Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.94
      1  1.94        ad /*	$NetBSD: uvm_km.c,v 1.94 2007/03/12 18:18:39 ad Exp $	*/
      2   1.1       mrg 
      3  1.47       chs /*
      4   1.1       mrg  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  1.47       chs  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6   1.1       mrg  *
      7   1.1       mrg  * All rights reserved.
      8   1.1       mrg  *
      9   1.1       mrg  * This code is derived from software contributed to Berkeley by
     10   1.1       mrg  * The Mach Operating System project at Carnegie-Mellon University.
     11   1.1       mrg  *
     12   1.1       mrg  * Redistribution and use in source and binary forms, with or without
     13   1.1       mrg  * modification, are permitted provided that the following conditions
     14   1.1       mrg  * are met:
     15   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     16   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     17   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     18   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     19   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     20   1.1       mrg  * 3. All advertising materials mentioning features or use of this software
     21   1.1       mrg  *    must display the following acknowledgement:
     22   1.1       mrg  *	This product includes software developed by Charles D. Cranor,
     23  1.47       chs  *      Washington University, the University of California, Berkeley and
     24   1.1       mrg  *      its contributors.
     25   1.1       mrg  * 4. Neither the name of the University nor the names of its contributors
     26   1.1       mrg  *    may be used to endorse or promote products derived from this software
     27   1.1       mrg  *    without specific prior written permission.
     28   1.1       mrg  *
     29   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30   1.1       mrg  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31   1.1       mrg  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32   1.1       mrg  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33   1.1       mrg  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34   1.1       mrg  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35   1.1       mrg  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36   1.1       mrg  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37   1.1       mrg  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39   1.1       mrg  * SUCH DAMAGE.
     40   1.1       mrg  *
     41   1.1       mrg  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42   1.4       mrg  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43   1.1       mrg  *
     44   1.1       mrg  *
     45   1.1       mrg  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46   1.1       mrg  * All rights reserved.
     47  1.47       chs  *
     48   1.1       mrg  * Permission to use, copy, modify and distribute this software and
     49   1.1       mrg  * its documentation is hereby granted, provided that both the copyright
     50   1.1       mrg  * notice and this permission notice appear in all copies of the
     51   1.1       mrg  * software, derivative works or modified versions, and any portions
     52   1.1       mrg  * thereof, and that both notices appear in supporting documentation.
     53  1.47       chs  *
     54  1.47       chs  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  1.47       chs  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56   1.1       mrg  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  1.47       chs  *
     58   1.1       mrg  * Carnegie Mellon requests users of this software to return to
     59   1.1       mrg  *
     60   1.1       mrg  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61   1.1       mrg  *  School of Computer Science
     62   1.1       mrg  *  Carnegie Mellon University
     63   1.1       mrg  *  Pittsburgh PA 15213-3890
     64   1.1       mrg  *
     65   1.1       mrg  * any improvements or extensions that they make and grant Carnegie the
     66   1.1       mrg  * rights to redistribute these changes.
     67   1.1       mrg  */
     68   1.6       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * uvm_km.c: handle kernel memory allocation and management
     71   1.1       mrg  */
     72   1.1       mrg 
     73   1.7     chuck /*
     74   1.7     chuck  * overview of kernel memory management:
     75   1.7     chuck  *
     76   1.7     chuck  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  1.62   thorpej  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  1.62   thorpej  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79   1.7     chuck  *
     80  1.47       chs  * the kernel_map has several "submaps."   submaps can only appear in
     81   1.7     chuck  * the kernel_map (user processes can't use them).   submaps "take over"
     82   1.7     chuck  * the management of a sub-range of the kernel's address space.  submaps
     83   1.7     chuck  * are typically allocated at boot time and are never released.   kernel
     84  1.47       chs  * virtual address space that is mapped by a submap is locked by the
     85   1.7     chuck  * submap's lock -- not the kernel_map's lock.
     86   1.7     chuck  *
     87   1.7     chuck  * thus, the useful feature of submaps is that they allow us to break
     88   1.7     chuck  * up the locking and protection of the kernel address space into smaller
     89   1.7     chuck  * chunks.
     90   1.7     chuck  *
     91   1.7     chuck  * the vm system has several standard kernel submaps, including:
     92   1.7     chuck  *   kmem_map => contains only wired kernel memory for the kernel
     93   1.7     chuck  *		malloc.   *** access to kmem_map must be protected
     94  1.42   thorpej  *		by splvm() because we are allowed to call malloc()
     95   1.7     chuck  *		at interrupt time ***
     96  1.42   thorpej  *   mb_map => memory for large mbufs,  *** protected by splvm ***
     97   1.7     chuck  *   pager_map => used to map "buf" structures into kernel space
     98   1.7     chuck  *   exec_map => used during exec to handle exec args
     99   1.7     chuck  *   etc...
