uvm_km.c revision 1.96.16.1 1 1.96.16.1 yamt /* $NetBSD: uvm_km.c,v 1.96.16.1 2007/12/10 12:56:13 yamt Exp $ */
2 1.1 mrg
3 1.47 chs /*
4 1.1 mrg * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 1.47 chs * Copyright (c) 1991, 1993, The Regents of the University of California.
6 1.1 mrg *
7 1.1 mrg * All rights reserved.
8 1.1 mrg *
9 1.1 mrg * This code is derived from software contributed to Berkeley by
10 1.1 mrg * The Mach Operating System project at Carnegie-Mellon University.
11 1.1 mrg *
12 1.1 mrg * Redistribution and use in source and binary forms, with or without
13 1.1 mrg * modification, are permitted provided that the following conditions
14 1.1 mrg * are met:
15 1.1 mrg * 1. Redistributions of source code must retain the above copyright
16 1.1 mrg * notice, this list of conditions and the following disclaimer.
17 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
18 1.1 mrg * notice, this list of conditions and the following disclaimer in the
19 1.1 mrg * documentation and/or other materials provided with the distribution.
20 1.1 mrg * 3. All advertising materials mentioning features or use of this software
21 1.1 mrg * must display the following acknowledgement:
22 1.1 mrg * This product includes software developed by Charles D. Cranor,
23 1.47 chs * Washington University, the University of California, Berkeley and
24 1.1 mrg * its contributors.
25 1.1 mrg * 4. Neither the name of the University nor the names of its contributors
26 1.1 mrg * may be used to endorse or promote products derived from this software
27 1.1 mrg * without specific prior written permission.
28 1.1 mrg *
29 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 1.1 mrg * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 1.1 mrg * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 1.1 mrg * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 1.1 mrg * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 1.1 mrg * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 1.1 mrg * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 1.1 mrg * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 1.1 mrg * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 1.1 mrg * SUCH DAMAGE.
40 1.1 mrg *
41 1.1 mrg * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 1.4 mrg * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 1.1 mrg *
44 1.1 mrg *
45 1.1 mrg * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 1.1 mrg * All rights reserved.
47 1.47 chs *
48 1.1 mrg * Permission to use, copy, modify and distribute this software and
49 1.1 mrg * its documentation is hereby granted, provided that both the copyright
50 1.1 mrg * notice and this permission notice appear in all copies of the
51 1.1 mrg * software, derivative works or modified versions, and any portions
52 1.1 mrg * thereof, and that both notices appear in supporting documentation.
53 1.47 chs *
54 1.47 chs * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 1.47 chs * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 1.1 mrg * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 1.47 chs *
58 1.1 mrg * Carnegie Mellon requests users of this software to return to
59 1.1 mrg *
60 1.1 mrg * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 1.1 mrg * School of Computer Science
62 1.1 mrg * Carnegie Mellon University
63 1.1 mrg * Pittsburgh PA 15213-3890
64 1.1 mrg *
65 1.1 mrg * any improvements or extensions that they make and grant Carnegie the
66 1.1 mrg * rights to redistribute these changes.
67 1.1 mrg */
68 1.6 mrg
69 1.1 mrg /*
70 1.1 mrg * uvm_km.c: handle kernel memory allocation and management
71 1.1 mrg */
72 1.1 mrg
73 1.7 chuck /*
74 1.7 chuck * overview of kernel memory management:
75 1.7 chuck *
76 1.7 chuck * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 1.62 thorpej * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 1.62 thorpej * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 1.7 chuck *
80 1.47 chs * the kernel_map has several "submaps." submaps can only appear in
81 1.7 chuck * the kernel_map (user processes can't use them). submaps "take over"
82 1.7 chuck * the management of a sub-range of the kernel's address space. submaps
83 1.7 chuck * are typically allocated at boot time and are never released. kernel
84 1.47 chs * virtual address space that is mapped by a submap is locked by the
85 1.7 chuck * submap's lock -- not the kernel_map's lock.
86 1.7 chuck *
87 1.7 chuck * thus, the useful feature of submaps is that they allow us to break
88 1.7 chuck * up the locking and protection of the kernel address space into smaller
89 1.7 chuck * chunks.
90 1.7 chuck *
91 1.7 chuck * the vm system has several standard kernel submaps, including:
92 1.7 chuck * kmem_map => contains only wired kernel memory for the kernel
93 1.7 chuck * malloc. *** access to kmem_map must be protected
94 1.42 thorpej * by splvm() because we are allowed to call malloc()
95 1.7 chuck * at interrupt time ***
96 1.42 thorpej * mb_map => memory for large mbufs, *** protected by splvm ***
97 1.7 chuck * pager_map => used to map "buf" structures into kernel space
98 1.7 chuck * exec_map => used during exec to handle exec args
99 1.7 chuck * etc...
