378 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
379 1.1 mrg *
380 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
381 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
382 1.1 mrg */
383 1.1 mrg
384 1.8 mrg void
385 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
386 1.1 mrg {
387 1.78 yamt struct uvm_object * const uobj = uvm.kernel_object;
388 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
389 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
390 1.53 chs struct vm_page *pg;
391 1.52 chs voff_t curoff, nextoff;
392 1.53 chs int swpgonlydelta = 0;
393 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
394 1.1 mrg
395 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
396 1.78 yamt KASSERT(startva < endva);
397 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
398 1.78 yamt
399 1.40 chs simple_lock(&uobj->vmobjlock);
400 1.3 chs
401 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
402 1.52 chs nextoff = curoff + PAGE_SIZE;
403 1.52 chs pg = uvm_pagelookup(uobj, curoff);
404 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
405 1.52 chs pg->flags |= PG_WANTED;
406 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
407 1.52 chs "km_pgrm", 0);
408 1.52 chs simple_lock(&uobj->vmobjlock);
409 1.52 chs nextoff = curoff;
410 1.8 mrg continue;
411 1.52 chs }
412 1.8 mrg
413 1.52 chs /*
414 1.52 chs * free the swap slot, then the page.
415 1.52 chs */
416 1.8 mrg
417 1.53 chs if (pg == NULL &&
418 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
419 1.53 chs swpgonlydelta++;
420 1.53 chs }
421 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
422 1.53 chs if (pg != NULL) {
423 1.53 chs uvm_lock_pageq();
424 1.53 chs uvm_pagefree(pg);
425 1.53 chs uvm_unlock_pageq();
426 1.53 chs }
427 1.8 mrg }
428 1.8 mrg simple_unlock(&uobj->vmobjlock);
429 1.8 mrg
430 1.54 chs if (swpgonlydelta > 0) {
431 1.54 chs simple_lock(&uvm.swap_data_lock);
432 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
433 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
434 1.54 chs simple_unlock(&uvm.swap_data_lock);
435 1.54 chs }
436 1.24 thorpej }
437 1.24 thorpej
438 1.24 thorpej
439 1.24 thorpej /*
440 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
441 1.78 yamt * regions.
442 1.24 thorpej *
443 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
444 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
445 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
446 1.52 chs * be on the active or inactive queues (because they have no object).
447 1.24 thorpej */
448 1.24 thorpej
449 1.24 thorpej void
450 1.83 thorpej uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
451 1.24 thorpej {
452 1.52 chs struct vm_page *pg;
453 1.52 chs paddr_t pa;
454 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
455 1.24 thorpej
456 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
457 1.78 yamt KASSERT(start < end);
458 1.86 yamt KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
459 1.78 yamt
460 1.52 chs for (; start < end; start += PAGE_SIZE) {
461 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
462 1.24 thorpej continue;
463 1.40 chs }
464 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
465 1.52 chs KASSERT(pg);
466 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
467 1.52 chs uvm_pagefree(pg);
468 1.24 thorpej }
469 1.1 mrg }
470 1.1 mrg
471 1.78 yamt #if defined(DEBUG)
472 1.78 yamt void
473 1.78 yamt uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
474 1.78 yamt {
475 1.78 yamt vaddr_t va;
476 1.78 yamt paddr_t pa;
477 1.78 yamt
478 1.78 yamt KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
479 1.78 yamt KDASSERT(start < end);
480 1.85 yamt KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
481 1.78 yamt
482 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
483 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
484 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
485 1.81 simonb (void *)va, (long long)pa);
486 1.78 yamt }
487 1.78 yamt if (!intrsafe) {
488 1.78 yamt const struct vm_page *pg;
489 1.78 yamt
490 1.78 yamt simple_lock(&uvm.kernel_object->vmobjlock);
491 1.78 yamt pg = uvm_pagelookup(uvm.kernel_object,
492 1.78 yamt va - vm_map_min(kernel_map));
493 1.78 yamt simple_unlock(&uvm.kernel_object->vmobjlock);
494 1.78 yamt if (pg) {
495 1.78 yamt panic("uvm_km_check_empty: "
496 1.78 yamt "has page hashed at %p", (const void *)va);
497 1.78 yamt }
498 1.78 yamt }
499 1.78 yamt }
500 1.78 yamt }
501 1.78 yamt #endif /* defined(DEBUG) */
502 1.1 mrg
503 1.1 mrg /*
504 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
505 1.1 mrg *
506 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
507 1.1 mrg * free VM space in the map... caller should be prepared to handle
508 1.1 mrg * this case.