    100   1.7     chuck  *
    101   1.7     chuck  * the kernel allocates its private memory out of special uvm_objects whose
    102   1.7     chuck  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    103   1.7     chuck  * are "special" and never die).   all kernel objects should be thought of
    104  1.47       chs  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    105  1.62   thorpej  * object is equal to the size of kernel virtual address space (i.e. the
    106  1.62   thorpej  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    107   1.7     chuck  *
    108   1.7     chuck  * note that just because a kernel object spans the entire kernel virutal
    109   1.7     chuck  * address space doesn't mean that it has to be mapped into the entire space.
    110  1.47       chs  * large chunks of a kernel object's space go unused either because
    111  1.47       chs  * that area of kernel VM is unmapped, or there is some other type of
    112   1.7     chuck  * object mapped into that range (e.g. a vnode).    for submap's kernel
    113   1.7     chuck  * objects, the only part of the object that can ever be populated is the
    114   1.7     chuck  * offsets that are managed by the submap.
    115   1.7     chuck  *
    116   1.7     chuck  * note that the "offset" in a kernel object is always the kernel virtual
    117  1.62   thorpej  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    118   1.7     chuck  * example:
    119  1.62   thorpej  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    120   1.7     chuck  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    121   1.7     chuck  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    122   1.7     chuck  *   then that means that the page at offset 0x235000 in kernel_object is
    123  1.47       chs  *   mapped at 0xf8235000.
    124   1.7     chuck  *
    125   1.7     chuck  * kernel object have one other special property: when the kernel virtual
    126   1.7     chuck  * memory mapping them is unmapped, the backing memory in the object is
    127   1.7     chuck  * freed right away.   this is done with the uvm_km_pgremove() function.
    128   1.7     chuck  * this has to be done because there is no backing store for kernel pages
    129   1.7     chuck  * and no need to save them after they are no longer referenced.
    130   1.7     chuck  */
    131  1.55     lukem 
    132  1.55     lukem #include <sys/cdefs.h>
    133  1.94        ad __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.94 2007/03/12 18:18:39 ad Exp $");
    134  1.55     lukem 
    135  1.55     lukem #include "opt_uvmhist.h"
    136   1.7     chuck 
    137   1.1       mrg #include <sys/param.h>
    138  1.71      yamt #include <sys/malloc.h>
    139   1.1       mrg #include <sys/systm.h>
    140   1.1       mrg #include <sys/proc.h>
    141  1.72      yamt #include <sys/pool.h>
    142   1.1       mrg 
    143   1.1       mrg #include <uvm/uvm.h>
    144   1.1       mrg 
    145   1.1       mrg /*
    146   1.1       mrg  * global data structures
    147   1.1       mrg  */
    148   1.1       mrg 
    149  1.49       chs struct vm_map *kernel_map = NULL;
    150   1.1       mrg 
    151   1.1       mrg /*
    152   1.1       mrg  * local data structues
    153   1.1       mrg  */
    154   1.1       mrg 
    155  1.71      yamt static struct vm_map_kernel	kernel_map_store;
    156  1.70      yamt static struct vm_map_entry	kernel_first_mapent_store;
    157   1.1       mrg 
    158  1.72      yamt #if !defined(PMAP_MAP_POOLPAGE)
    159  1.72      yamt 
    160  1.72      yamt /*
    161  1.72      yamt  * kva cache
    162  1.72      yamt  *
    163  1.72      yamt  * XXX maybe it's better to do this at the uvm_map layer.
    164  1.72      yamt  */
    165  1.72      yamt 
    166  1.72      yamt #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    167  1.72      yamt 
    168  1.72      yamt static void *km_vacache_alloc(struct pool *, int);
    169  1.72      yamt static void km_vacache_free(struct pool *, void *);
    170  1.72      yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
    171  1.72      yamt 
    172  1.72      yamt /* XXX */
    173  1.72      yamt #define	KM_VACACHE_POOL_TO_MAP(pp) \
    174  1.72      yamt 	((struct vm_map *)((char *)(pp) - \
    175  1.72      yamt 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    176  1.72      yamt 
    177  1.72      yamt static void *
    178  1.72      yamt km_vacache_alloc(struct pool *pp, int flags)
    179  1.72      yamt {
    180  1.72      yamt 	vaddr_t va;
    181  1.72      yamt 	size_t size;
    182  1.72      yamt 	struct vm_map *map;
    183  1.72      yamt 	size = pp->pr_alloc->pa_pagesz;
    184  1.72      yamt 
    185  1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    186  1.72      yamt 
    187  1.73      yamt 	va = vm_map_min(map); /* hint */
    188  1.72      yamt 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    189  1.74      yamt 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    190  1.72      yamt 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    191  1.88      yamt 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
    192  1.88      yamt 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    193  1.72      yamt 		return NULL;
    194  1.72      yamt 
    195  1.72      yamt 	return (void *)va;
    196  1.72      yamt }
    197  1.72      yamt 
    198  1.72      yamt static void
    199  1.72      yamt km_vacache_free(struct pool *pp, void *v)
    200  1.72      yamt {
    201  1.72      yamt 	vaddr_t va = (vaddr_t)v;
    202  1.72      yamt 	size_t size = pp->pr_alloc->pa_pagesz;
    203  1.72      yamt 	struct vm_map *map;
    204  1.72      yamt 
    205  1.72      yamt 	map = KM_VACACHE_POOL_TO_MAP(pp);
    206  1.78      yamt 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    207  1.72      yamt }
    208  1.72      yamt 
    209  1.72      yamt /*
    210  1.72      yamt  * km_vacache_init: initialize kva cache.