100 1.7 chuck *
101 1.7 chuck * the kernel allocates its private memory out of special uvm_objects whose
102 1.7 chuck * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103 1.7 chuck * are "special" and never die). all kernel objects should be thought of
104 1.47 chs * as large, fixed-sized, sparsely populated uvm_objects. each kernel
105 1.62 thorpej * object is equal to the size of kernel virtual address space (i.e. the
106 1.62 thorpej * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107 1.7 chuck *
108 1.7 chuck * note that just because a kernel object spans the entire kernel virutal
109 1.7 chuck * address space doesn't mean that it has to be mapped into the entire space.
110 1.47 chs * large chunks of a kernel object's space go unused either because
111 1.47 chs * that area of kernel VM is unmapped, or there is some other type of
112 1.7 chuck * object mapped into that range (e.g. a vnode). for submap's kernel
113 1.7 chuck * objects, the only part of the object that can ever be populated is the
114 1.7 chuck * offsets that are managed by the submap.
115 1.7 chuck *
116 1.7 chuck * note that the "offset" in a kernel object is always the kernel virtual
117 1.62 thorpej * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118 1.7 chuck * example:
119 1.62 thorpej * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120 1.7 chuck * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121 1.7 chuck * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
122 1.7 chuck * then that means that the page at offset 0x235000 in kernel_object is
123 1.47 chs * mapped at 0xf8235000.
124 1.7 chuck *
125 1.7 chuck * kernel object have one other special property: when the kernel virtual
126 1.7 chuck * memory mapping them is unmapped, the backing memory in the object is
127 1.7 chuck * freed right away. this is done with the uvm_km_pgremove() function.
128 1.7 chuck * this has to be done because there is no backing store for kernel pages
129 1.7 chuck * and no need to save them after they are no longer referenced.
130 1.7 chuck */
131 1.55 lukem
132 1.55 lukem #include <sys/cdefs.h>
133 1.96.16.1 yamt __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.96.16.1 2007/12/10 12:56:13 yamt Exp $");
134 1.55 lukem
135 1.55 lukem #include "opt_uvmhist.h"
136 1.7 chuck
137 1.1 mrg #include <sys/param.h>
138 1.71 yamt #include <sys/malloc.h>
139 1.1 mrg #include <sys/systm.h>
140 1.1 mrg #include <sys/proc.h>
141 1.72 yamt #include <sys/pool.h>
142 1.96.16.1 yamt #include <sys/vmem.h>
143 1.96.16.1 yamt #include <sys/kmem.h>
144 1.1 mrg
145 1.1 mrg #include <uvm/uvm.h>
146 1.1 mrg
147 1.1 mrg /*
148 1.1 mrg * global data structures
149 1.1 mrg */
150 1.1 mrg
151 1.96.16.1 yamt vmem_t *kernel_va_arena;
152 1.49 chs struct vm_map *kernel_map = NULL;
153 1.1 mrg
154 1.1 mrg /*
155 1.1 mrg * local data structues
156 1.1 mrg */
157 1.1 mrg
158 1.71 yamt static struct vm_map_kernel kernel_map_store;
159 1.70 yamt static struct vm_map_entry kernel_first_mapent_store;
160 1.1 mrg
161 1.72 yamt #if !defined(PMAP_MAP_POOLPAGE)
162 1.72 yamt
163 1.72 yamt /*
164 1.72 yamt * kva cache
165 1.72 yamt *
166 1.72 yamt * XXX maybe it's better to do this at the uvm_map layer.
167 1.72 yamt */
168 1.72 yamt
169 1.72 yamt #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
170 1.72 yamt
171 1.72 yamt static void *km_vacache_alloc(struct pool *, int);
172 1.72 yamt static void km_vacache_free(struct pool *, void *);
173 1.72 yamt static void km_vacache_init(struct vm_map *, const char *, size_t);
174 1.72 yamt
175 1.72 yamt /* XXX */
176 1.72 yamt #define KM_VACACHE_POOL_TO_MAP(pp) \
177 1.72 yamt ((struct vm_map *)((char *)(pp) - \
178 1.72 yamt offsetof(struct vm_map_kernel, vmk_vacache)))
179 1.72 yamt
180 1.72 yamt static void *
181 1.72 yamt km_vacache_alloc(struct pool *pp, int flags)
182 1.72 yamt {
183 1.72 yamt vaddr_t va;
184 1.72 yamt size_t size;
185 1.72 yamt struct vm_map *map;
186 1.72 yamt size = pp->pr_alloc->pa_pagesz;
187 1.72 yamt
188 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
189 1.72 yamt
190 1.73 yamt va = vm_map_min(map); /* hint */
191 1.72 yamt if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
192 1.74 yamt UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
193 1.72 yamt UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
194 1.88 yamt ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
195 1.88 yamt UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
196 1.72 yamt return NULL;
197 1.72 yamt
198 1.72 yamt return (void *)va;
199 1.72 yamt }
200 1.72 yamt
201 1.72 yamt static void
202 1.72 yamt km_vacache_free(struct pool *pp, void *v)
203 1.72 yamt {
204 1.72 yamt vaddr_t va = (vaddr_t)v;
205 1.72 yamt size_t size = pp->pr_alloc->pa_pagesz;
206 1.72 yamt struct vm_map *map;
207 1.72 yamt
208 1.72 yamt map = KM_VACACHE_POOL_TO_MAP(pp);
209 1.78 yamt uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
210 1.72 yamt }
211 1.72 yamt
212 1.72 yamt /*
213 1.72 yamt * km_vacache_init: initialize kva cache.