509 1.1 mrg * => we return KVA of memory allocated
510 1.1 mrg */
511 1.1 mrg
512 1.14 eeh vaddr_t
513 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
514 1.1 mrg {
515 1.14 eeh vaddr_t kva, loopva;
516 1.14 eeh vaddr_t offset;
517 1.44 thorpej vsize_t loopsize;
518 1.8 mrg struct vm_page *pg;
519 1.78 yamt struct uvm_object *obj;
520 1.78 yamt int pgaflags;
521 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
522 1.1 mrg
523 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
524 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
525 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
526 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
527 1.1 mrg
528 1.8 mrg /*
529 1.8 mrg * setup for call
530 1.8 mrg */
531 1.8 mrg
532 1.78 yamt kva = vm_map_min(map); /* hint */
533 1.8 mrg size = round_page(size);
534 1.78 yamt obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
535 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
536 1.78 yamt map, obj, size, flags);
537 1.1 mrg
538 1.8 mrg /*
539 1.8 mrg * allocate some virtual space
540 1.8 mrg */
541 1.8 mrg
542 1.78 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
543 1.78 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
544 1.78 yamt UVM_ADV_RANDOM,
545 1.78 yamt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
546 1.78 yamt | UVM_FLAG_QUANTUM)) != 0)) {
547 1.8 mrg UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
548 1.8 mrg return(0);
549 1.8 mrg }
550 1.8 mrg
551 1.8 mrg /*
552 1.8 mrg * if all we wanted was VA, return now
553 1.8 mrg */
554 1.8 mrg
555 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
556 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
557 1.8 mrg return(kva);
558 1.8 mrg }
559 1.40 chs
560 1.8 mrg /*
561 1.8 mrg * recover object offset from virtual address
562 1.8 mrg */
563 1.8 mrg
564 1.8 mrg offset = kva - vm_map_min(kernel_map);
565 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
566 1.8 mrg
567 1.8 mrg /*
568 1.8 mrg * now allocate and map in the memory... note that we are the only ones
569 1.8 mrg * whom should ever get a handle on this area of VM.
570 1.8 mrg */
571 1.8 mrg
572 1.8 mrg loopva = kva;
573 1.44 thorpej loopsize = size;
574 1.78 yamt
575 1.78 yamt pgaflags = UVM_PGA_USERESERVE;
576 1.78 yamt if (flags & UVM_KMF_ZERO)
577 1.78 yamt pgaflags |= UVM_PGA_ZERO;
578 1.44 thorpej while (loopsize) {
579 1.78 yamt KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
580 1.78 yamt
581 1.78 yamt pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
582 1.47 chs
583 1.8 mrg /*
584 1.8 mrg * out of memory?
585 1.8 mrg */
586 1.8 mrg
587 1.35 thorpej if (__predict_false(pg == NULL)) {
588 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
589 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
590 1.8 mrg /* free everything! */
591 1.78 yamt uvm_km_free(map, kva, size,
592 1.78 yamt flags & UVM_KMF_TYPEMASK);
593 1.58 chs return (0);
594 1.8 mrg } else {
595 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
596 1.8 mrg continue;
597 1.8 mrg }
598 1.8 mrg }
599 1.47 chs
600 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
601 1.78 yamt UVM_PAGE_OWN(pg, NULL);
602 1.78 yamt
603 1.8 mrg /*
604 1.52 chs * map it in
605 1.8 mrg */
606 1.40 chs
607 1.78 yamt pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
608 1.78 yamt VM_PROT_READ | VM_PROT_WRITE);
609 1.8 mrg loopva += PAGE_SIZE;
610 1.8 mrg offset += PAGE_SIZE;
611 1.44 thorpej loopsize -= PAGE_SIZE;
612 1.8 mrg }
613 1.69 junyoung
614 1.51 chris pmap_update(pmap_kernel());
615 1.69 junyoung
616 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
617 1.8 mrg return(kva);
618 1.1 mrg }
619 1.1 mrg
620 1.1 mrg /*
621 1.1 mrg * uvm_km_free: free an area of kernel memory
622 1.1 mrg */
623 1.1 mrg
624 1.8 mrg void
625 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
626 1.8 mrg {
627 1.1 mrg
628 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
629 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
630 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
631 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
632 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
633 1.1 mrg
634 1.8 mrg size = round_page(size);
635 1.1 mrg
636 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
637 1.78 yamt uvm_km_pgremove(addr, addr + size);
638 1.78 yamt pmap_remove(pmap_kernel(), addr, addr + size);
639 1.78 yamt } else if (flags & UVM_KMF_WIRED) {
640 1.78 yamt uvm_km_pgremove_intrsafe(addr, addr + size);
641 1.78 yamt pmap_kremove(addr, size);
642 1.8 mrg }
643 1.8 mrg
644 1.78 yamt uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
645 1.66 pk }
646 1.66 pk
647 1.10 thorpej /* Sanity; must specify both or none. */
648 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
649 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
650 1.10 thorpej #error Must specify MAP and UNMAP together.