    211  1.72      yamt  */
    212  1.72      yamt 
    213  1.72      yamt static void
    214  1.72      yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
    215  1.72      yamt {
    216  1.72      yamt 	struct vm_map_kernel *vmk;
    217  1.72      yamt 	struct pool *pp;
    218  1.72      yamt 	struct pool_allocator *pa;
    219  1.94        ad 	int ipl;
    220  1.72      yamt 
    221  1.72      yamt 	KASSERT(VM_MAP_IS_KERNEL(map));
    222  1.72      yamt 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    223  1.72      yamt 
    224  1.72      yamt 	vmk = vm_map_to_kernel(map);
    225  1.72      yamt 	pp = &vmk->vmk_vacache;
    226  1.72      yamt 	pa = &vmk->vmk_vacache_allocator;
    227  1.72      yamt 	memset(pa, 0, sizeof(*pa));
    228  1.72      yamt 	pa->pa_alloc = km_vacache_alloc;
    229  1.72      yamt 	pa->pa_free = km_vacache_free;
    230  1.72      yamt 	pa->pa_pagesz = (unsigned int)size;
    231  1.88      yamt 	pa->pa_backingmap = map;
    232  1.88      yamt 	pa->pa_backingmapptr = NULL;
    233  1.94        ad 
    234  1.94        ad 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
    235  1.94        ad 		ipl = IPL_VM;
    236  1.94        ad 	else
    237  1.94        ad 		ipl = IPL_NONE;
    238  1.94        ad 
    239  1.94        ad 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
    240  1.94        ad 	    ipl);
    241  1.72      yamt }
    242  1.72      yamt 
    243  1.72      yamt void
    244  1.72      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    245  1.72      yamt {
    246  1.72      yamt 
    247  1.72      yamt 	map->flags |= VM_MAP_VACACHE;
    248  1.72      yamt 	if (size == 0)
    249  1.72      yamt 		size = KM_VACACHE_SIZE;
    250  1.72      yamt 	km_vacache_init(map, name, size);
    251  1.72      yamt }
    252  1.72      yamt 
    253  1.72      yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
    254  1.72      yamt 
    255  1.72      yamt void
    256  1.92      yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    257  1.72      yamt {
    258  1.72      yamt 
    259  1.72      yamt 	/* nothing */
    260  1.72      yamt }
    261  1.72      yamt 
    262  1.72      yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
    263  1.72      yamt 
    264  1.88      yamt void
    265  1.92      yamt uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    266  1.88      yamt {
    267  1.88      yamt 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
    268  1.93   thorpej 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    269  1.88      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    270  1.88      yamt 
    271  1.88      yamt 	if (intrsafe) {
    272  1.88      yamt 		s = splvm();
    273  1.88      yamt 	}
    274  1.88      yamt 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
    275  1.88      yamt 	if (intrsafe) {
    276  1.88      yamt 		splx(s);
    277  1.88      yamt 	}
    278  1.88      yamt }
    279  1.88      yamt 
    280   1.1       mrg /*
    281   1.1       mrg  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    282   1.1       mrg  * KVM already allocated for text, data, bss, and static data structures).
    283   1.1       mrg  *
    284  1.62   thorpej  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    285  1.82  christos  *    we assume that [vmin -> start] has already been allocated and that
    286  1.62   thorpej  *    "end" is the end.
    287   1.1       mrg  */
    288   1.1       mrg 
    289   1.8       mrg void
    290  1.83   thorpej uvm_km_init(vaddr_t start, vaddr_t end)
    291   1.1       mrg {
    292  1.62   thorpej 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    293  1.27   thorpej 
    294  1.27   thorpej 	/*
    295  1.27   thorpej 	 * next, init kernel memory objects.
    296   1.8       mrg 	 */
    297   1.1       mrg 
    298   1.8       mrg 	/* kernel_object: for pageable anonymous kernel memory */
    299  1.34       chs 	uao_init();
    300  1.62   thorpej 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    301  1.62   thorpej 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    302   1.1       mrg 
    303  1.24   thorpej 	/*
    304  1.56   thorpej 	 * init the map and reserve any space that might already
    305  1.56   thorpej 	 * have been allocated kernel space before installing.