214 1.72 yamt */
215 1.72 yamt
216 1.72 yamt static void
217 1.72 yamt km_vacache_init(struct vm_map *map, const char *name, size_t size)
218 1.72 yamt {
219 1.72 yamt struct vm_map_kernel *vmk;
220 1.72 yamt struct pool *pp;
221 1.72 yamt struct pool_allocator *pa;
222 1.94 ad int ipl;
223 1.72 yamt
224 1.72 yamt KASSERT(VM_MAP_IS_KERNEL(map));
225 1.72 yamt KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
226 1.72 yamt
227 1.72 yamt vmk = vm_map_to_kernel(map);
228 1.72 yamt pp = &vmk->vmk_vacache;
229 1.72 yamt pa = &vmk->vmk_vacache_allocator;
230 1.72 yamt memset(pa, 0, sizeof(*pa));
231 1.72 yamt pa->pa_alloc = km_vacache_alloc;
232 1.72 yamt pa->pa_free = km_vacache_free;
233 1.72 yamt pa->pa_pagesz = (unsigned int)size;
234 1.88 yamt pa->pa_backingmap = map;
235 1.88 yamt pa->pa_backingmapptr = NULL;
236 1.94 ad
237 1.94 ad if ((map->flags & VM_MAP_INTRSAFE) != 0)
238 1.94 ad ipl = IPL_VM;
239 1.94 ad else
240 1.94 ad ipl = IPL_NONE;
241 1.94 ad
242 1.94 ad pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
243 1.94 ad ipl);
244 1.72 yamt }
245 1.72 yamt
246 1.72 yamt void
247 1.72 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
248 1.72 yamt {
249 1.72 yamt
250 1.72 yamt map->flags |= VM_MAP_VACACHE;
251 1.72 yamt if (size == 0)
252 1.72 yamt size = KM_VACACHE_SIZE;
253 1.72 yamt km_vacache_init(map, name, size);
254 1.72 yamt }
255 1.72 yamt
256 1.72 yamt #else /* !defined(PMAP_MAP_POOLPAGE) */
257 1.72 yamt
258 1.72 yamt void
259 1.92 yamt uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
260 1.72 yamt {
261 1.72 yamt
262 1.72 yamt /* nothing */
263 1.72 yamt }
264 1.72 yamt
265 1.72 yamt #endif /* !defined(PMAP_MAP_POOLPAGE) */
266 1.72 yamt
267 1.88 yamt void
268 1.92 yamt uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
269 1.88 yamt {
270 1.88 yamt struct vm_map_kernel *vmk = vm_map_to_kernel(map);
271 1.93 thorpej const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
272 1.88 yamt int s = 0xdeadbeaf; /* XXX: gcc */
273 1.88 yamt
274 1.88 yamt if (intrsafe) {
275 1.88 yamt s = splvm();
276 1.88 yamt }
277 1.88 yamt callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
278 1.88 yamt if (intrsafe) {
279 1.88 yamt splx(s);
280 1.88 yamt }
281 1.88 yamt }
282 1.88 yamt
283 1.1 mrg /*
284 1.1 mrg * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
285 1.1 mrg * KVM already allocated for text, data, bss, and static data structures).
286 1.1 mrg *
287 1.62 thorpej * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
288 1.82 christos * we assume that [vmin -> start] has already been allocated and that
289 1.62 thorpej * "end" is the end.
290 1.1 mrg */
291 1.1 mrg
292 1.8 mrg void
293 1.83 thorpej uvm_km_init(vaddr_t start, vaddr_t end)
294 1.1 mrg {
295 1.62 thorpej vaddr_t base = VM_MIN_KERNEL_ADDRESS;
296 1.96.16.1 yamt kernel_va_arena = vmem_create("kernelva",
297 1.96.16.1 yamt start, end - start, PAGE_SIZE,
298 1.96.16.1 yamt NULL, NULL, NULL, 0, VM_NOSLEEP|VMC_KVA, IPL_VM);
299 1.96.16.1 yamt if (kernel_va_arena == NULL) {
300 1.96.16.1 yamt panic("failed to create kernel_va_arena");
301 1.96.16.1 yamt }
302 1.27 thorpej
303 1.27 thorpej /*
304 1.27 thorpej * next, init kernel memory objects.