651 1.10 thorpej #endif
652 1.10 thorpej
653 1.10 thorpej /*
654 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
655 1.10 thorpej *
656 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
657 1.10 thorpej */
658 1.10 thorpej
659 1.11 thorpej /* ARGSUSED */
660 1.14 eeh vaddr_t
661 1.83 thorpej uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
662 1.72 yamt {
663 1.72 yamt #if defined(PMAP_MAP_POOLPAGE)
664 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
665 1.72 yamt #else
666 1.72 yamt struct vm_page *pg;
667 1.72 yamt struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
668 1.72 yamt vaddr_t va;
669 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
670 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
671 1.72 yamt
672 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0)
673 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
674 1.72 yamt
675 1.72 yamt if (intrsafe)
676 1.72 yamt s = splvm();
677 1.72 yamt va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
678 1.72 yamt if (intrsafe)
679 1.72 yamt splx(s);
680 1.72 yamt if (va == 0)
681 1.72 yamt return 0;
682 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
683 1.72 yamt again:
684 1.72 yamt pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
685 1.72 yamt if (__predict_false(pg == NULL)) {
686 1.72 yamt if (waitok) {
687 1.72 yamt uvm_wait("plpg");
688 1.72 yamt goto again;
689 1.72 yamt } else {
690 1.72 yamt if (intrsafe)
691 1.72 yamt s = splvm();
692 1.72 yamt pool_put(pp, (void *)va);
693 1.72 yamt if (intrsafe)
694 1.72 yamt splx(s);
695 1.72 yamt return 0;
696 1.72 yamt }
697 1.72 yamt }
698 1.79 yamt pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
699 1.72 yamt pmap_update(pmap_kernel());
700 1.72 yamt
701 1.72 yamt return va;
702 1.72 yamt #endif /* PMAP_MAP_POOLPAGE */
703 1.72 yamt }
704 1.72 yamt
705 1.72 yamt vaddr_t
706 1.83 thorpej uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
707 1.10 thorpej {
708 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
709 1.10 thorpej struct vm_page *pg;
710 1.14 eeh vaddr_t va;
711 1.10 thorpej
712 1.15 thorpej again:
713 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
714 1.35 thorpej if (__predict_false(pg == NULL)) {
715 1.15 thorpej if (waitok) {
716 1.15 thorpej uvm_wait("plpg");
717 1.15 thorpej goto again;
718 1.15 thorpej } else
719 1.15 thorpej return (0);
720 1.15 thorpej }
721 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
722 1.35 thorpej if (__predict_false(va == 0))
723 1.10 thorpej uvm_pagefree(pg);
724 1.10 thorpej return (va);
725 1.10 thorpej #else
726 1.14 eeh vaddr_t va;
727 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
728 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
729 1.16 thorpej
730 1.72 yamt if (intrsafe)
731 1.72 yamt s = splvm();
732 1.78 yamt va = uvm_km_alloc(map, PAGE_SIZE, 0,
733 1.78 yamt (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
734 1.72 yamt if (intrsafe)
735 1.72 yamt splx(s);
736 1.10 thorpej return (va);
737 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
738 1.10 thorpej }
739 1.10 thorpej
740 1.10 thorpej /*
741 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
742 1.10 thorpej *
743 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
744 1.10 thorpej */
745 1.10 thorpej
746 1.11 thorpej /* ARGSUSED */
747 1.10 thorpej void
748 1.83 thorpej uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
749 1.72 yamt {
750 1.72 yamt #if defined(PMAP_UNMAP_POOLPAGE)
751 1.78 yamt uvm_km_free_poolpage(map, addr);
752 1.72 yamt #else
753 1.72 yamt struct pool *pp;
754 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
755 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
756 1.72 yamt
757 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0) {
758 1.78 yamt uvm_km_free_poolpage(map, addr);
759 1.72 yamt return;
760 1.72 yamt }
761 1.72 yamt
762 1.72 yamt KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
763 1.72 yamt uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
764 1.72 yamt pmap_kremove(addr, PAGE_SIZE);
765 1.72 yamt #if defined(DEBUG)
766 1.72 yamt pmap_update(pmap_kernel());
767 1.72 yamt #endif
768 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
769 1.72 yamt pp = &vm_map_to_kernel(map)->vmk_vacache;
770 1.72 yamt if (intrsafe)
771 1.72 yamt s = splvm();
772 1.72 yamt pool_put(pp, (void *)addr);
773 1.72 yamt if (intrsafe)
774 1.72 yamt splx(s);
775 1.72 yamt #endif
776 1.72 yamt }
777 1.72 yamt
778 1.72 yamt /* ARGSUSED */
779 1.72 yamt void
780 1.83 thorpej uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
781 1.10 thorpej {
782 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
783 1.14 eeh paddr_t pa;
784 1.10 thorpej
785 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
786 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
787 1.10 thorpej #else
788 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
789 1.72 yamt const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
790 1.10 thorpej
791 1.72 yamt if (intrsafe)
792 1.72 yamt s = splvm();
793 1.78 yamt uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
794 1.72 yamt if (intrsafe)
795 1.72 yamt splx(s);
796 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
797 1.1 mrg }
798