    306   1.8       mrg 	 */
    307   1.1       mrg 
    308  1.71      yamt 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    309  1.71      yamt 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    310  1.70      yamt 	if (start != base) {
    311  1.70      yamt 		int error;
    312  1.70      yamt 		struct uvm_map_args args;
    313  1.70      yamt 
    314  1.71      yamt 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    315  1.71      yamt 		    base, start - base,
    316  1.70      yamt 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    317  1.62   thorpej 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    318  1.70      yamt 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    319  1.70      yamt 		if (!error) {
    320  1.70      yamt 			kernel_first_mapent_store.flags =
    321  1.70      yamt 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    322  1.71      yamt 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    323  1.70      yamt 			    &kernel_first_mapent_store);
    324  1.70      yamt 		}
    325  1.70      yamt 
    326  1.70      yamt 		if (error)
    327  1.70      yamt 			panic(
    328  1.70      yamt 			    "uvm_km_init: could not reserve space for kernel");
    329  1.70      yamt 	}
    330  1.47       chs 
    331   1.8       mrg 	/*
    332   1.8       mrg 	 * install!
    333   1.8       mrg 	 */
    334   1.8       mrg 
    335  1.71      yamt 	kernel_map = &kernel_map_store.vmk_map;
    336  1.72      yamt 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    337   1.1       mrg }
    338   1.1       mrg 
    339   1.1       mrg /*
    340   1.1       mrg  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    341   1.1       mrg  * is allocated all references to that area of VM must go through it.  this
    342   1.1       mrg  * allows the locking of VAs in kernel_map to be broken up into regions.
    343   1.1       mrg  *
    344  1.82  christos  * => if `fixed' is true, *vmin specifies where the region described
    345   1.5   thorpej  *      by the submap must start
    346   1.1       mrg  * => if submap is non NULL we use that as the submap, otherwise we
    347   1.1       mrg  *	alloc a new map
    348   1.1       mrg  */
    349  1.78      yamt 
    350   1.8       mrg struct vm_map *
    351  1.83   thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    352  1.93   thorpej     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    353  1.83   thorpej     struct vm_map_kernel *submap)
    354   1.8       mrg {
    355   1.8       mrg 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    356   1.1       mrg 
    357  1.71      yamt 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    358  1.71      yamt 
    359   1.8       mrg 	size = round_page(size);	/* round up to pagesize */
    360  1.87      yamt 	size += uvm_mapent_overhead(size, flags);
    361   1.1       mrg 
    362   1.8       mrg 	/*
    363   1.8       mrg 	 * first allocate a blank spot in the parent map
    364   1.8       mrg 	 */
    365   1.8       mrg 
    366  1.82  christos 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    367   1.8       mrg 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    368  1.43       chs 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    369   1.8       mrg 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    370   1.8       mrg 	}
    371   1.8       mrg 
    372   1.8       mrg 	/*
    373  1.82  christos 	 * set VM bounds (vmin is filled in by uvm_map)
    374   1.8       mrg 	 */
    375   1.1       mrg 
    376  1.82  christos 	*vmax = *vmin + size;
    377   1.5   thorpej 
    378   1.8       mrg 	/*
    379   1.8       mrg 	 * add references to pmap and create or init the submap
    380   1.8       mrg 	 */
    381   1.1       mrg 
    382   1.8       mrg 	pmap_reference(vm_map_pmap(map));
    383   1.8       mrg 	if (submap == NULL) {
    384  1.71      yamt 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    385   1.8       mrg 		if (submap == NULL)
    386   1.8       mrg 			panic("uvm_km_suballoc: unable to create submap");
    387   1.8       mrg 	}
    388  1.82  christos 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
    389  1.71      yamt 	submap->vmk_map.pmap = vm_map_pmap(map);
    390   1.1       mrg 
    391   1.8       mrg 	/*
    392   1.8       mrg 	 * now let uvm_map_submap plug in it...
    393   1.8       mrg 	 */
    394   1.1       mrg 
    395  1.82  christos 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
    396   1.8       mrg 		panic("uvm_km_suballoc: submap allocation failed");
    397   1.1       mrg 
    398  1.71      yamt 	return(&submap->vmk_map);
    399   1.1       mrg }
    400   1.1       mrg 
    401   1.1       mrg /*
    402   1.1       mrg  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    403   1.1       mrg  *
    404   1.1       mrg  * => when you unmap a part of anonymous kernel memory you want to toss
    405   1.1       mrg  *    the pages right away.    (this gets called from uvm_unmap_...).