305 1.8 mrg */
306 1.1 mrg
307 1.8 mrg /* kernel_object: for pageable anonymous kernel memory */
308 1.34 chs uao_init();
309 1.95 ad uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
310 1.62 thorpej VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
311 1.1 mrg
312 1.24 thorpej /*
313 1.56 thorpej * init the map and reserve any space that might already
314 1.56 thorpej * have been allocated kernel space before installing.
315 1.8 mrg */
316 1.1 mrg
317 1.71 yamt uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
318 1.71 yamt kernel_map_store.vmk_map.pmap = pmap_kernel();
319 1.70 yamt if (start != base) {
320 1.70 yamt int error;
321 1.70 yamt struct uvm_map_args args;
322 1.70 yamt
323 1.71 yamt error = uvm_map_prepare(&kernel_map_store.vmk_map,
324 1.71 yamt base, start - base,
325 1.70 yamt NULL, UVM_UNKNOWN_OFFSET, 0,
326 1.62 thorpej UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
327 1.70 yamt UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
328 1.70 yamt if (!error) {
329 1.70 yamt kernel_first_mapent_store.flags =
330 1.70 yamt UVM_MAP_KERNEL | UVM_MAP_FIRST;
331 1.71 yamt error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
332 1.70 yamt &kernel_first_mapent_store);
333 1.70 yamt }
334 1.70 yamt
335 1.70 yamt if (error)
336 1.70 yamt panic(
337 1.70 yamt "uvm_km_init: could not reserve space for kernel");
338 1.70 yamt }
339 1.47 chs
340 1.8 mrg /*
341 1.8 mrg * install!
342 1.8 mrg */
343 1.8 mrg
344 1.71 yamt kernel_map = &kernel_map_store.vmk_map;
345 1.72 yamt uvm_km_vacache_init(kernel_map, "kvakernel", 0);
346 1.96.16.1 yamt
347 1.96.16.1 yamt printf("%s aa\n", __func__);
348 1.96.16.1 yamt kmem_init();
349 1.96.16.1 yamt printf("%s bb\n", __func__);
350 1.1 mrg }
351 1.1 mrg
352 1.1 mrg /*
353 1.1 mrg * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
354 1.1 mrg * is allocated all references to that area of VM must go through it. this
355 1.1 mrg * allows the locking of VAs in kernel_map to be broken up into regions.
356 1.1 mrg *
357 1.82 christos * => if `fixed' is true, *vmin specifies where the region described
358 1.5 thorpej * by the submap must start
359 1.1 mrg * => if submap is non NULL we use that as the submap, otherwise we
360 1.1 mrg * alloc a new map
361 1.1 mrg */
362 1.78 yamt
363 1.8 mrg struct vm_map *
364 1.83 thorpej uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
365 1.93 thorpej vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
366 1.83 thorpej struct vm_map_kernel *submap)
367 1.8 mrg {
368 1.8 mrg int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
369 1.1 mrg
370 1.71 yamt KASSERT(vm_map_pmap(map) == pmap_kernel());
371 1.71 yamt
372 1.8 mrg size = round_page(size); /* round up to pagesize */
373 1.87 yamt size += uvm_mapent_overhead(size, flags);
374 1.1 mrg
375 1.8 mrg /*
376 1.8 mrg * first allocate a blank spot in the parent map
377 1.8 mrg */
378 1.8 mrg
379 1.82 christos if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
380 1.8 mrg UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
381 1.43 chs UVM_ADV_RANDOM, mapflags)) != 0) {
382 1.8 mrg panic("uvm_km_suballoc: unable to allocate space in parent map");
383 1.8 mrg }
384 1.8 mrg
385 1.8 mrg /*
386 1.82 christos * set VM bounds (vmin is filled in by uvm_map)
387 1.8 mrg */
388 1.1 mrg
389 1.82 christos *vmax = *vmin + size;
390 1.5 thorpej
391 1.8 mrg /*
392 1.8 mrg * add references to pmap and create or init the submap
393 1.8 mrg */
394 1.1 mrg
395 1.8 mrg pmap_reference(vm_map_pmap(map));
396 1.8 mrg if (submap == NULL) {
397 1.96.16.1 yamt submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
398 1.8 mrg if (submap == NULL)
399 1.8 mrg panic("uvm_km_suballoc: unable to create submap");
400 1.8 mrg }
401 1.82 christos uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
402 1.71 yamt submap->vmk_map.pmap = vm_map_pmap(map);
403 1.1 mrg
404 1.8 mrg /*
405 1.8 mrg * now let uvm_map_submap plug in it...
406 1.8 mrg */
407 1.1 mrg
408 1.82 christos if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
409 1.8 mrg panic("uvm_km_suballoc: submap allocation failed");
410 1.1 mrg
411 1.71 yamt return(&submap->vmk_map);
412 1.1 mrg }
413 1.1 mrg
414 1.1 mrg /*
415 1.1 mrg * uvm_km_pgremove: remove pages from a kernel uvm_object.
416 1.1 mrg *
417 1.1 mrg * => when you unmap a part of anonymous kernel memory you want to toss
418 1.1 mrg * the pages right away. (this gets called from uvm_unmap_...).