    406   1.1       mrg  */
    407   1.1       mrg 
    408   1.8       mrg void
    409  1.83   thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    410   1.1       mrg {
    411  1.78      yamt 	struct uvm_object * const uobj = uvm.kernel_object;
    412  1.78      yamt 	const voff_t start = startva - vm_map_min(kernel_map);
    413  1.78      yamt 	const voff_t end = endva - vm_map_min(kernel_map);
    414  1.53       chs 	struct vm_page *pg;
    415  1.52       chs 	voff_t curoff, nextoff;
    416  1.53       chs 	int swpgonlydelta = 0;
    417   1.8       mrg 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    418   1.1       mrg 
    419  1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    420  1.78      yamt 	KASSERT(startva < endva);
    421  1.86      yamt 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    422  1.78      yamt 
    423  1.40       chs 	simple_lock(&uobj->vmobjlock);
    424   1.3       chs 
    425  1.52       chs 	for (curoff = start; curoff < end; curoff = nextoff) {
    426  1.52       chs 		nextoff = curoff + PAGE_SIZE;
    427  1.52       chs 		pg = uvm_pagelookup(uobj, curoff);
    428  1.53       chs 		if (pg != NULL && pg->flags & PG_BUSY) {
    429  1.52       chs 			pg->flags |= PG_WANTED;
    430  1.52       chs 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    431  1.52       chs 				    "km_pgrm", 0);
    432  1.52       chs 			simple_lock(&uobj->vmobjlock);
    433  1.52       chs 			nextoff = curoff;
    434   1.8       mrg 			continue;
    435  1.52       chs 		}
    436   1.8       mrg 
    437  1.52       chs 		/*
    438  1.52       chs 		 * free the swap slot, then the page.
    439  1.52       chs 		 */
    440   1.8       mrg 
    441  1.53       chs 		if (pg == NULL &&
    442  1.64        pk 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    443  1.53       chs 			swpgonlydelta++;
    444  1.53       chs 		}
    445  1.52       chs 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    446  1.53       chs 		if (pg != NULL) {
    447  1.53       chs 			uvm_lock_pageq();
    448  1.53       chs 			uvm_pagefree(pg);
    449  1.53       chs 			uvm_unlock_pageq();
    450  1.53       chs 		}
    451   1.8       mrg 	}
    452   1.8       mrg 	simple_unlock(&uobj->vmobjlock);
    453   1.8       mrg 
    454  1.54       chs 	if (swpgonlydelta > 0) {
    455  1.54       chs 		simple_lock(&uvm.swap_data_lock);
    456  1.54       chs 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    457  1.54       chs 		uvmexp.swpgonly -= swpgonlydelta;
    458  1.54       chs 		simple_unlock(&uvm.swap_data_lock);
    459  1.54       chs 	}
    460  1.24   thorpej }
    461  1.24   thorpej 
    462  1.24   thorpej 
    463  1.24   thorpej /*
    464  1.78      yamt  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    465  1.78      yamt  *    regions.
    466  1.24   thorpej  *
    467  1.24   thorpej  * => when you unmap a part of anonymous kernel memory you want to toss
    468  1.52       chs  *    the pages right away.    (this is called from uvm_unmap_...).
    469  1.24   thorpej  * => none of the pages will ever be busy, and none of them will ever
    470  1.52       chs  *    be on the active or inactive queues (because they have no object).
    471  1.24   thorpej  */
    472  1.24   thorpej 
    473  1.24   thorpej void
    474  1.83   thorpej uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
    475  1.24   thorpej {
    476  1.52       chs 	struct vm_page *pg;
    477  1.52       chs 	paddr_t pa;
    478  1.24   thorpej 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    479  1.24   thorpej 
    480  1.78      yamt 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    481  1.78      yamt 	KASSERT(start < end);
    482  1.86      yamt 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    483  1.78      yamt 
    484  1.52       chs 	for (; start < end; start += PAGE_SIZE) {
    485  1.52       chs 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    486  1.24   thorpej 			continue;
    487  1.40       chs 		}
    488  1.52       chs 		pg = PHYS_TO_VM_PAGE(pa);
    489  1.52       chs 		KASSERT(pg);
    490  1.52       chs 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    491  1.52       chs 		uvm_pagefree(pg);
    492  1.24   thorpej 	}
    493   1.1       mrg }
    494   1.1       mrg 
    495  1.78      yamt #if defined(DEBUG)
    496  1.78      yamt void
    497  1.93   thorpej uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
    498  1.78      yamt {
    499  1.78      yamt 	vaddr_t va;
    500  1.78      yamt 	paddr_t pa;
    501  1.78      yamt 
    502  1.78      yamt 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
    503  1.78      yamt 	KDASSERT(start < end);
    504  1.85      yamt 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
    505  1.78      yamt 
    506  1.78      yamt 	for (va = start; va < end; va += PAGE_SIZE) {
    507  1.78      yamt 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    508  1.81    simonb 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    509  1.81    simonb 			    (void *)va, (long long)pa);
    510  1.78      yamt 		}
    511  1.78      yamt 		if (!intrsafe) {
    512  1.78      yamt 			const struct vm_page *pg;
    513  1.78      yamt 
    514  1.78      yamt 			simple_lock(&uvm.kernel_object->vmobjlock);
    515  1.78      yamt 			pg = uvm_pagelookup(uvm.kernel_object,
    516  1.78      yamt 			    va - vm_map_min(kernel_map));
    517  1.78      yamt 			simple_unlock(&uvm.kernel_object->vmobjlock);
    518  1.78      yamt 			if (pg) {
    519  1.78      yamt 				panic("uvm_km_check_empty: "
    520  1.78      yamt 				    "has page hashed at %p", (const void *)va);
    521  1.78      yamt 			}
    522  1.78      yamt 		}
    523  1.78      yamt 	}
    524  1.78      yamt }
    525  1.78      yamt #endif /* defined(DEBUG) */
    526   1.1       mrg 
    527   1.1       mrg /*
    528  1.78      yamt  * uvm_km_alloc: allocate an area of kernel memory.