419 1.1 mrg */
420 1.1 mrg
421 1.8 mrg void
422 1.83 thorpej uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
423 1.1 mrg {
424 1.95 ad struct uvm_object * const uobj = uvm_kernel_object;
425 1.78 yamt const voff_t start = startva - vm_map_min(kernel_map);
426 1.78 yamt const voff_t end = endva - vm_map_min(kernel_map);
427 1.53 chs struct vm_page *pg;
428 1.52 chs voff_t curoff, nextoff;
429 1.53 chs int swpgonlydelta = 0;
430 1.8 mrg UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
431 1.1 mrg
432 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
433 1.78 yamt KASSERT(startva < endva);
434 1.86 yamt KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
435 1.78 yamt
436 1.40 chs simple_lock(&uobj->vmobjlock);
437 1.3 chs
438 1.52 chs for (curoff = start; curoff < end; curoff = nextoff) {
439 1.52 chs nextoff = curoff + PAGE_SIZE;
440 1.52 chs pg = uvm_pagelookup(uobj, curoff);
441 1.53 chs if (pg != NULL && pg->flags & PG_BUSY) {
442 1.52 chs pg->flags |= PG_WANTED;
443 1.52 chs UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
444 1.52 chs "km_pgrm", 0);
445 1.52 chs simple_lock(&uobj->vmobjlock);
446 1.52 chs nextoff = curoff;
447 1.8 mrg continue;
448 1.52 chs }
449 1.8 mrg
450 1.52 chs /*
451 1.52 chs * free the swap slot, then the page.
452 1.52 chs */
453 1.8 mrg
454 1.53 chs if (pg == NULL &&
455 1.64 pk uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
456 1.53 chs swpgonlydelta++;
457 1.53 chs }
458 1.52 chs uao_dropswap(uobj, curoff >> PAGE_SHIFT);
459 1.53 chs if (pg != NULL) {
460 1.53 chs uvm_lock_pageq();
461 1.53 chs uvm_pagefree(pg);
462 1.53 chs uvm_unlock_pageq();
463 1.53 chs }
464 1.8 mrg }
465 1.8 mrg simple_unlock(&uobj->vmobjlock);
466 1.8 mrg
467 1.54 chs if (swpgonlydelta > 0) {
468 1.95 ad mutex_enter(&uvm_swap_data_lock);
469 1.54 chs KASSERT(uvmexp.swpgonly >= swpgonlydelta);
470 1.54 chs uvmexp.swpgonly -= swpgonlydelta;
471 1.95 ad mutex_exit(&uvm_swap_data_lock);
472 1.54 chs }
473 1.24 thorpej }
474 1.24 thorpej
475 1.24 thorpej
476 1.24 thorpej /*
477 1.78 yamt * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
478 1.78 yamt * regions.
479 1.24 thorpej *
480 1.24 thorpej * => when you unmap a part of anonymous kernel memory you want to toss
481 1.52 chs * the pages right away. (this is called from uvm_unmap_...).
482 1.24 thorpej * => none of the pages will ever be busy, and none of them will ever
483 1.52 chs * be on the active or inactive queues (because they have no object).
484 1.24 thorpej */
485 1.24 thorpej
486 1.24 thorpej void
487 1.83 thorpej uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
488 1.24 thorpej {
489 1.52 chs struct vm_page *pg;
490 1.52 chs paddr_t pa;
491 1.24 thorpej UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
492 1.24 thorpej
493 1.78 yamt KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
494 1.78 yamt KASSERT(start < end);
495 1.86 yamt KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
496 1.78 yamt
497 1.52 chs for (; start < end; start += PAGE_SIZE) {
498 1.52 chs if (!pmap_extract(pmap_kernel(), start, &pa)) {
499 1.24 thorpej continue;
500 1.40 chs }
501 1.52 chs pg = PHYS_TO_VM_PAGE(pa);
502 1.52 chs KASSERT(pg);
503 1.52 chs KASSERT(pg->uobject == NULL && pg->uanon == NULL);
504 1.52 chs uvm_pagefree(pg);
505 1.24 thorpej }
506 1.1 mrg }
507 1.1 mrg
508 1.78 yamt #if defined(DEBUG)
509 1.78 yamt void
510 1.93 thorpej uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
511 1.78 yamt {
512 1.78 yamt vaddr_t va;
513 1.78 yamt paddr_t pa;
514 1.78 yamt
515 1.78 yamt KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
516 1.78 yamt KDASSERT(start < end);
517 1.85 yamt KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
518 1.78 yamt
519 1.78 yamt for (va = start; va < end; va += PAGE_SIZE) {
520 1.78 yamt if (pmap_extract(pmap_kernel(), va, &pa)) {
521 1.81 simonb panic("uvm_km_check_empty: va %p has pa 0x%llx",
522 1.81 simonb (void *)va, (long long)pa);
523 1.78 yamt }
524 1.78 yamt if (!intrsafe) {
525 1.78 yamt const struct vm_page *pg;
526 1.78 yamt
527 1.96 ad simple_lock(&uvm_kernel_object->vmobjlock);
528 1.96 ad pg = uvm_pagelookup(uvm_kernel_object,
529 1.78 yamt va - vm_map_min(kernel_map));
530 1.96 ad simple_unlock(&uvm_kernel_object->vmobjlock);
531 1.78 yamt if (pg) {
532 1.78 yamt panic("uvm_km_check_empty: "
533 1.78 yamt "has page hashed at %p", (const void *)va);
534 1.78 yamt }
535 1.78 yamt }
536 1.78 yamt }
537 1.78 yamt }
538 1.78 yamt #endif /* defined(DEBUG) */
539 1.1 mrg
540 1.1 mrg /*
541 1.78 yamt * uvm_km_alloc: allocate an area of kernel memory.