    529   1.1       mrg  *
    530  1.78      yamt  * => NOTE: we can return 0 even if we can wait if there is not enough
    531   1.1       mrg  *	free VM space in the map... caller should be prepared to handle
    532   1.1       mrg  *	this case.
    533   1.1       mrg  * => we return KVA of memory allocated
    534   1.1       mrg  */
    535   1.1       mrg 
    536  1.14       eeh vaddr_t
    537  1.83   thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    538   1.1       mrg {
    539  1.14       eeh 	vaddr_t kva, loopva;
    540  1.14       eeh 	vaddr_t offset;
    541  1.44   thorpej 	vsize_t loopsize;
    542   1.8       mrg 	struct vm_page *pg;
    543  1.78      yamt 	struct uvm_object *obj;
    544  1.78      yamt 	int pgaflags;
    545  1.89  drochner 	vm_prot_t prot;
    546  1.78      yamt 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    547   1.1       mrg 
    548  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    549  1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    550  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    551  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    552   1.1       mrg 
    553   1.8       mrg 	/*
    554   1.8       mrg 	 * setup for call
    555   1.8       mrg 	 */
    556   1.8       mrg 
    557  1.78      yamt 	kva = vm_map_min(map);	/* hint */
    558   1.8       mrg 	size = round_page(size);
    559  1.78      yamt 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
    560  1.78      yamt 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    561  1.78      yamt 		    map, obj, size, flags);
    562   1.1       mrg 
    563   1.8       mrg 	/*
    564   1.8       mrg 	 * allocate some virtual space
    565   1.8       mrg 	 */
    566   1.8       mrg 
    567  1.78      yamt 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    568  1.78      yamt 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    569  1.78      yamt 	    UVM_ADV_RANDOM,
    570  1.78      yamt 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    571  1.78      yamt 	    | UVM_FLAG_QUANTUM)) != 0)) {
    572   1.8       mrg 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    573   1.8       mrg 		return(0);
    574   1.8       mrg 	}
    575   1.8       mrg 
    576   1.8       mrg 	/*
    577   1.8       mrg 	 * if all we wanted was VA, return now
    578   1.8       mrg 	 */
    579   1.8       mrg 
    580  1.78      yamt 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    581   1.8       mrg 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    582   1.8       mrg 		return(kva);
    583   1.8       mrg 	}
    584  1.40       chs 
    585   1.8       mrg 	/*
    586   1.8       mrg 	 * recover object offset from virtual address
    587   1.8       mrg 	 */
    588   1.8       mrg 
    589   1.8       mrg 	offset = kva - vm_map_min(kernel_map);
    590   1.8       mrg 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    591   1.8       mrg 
    592   1.8       mrg 	/*
    593   1.8       mrg 	 * now allocate and map in the memory... note that we are the only ones
    594   1.8       mrg 	 * whom should ever get a handle on this area of VM.
    595   1.8       mrg 	 */
    596   1.8       mrg 
    597   1.8       mrg 	loopva = kva;
    598  1.44   thorpej 	loopsize = size;
    599  1.78      yamt 
    600  1.78      yamt 	pgaflags = UVM_PGA_USERESERVE;
    601  1.78      yamt 	if (flags & UVM_KMF_ZERO)
    602  1.78      yamt 		pgaflags |= UVM_PGA_ZERO;
    603  1.89  drochner 	prot = VM_PROT_READ | VM_PROT_WRITE;
    604  1.89  drochner 	if (flags & UVM_KMF_EXEC)
    605  1.89  drochner 		prot |= VM_PROT_EXECUTE;
    606  1.44   thorpej 	while (loopsize) {
    607  1.78      yamt 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    608  1.78      yamt 
    609  1.78      yamt 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    610  1.47       chs 
    611   1.8       mrg 		/*
    612   1.8       mrg 		 * out of memory?
    613   1.8       mrg 		 */
    614   1.8       mrg 
    615  1.35   thorpej 		if (__predict_false(pg == NULL)) {
    616  1.58       chs 			if ((flags & UVM_KMF_NOWAIT) ||
    617  1.80      yamt 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    618   1.8       mrg 				/* free everything! */
    619  1.78      yamt 				uvm_km_free(map, kva, size,
    620  1.78      yamt 				    flags & UVM_KMF_TYPEMASK);
    621  1.58       chs 				return (0);
    622   1.8       mrg 			} else {
    623   1.8       mrg 				uvm_wait("km_getwait2");	/* sleep here */
    624   1.8       mrg 				continue;
    625   1.8       mrg 			}
    626   1.8       mrg 		}
    627  1.47       chs 
    628  1.78      yamt 		pg->flags &= ~PG_BUSY;	/* new page */
    629  1.78      yamt 		UVM_PAGE_OWN(pg, NULL);
    630  1.78      yamt 
    631   1.8       mrg 		/*
    632  1.52       chs 		 * map it in
    633   1.8       mrg 		 */
    634  1.40       chs 
    635  1.89  drochner 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
    636   1.8       mrg 		loopva += PAGE_SIZE;
    637   1.8       mrg 		offset += PAGE_SIZE;
    638  1.44   thorpej 		loopsize -= PAGE_SIZE;
    639   1.8       mrg 	}
    640  1.69  junyoung 
    641  1.51     chris        	pmap_update(pmap_kernel());
    642  1.69  junyoung 
    643   1.8       mrg 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    644   1.8       mrg 	return(kva);
    645   1.1       mrg }
    646   1.1       mrg 
    647   1.1       mrg /*
    648   1.1       mrg  * uvm_km_free: free an area of kernel memory
    649   1.1       mrg  */
    650   1.1       mrg 
    651   1.8       mrg void
    652  1.83   thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    653   1.8       mrg {
    654   1.1       mrg 
    655  1.78      yamt 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    656  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    657  1.78      yamt 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    658  1.78      yamt 	KASSERT((addr & PAGE_MASK) == 0);
    659  1.40       chs 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    660   1.1       mrg 
    661   1.8       mrg 	size = round_page(size);
    662   1.1       mrg 
    663  1.78      yamt 	if (flags & UVM_KMF_PAGEABLE) {
    664  1.78      yamt 		uvm_km_pgremove(addr, addr + size);
    665  1.78      yamt 		pmap_remove(pmap_kernel(), addr, addr + size);
    666  1.78      yamt 	} else if (flags & UVM_KMF_WIRED) {
    667  1.78      yamt 		uvm_km_pgremove_intrsafe(addr, addr + size);
    668  1.78      yamt 		pmap_kremove(addr, size);
    669   1.8       mrg 	}
    670   1.8       mrg 
    671  1.78      yamt 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    672  1.66        pk }
    673  1.66        pk 
    674  1.10   thorpej /* Sanity; must specify both or none. */
    675  1.10   thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    676  1.10   thorpej     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    677  1.10   thorpej #error Must specify MAP and UNMAP together.
    678  1.10   thorpej #endif
    679  1.10   thorpej 
    680  1.10   thorpej /*
    681  1.10   thorpej  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    682  1.10   thorpej  *
    683  1.10   thorpej  * => if the pmap specifies an alternate mapping method, we use it.
    684  1.10   thorpej  */
    685  1.10   thorpej 
    686  1.11   thorpej /* ARGSUSED */
    687  1.14       eeh vaddr_t
    688  1.93   thorpej uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    689  1.72      yamt {
    690  1.72      yamt #if defined(PMAP_MAP_POOLPAGE)
    691  1.78      yamt 	return uvm_km_alloc_poolpage(map, waitok);
    692  1.72      yamt #else
    693  1.72      yamt 	struct vm_page *pg;
    694  1.72      yamt 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    695  1.72      yamt 	vaddr_t va;
    696  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    697  1.93   thorpej 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    698  1.72      yamt 
    699  1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0)
    700  1.78      yamt 		return uvm_km_alloc_poolpage(map, waitok);
    701  1.72      yamt 
    702  1.72      yamt 	if (intrsafe)
    703  1.72      yamt 		s = splvm();
    704  1.72      yamt 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    705  1.72      yamt 	if (intrsafe)
    706  1.72      yamt 		splx(s);
    707  1.72      yamt 	if (va == 0)
    708  1.72      yamt 		return 0;
    709  1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    710  1.72      yamt again:
    711  1.72      yamt 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    712  1.72      yamt 	if (__predict_false(pg == NULL)) {
    713  1.72      yamt 		if (waitok) {
    714  1.72      yamt 			uvm_wait("plpg");
    715  1.72      yamt 			goto again;
    716  1.72      yamt 		} else {