542 1.1 mrg *
543 1.78 yamt * => NOTE: we can return 0 even if we can wait if there is not enough
544 1.1 mrg * free VM space in the map... caller should be prepared to handle
545 1.1 mrg * this case.
546 1.1 mrg * => we return KVA of memory allocated
547 1.1 mrg */
548 1.1 mrg
549 1.14 eeh vaddr_t
550 1.83 thorpej uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
551 1.1 mrg {
552 1.14 eeh vaddr_t kva, loopva;
553 1.14 eeh vaddr_t offset;
554 1.44 thorpej vsize_t loopsize;
555 1.8 mrg struct vm_page *pg;
556 1.78 yamt struct uvm_object *obj;
557 1.78 yamt int pgaflags;
558 1.89 drochner vm_prot_t prot;
559 1.78 yamt UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
560 1.1 mrg
561 1.96.16.1 yamt if (map == NULL) { /* XXX kmem_map */
562 1.96.16.1 yamt map = kernel_map;
563 1.96.16.1 yamt }
564 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
565 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
566 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
567 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
568 1.1 mrg
569 1.8 mrg /*
570 1.8 mrg * setup for call
571 1.8 mrg */
572 1.8 mrg
573 1.8 mrg size = round_page(size);
574 1.95 ad obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
575 1.78 yamt UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
576 1.78 yamt map, obj, size, flags);
577 1.1 mrg
578 1.8 mrg /*
579 1.8 mrg * allocate some virtual space
580 1.8 mrg */
581 1.8 mrg
582 1.96.16.1 yamt if ((flags & UVM_KMF_PAGEABLE) != 0) {
583 1.96.16.1 yamt kva = vm_map_min(map); /* hint */
584 1.96.16.1 yamt if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
585 1.96.16.1 yamt align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
586 1.96.16.1 yamt UVM_ADV_RANDOM,
587 1.96.16.1 yamt (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
588 1.96.16.1 yamt | UVM_FLAG_QUANTUM)) != 0)) {
589 1.96.16.1 yamt UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
590 1.96.16.1 yamt return(0);
591 1.96.16.1 yamt }
592 1.96.16.1 yamt } else {
593 1.96.16.1 yamt kva = (vaddr_t)vmem_xalloc(kernel_va_arena, size,
594 1.96.16.1 yamt align, 0, 0, 0, 0,
595 1.96.16.1 yamt ((flags & UVM_KMF_NOWAIT) ? VM_NOSLEEP : VM_SLEEP)
596 1.96.16.1 yamt | VM_INSTANTFIT);
597 1.96.16.1 yamt if (kva == 0) {
598 1.96.16.1 yamt return 0;
599 1.96.16.1 yamt }
600 1.8 mrg }
601 1.8 mrg
602 1.8 mrg /*
603 1.8 mrg * if all we wanted was VA, return now
604 1.8 mrg */
605 1.8 mrg
606 1.78 yamt if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
607 1.8 mrg UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
608 1.8 mrg return(kva);
609 1.8 mrg }
610 1.40 chs
611 1.8 mrg /*
612 1.8 mrg * recover object offset from virtual address
613 1.8 mrg */
614 1.8 mrg
615 1.8 mrg offset = kva - vm_map_min(kernel_map);
616 1.8 mrg UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
617 1.8 mrg
618 1.8 mrg /*
619 1.8 mrg * now allocate and map in the memory... note that we are the only ones
620 1.8 mrg * whom should ever get a handle on this area of VM.
621 1.8 mrg */
622 1.8 mrg
623 1.8 mrg loopva = kva;
624 1.44 thorpej loopsize = size;
625 1.78 yamt
626 1.78 yamt pgaflags = UVM_PGA_USERESERVE;
627 1.78 yamt if (flags & UVM_KMF_ZERO)
628 1.78 yamt pgaflags |= UVM_PGA_ZERO;
629 1.89 drochner prot = VM_PROT_READ | VM_PROT_WRITE;
630 1.89 drochner if (flags & UVM_KMF_EXEC)
631 1.89 drochner prot |= VM_PROT_EXECUTE;
632 1.44 thorpej while (loopsize) {
633 1.78 yamt KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
634 1.78 yamt
635 1.78 yamt pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
636 1.47 chs
637 1.8 mrg /*
638 1.8 mrg * out of memory?