    717  1.72      yamt 			if (intrsafe)
    718  1.72      yamt 				s = splvm();
    719  1.72      yamt 			pool_put(pp, (void *)va);
    720  1.72      yamt 			if (intrsafe)
    721  1.72      yamt 				splx(s);
    722  1.72      yamt 			return 0;
    723  1.72      yamt 		}
    724  1.72      yamt 	}
    725  1.79      yamt 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
    726  1.72      yamt 	pmap_update(pmap_kernel());
    727  1.72      yamt 
    728  1.72      yamt 	return va;
    729  1.72      yamt #endif /* PMAP_MAP_POOLPAGE */
    730  1.72      yamt }
    731  1.72      yamt 
    732  1.72      yamt vaddr_t
    733  1.93   thorpej uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    734  1.10   thorpej {
    735  1.10   thorpej #if defined(PMAP_MAP_POOLPAGE)
    736  1.10   thorpej 	struct vm_page *pg;
    737  1.14       eeh 	vaddr_t va;
    738  1.10   thorpej 
    739  1.15   thorpej  again:
    740  1.29       chs 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
    741  1.35   thorpej 	if (__predict_false(pg == NULL)) {
    742  1.15   thorpej 		if (waitok) {
    743  1.15   thorpej 			uvm_wait("plpg");
    744  1.15   thorpej 			goto again;
    745  1.15   thorpej 		} else
    746  1.15   thorpej 			return (0);
    747  1.15   thorpej 	}
    748  1.10   thorpej 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    749  1.35   thorpej 	if (__predict_false(va == 0))
    750  1.10   thorpej 		uvm_pagefree(pg);
    751  1.10   thorpej 	return (va);
    752  1.10   thorpej #else
    753  1.14       eeh 	vaddr_t va;
    754  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    755  1.93   thorpej 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    756  1.16   thorpej 
    757  1.72      yamt 	if (intrsafe)
    758  1.72      yamt 		s = splvm();
    759  1.78      yamt 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    760  1.78      yamt 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
    761  1.72      yamt 	if (intrsafe)
    762  1.72      yamt 		splx(s);
    763  1.10   thorpej 	return (va);
    764  1.10   thorpej #endif /* PMAP_MAP_POOLPAGE */
    765  1.10   thorpej }
    766  1.10   thorpej 
    767  1.10   thorpej /*
    768  1.10   thorpej  * uvm_km_free_poolpage: free a previously allocated pool page
    769  1.10   thorpej  *
    770  1.10   thorpej  * => if the pmap specifies an alternate unmapping method, we use it.
    771  1.10   thorpej  */
    772  1.10   thorpej 
    773  1.11   thorpej /* ARGSUSED */
    774  1.10   thorpej void
    775  1.83   thorpej uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
    776  1.72      yamt {
    777  1.72      yamt #if defined(PMAP_UNMAP_POOLPAGE)
    778  1.78      yamt 	uvm_km_free_poolpage(map, addr);
    779  1.72      yamt #else
    780  1.72      yamt 	struct pool *pp;
    781  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    782  1.93   thorpej 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    783  1.72      yamt 
    784  1.72      yamt 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    785  1.78      yamt 		uvm_km_free_poolpage(map, addr);
    786  1.72      yamt 		return;
    787  1.72      yamt 	}
    788  1.72      yamt 
    789  1.72      yamt 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    790  1.72      yamt 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
    791  1.72      yamt 	pmap_kremove(addr, PAGE_SIZE);
    792  1.72      yamt #if defined(DEBUG)
    793  1.72      yamt 	pmap_update(pmap_kernel());
    794  1.72      yamt #endif
    795  1.72      yamt 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    796  1.72      yamt 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    797  1.72      yamt 	if (intrsafe)
    798  1.72      yamt 		s = splvm();
    799  1.72      yamt 	pool_put(pp, (void *)addr);
    800  1.72      yamt 	if (intrsafe)
    801  1.72      yamt 		splx(s);
    802  1.72      yamt #endif
    803  1.72      yamt }
    804  1.72      yamt 
    805  1.72      yamt /* ARGSUSED */
    806  1.72      yamt void
    807  1.83   thorpej uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    808  1.10   thorpej {
    809  1.10   thorpej #if defined(PMAP_UNMAP_POOLPAGE)
    810  1.14       eeh 	paddr_t pa;
    811  1.10   thorpej 
    812  1.10   thorpej 	pa = PMAP_UNMAP_POOLPAGE(addr);
    813  1.10   thorpej 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    814  1.10   thorpej #else
    815  1.72      yamt 	int s = 0xdeadbeaf; /* XXX: gcc */
    816  1.93   thorpej 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
    817  1.10   thorpej 
    818  1.72      yamt 	if (intrsafe)
    819  1.72      yamt 		s = splvm();
    820  1.78      yamt 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    821  1.72      yamt 	if (intrsafe)
    822  1.72      yamt 		splx(s);
    823  1.10   thorpej #endif /* PMAP_UNMAP_POOLPAGE */
    824   1.1       mrg }
    825