639 1.8 mrg */
640 1.8 mrg
641 1.35 thorpej if (__predict_false(pg == NULL)) {
642 1.58 chs if ((flags & UVM_KMF_NOWAIT) ||
643 1.80 yamt ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
644 1.8 mrg /* free everything! */
645 1.78 yamt uvm_km_free(map, kva, size,
646 1.78 yamt flags & UVM_KMF_TYPEMASK);
647 1.58 chs return (0);
648 1.8 mrg } else {
649 1.8 mrg uvm_wait("km_getwait2"); /* sleep here */
650 1.8 mrg continue;
651 1.8 mrg }
652 1.8 mrg }
653 1.47 chs
654 1.78 yamt pg->flags &= ~PG_BUSY; /* new page */
655 1.78 yamt UVM_PAGE_OWN(pg, NULL);
656 1.78 yamt
657 1.8 mrg /*
658 1.52 chs * map it in
659 1.8 mrg */
660 1.40 chs
661 1.89 drochner pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
662 1.8 mrg loopva += PAGE_SIZE;
663 1.8 mrg offset += PAGE_SIZE;
664 1.44 thorpej loopsize -= PAGE_SIZE;
665 1.8 mrg }
666 1.69 junyoung
667 1.51 chris pmap_update(pmap_kernel());
668 1.69 junyoung
669 1.8 mrg UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
670 1.8 mrg return(kva);
671 1.1 mrg }
672 1.1 mrg
673 1.1 mrg /*
674 1.1 mrg * uvm_km_free: free an area of kernel memory
675 1.1 mrg */
676 1.1 mrg
677 1.8 mrg void
678 1.83 thorpej uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
679 1.8 mrg {
680 1.1 mrg
681 1.96.16.1 yamt if (map == NULL) { /* XXX kmem_map */
682 1.96.16.1 yamt map = kernel_map;
683 1.96.16.1 yamt }
684 1.78 yamt KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
685 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
686 1.78 yamt (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
687 1.78 yamt KASSERT((addr & PAGE_MASK) == 0);
688 1.40 chs KASSERT(vm_map_pmap(map) == pmap_kernel());
689 1.1 mrg
690 1.8 mrg size = round_page(size);
691 1.1 mrg
692 1.78 yamt if (flags & UVM_KMF_PAGEABLE) {
693 1.78 yamt uvm_km_pgremove(addr, addr + size);
694 1.78 yamt pmap_remove(pmap_kernel(), addr, addr + size);
695 1.96.16.1 yamt uvm_unmap1(map, addr, addr + size,
696 1.96.16.1 yamt UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
697 1.96.16.1 yamt } else {
698 1.96.16.1 yamt if (flags & UVM_KMF_WIRED) {
699 1.96.16.1 yamt uvm_km_pgremove_intrsafe(addr, addr + size);
700 1.96.16.1 yamt pmap_kremove(addr, size);
701 1.96.16.1 yamt }
702 1.96.16.1 yamt vmem_xfree(kernel_va_arena, addr, size);
703 1.8 mrg }
704 1.66 pk }
705 1.66 pk
706 1.10 thorpej /* Sanity; must specify both or none. */
707 1.10 thorpej #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
708 1.10 thorpej (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
709 1.10 thorpej #error Must specify MAP and UNMAP together.
710 1.10 thorpej #endif
711 1.10 thorpej
712 1.10 thorpej /*
713 1.10 thorpej * uvm_km_alloc_poolpage: allocate a page for the pool allocator
714 1.10 thorpej *
715 1.10 thorpej * => if the pmap specifies an alternate mapping method, we use it.
716 1.10 thorpej */
717 1.10 thorpej
718 1.11 thorpej /* ARGSUSED */
719 1.14 eeh vaddr_t
720 1.93 thorpej uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
721 1.72 yamt {
722 1.96.16.1 yamt #if defined(PMAP_MAP_POOLPAGE) || 1
723 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
724 1.72 yamt #else
725 1.72 yamt struct vm_page *pg;
726 1.72 yamt struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
727 1.72 yamt vaddr_t va;
728 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
729 1.93 thorpej const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
730 1.72 yamt
731 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0)
732 1.78 yamt return uvm_km_alloc_poolpage(map, waitok);
733 1.72 yamt
734 1.72 yamt if (intrsafe)
735 1.72 yamt s = splvm();
736 1.72 yamt va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
737 1.72 yamt if (intrsafe)
738 1.72 yamt splx(s);
739 1.72 yamt if (va == 0)
740 1.72 yamt return 0;
741 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
742 1.72 yamt again:
743 1.72 yamt pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
744 1.72 yamt if (__predict_false(pg == NULL)) {
745 1.72 yamt if (waitok) {
746 1.72 yamt uvm_wait("plpg");
747 1.72 yamt goto again;
748 1.72 yamt } else {
749 1.72 yamt if (intrsafe)
750 1.72 yamt s = splvm();
751 1.72 yamt pool_put(pp, (void *)va);
752 1.72 yamt if (intrsafe)
753 1.72 yamt splx(s);
754 1.72 yamt return 0;
755 1.72 yamt }
756 1.72 yamt }
757 1.79 yamt pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
758 1.72 yamt pmap_update(pmap_kernel());
759 1.72 yamt
760 1.72 yamt return va;
761 1.72 yamt #endif /* PMAP_MAP_POOLPAGE */
762 1.72 yamt }
763 1.72 yamt
764 1.72 yamt vaddr_t
765 1.93 thorpej uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
766 1.10 thorpej {
767 1.10 thorpej #if defined(PMAP_MAP_POOLPAGE)
768 1.10 thorpej struct vm_page *pg;
769 1.14 eeh vaddr_t va;
770 1.10 thorpej
771 1.15 thorpej again:
772 1.29 chs pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
773 1.35 thorpej if (__predict_false(pg == NULL)) {
774 1.15 thorpej if (waitok) {
775 1.15 thorpej uvm_wait("plpg");
776 1.15 thorpej goto again;
777 1.15 thorpej } else
778 1.15 thorpej return (0);
779 1.15 thorpej }
780 1.10 thorpej va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
781 1.35 thorpej if (__predict_false(va == 0))
782 1.10 thorpej uvm_pagefree(pg);
783 1.10 thorpej return (va);
784 1.10 thorpej #else
785 1.14 eeh vaddr_t va;
786 1.96.16.1 yamt int s;
787 1.16 thorpej
788 1.96.16.1 yamt s = splvm();
789 1.96.16.1 yamt va = (vaddr_t)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
790 1.96.16.1 yamt (waitok ? 0 : UVM_KMF_NOWAIT) | UVM_KMF_WIRED);
791 1.96.16.1 yamt splx(s);
792 1.96.16.1 yamt return va;
793 1.10 thorpej #endif /* PMAP_MAP_POOLPAGE */
794 1.10 thorpej }
795 1.10 thorpej
796 1.10 thorpej /*
797 1.10 thorpej * uvm_km_free_poolpage: free a previously allocated pool page
798 1.10 thorpej *
799 1.10 thorpej * => if the pmap specifies an alternate unmapping method, we use it.
800 1.10 thorpej */
801 1.10 thorpej
802 1.11 thorpej /* ARGSUSED */
803 1.10 thorpej void
804 1.83 thorpej uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
805 1.72 yamt {
806 1.96.16.1 yamt #if defined(PMAP_UNMAP_POOLPAGE) || 1
807 1.78 yamt uvm_km_free_poolpage(map, addr);
808 1.72 yamt #else
809 1.72 yamt struct pool *pp;
810 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
811 1.93 thorpej const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
812 1.72 yamt
813 1.72 yamt if ((map->flags & VM_MAP_VACACHE) == 0) {
814 1.78 yamt uvm_km_free_poolpage(map, addr);
815 1.72 yamt return;
816 1.72 yamt }
817 1.72 yamt
818 1.72 yamt KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
819 1.72 yamt uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
820 1.72 yamt pmap_kremove(addr, PAGE_SIZE);
821 1.72 yamt #if defined(DEBUG)
822 1.72 yamt pmap_update(pmap_kernel());
823 1.72 yamt #endif
824 1.72 yamt KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
825 1.72 yamt pp = &vm_map_to_kernel(map)->vmk_vacache;
826 1.72 yamt if (intrsafe)
827 1.72 yamt s = splvm();
828 1.72 yamt pool_put(pp, (void *)addr);
829 1.72 yamt if (intrsafe)
830 1.72 yamt splx(s);
831 1.72 yamt #endif
832 1.72 yamt }
833 1.72 yamt
834 1.72 yamt /* ARGSUSED */
835 1.72 yamt void
836 1.83 thorpej uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
837 1.10 thorpej {
838 1.10 thorpej #if defined(PMAP_UNMAP_POOLPAGE)
839 1.14 eeh paddr_t pa;
840 1.10 thorpej
841 1.10 thorpej pa = PMAP_UNMAP_POOLPAGE(addr);
842 1.10 thorpej uvm_pagefree(PHYS_TO_VM_PAGE(pa));
843 1.10 thorpej #else
844 1.72 yamt int s = 0xdeadbeaf; /* XXX: gcc */
845 1.93 thorpej const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
846 1.10 thorpej
847 1.72 yamt if (intrsafe)
848 1.72 yamt s = splvm();
849 1.78 yamt uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
850 1.72 yamt if (intrsafe)
851 1.72 yamt splx(s);
852 1.10 thorpej #endif /* PMAP_UNMAP_POOLPAGE */
853 1.1 mrg }
854