uvm_km.c revision 1.101.4.2.4.11 1 /* $NetBSD: uvm_km.c,v 1.101.4.2.4.11 2012/04/12 19:38:27 matt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. All advertising materials mentioning features or use of this software
21 * must display the following acknowledgement:
22 * This product includes software developed by Charles D. Cranor,
23 * Washington University, the University of California, Berkeley and
24 * its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43 *
44 *
45 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46 * All rights reserved.
47 *
48 * Permission to use, copy, modify and distribute this software and
49 * its documentation is hereby granted, provided that both the copyright
50 * notice and this permission notice appear in all copies of the
51 * software, derivative works or modified versions, and any portions
52 * thereof, and that both notices appear in supporting documentation.
53 *
54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57 *
58 * Carnegie Mellon requests users of this software to return to
59 *
60 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
61 * School of Computer Science
62 * Carnegie Mellon University
63 * Pittsburgh PA 15213-3890
64 *
65 * any improvements or extensions that they make and grant Carnegie the
66 * rights to redistribute these changes.
67 */
68
69 /*
70 * uvm_km.c: handle kernel memory allocation and management
71 */
72
73 /*
74 * overview of kernel memory management:
75 *
76 * the kernel virtual address space is mapped by "kernel_map." kernel_map
77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79 *
80 * the kernel_map has several "submaps." submaps can only appear in
81 * the kernel_map (user processes can't use them). submaps "take over"
82 * the management of a sub-range of the kernel's address space. submaps
83 * are typically allocated at boot time and are never released. kernel
84 * virtual address space that is mapped by a submap is locked by the
85 * submap's lock -- not the kernel_map's lock.
86 *
87 * thus, the useful feature of submaps is that they allow us to break
88 * up the locking and protection of the kernel address space into smaller
89 * chunks.
90 *
91 * the vm system has several standard kernel submaps, including:
92 * kmem_map => contains only wired kernel memory for the kernel
93 * malloc.
94 * mb_map => memory for large mbufs,
95 * pager_map => used to map "buf" structures into kernel space
96 * exec_map => used during exec to handle exec args
97 * etc...
98 *
99 * the kernel allocates its private memory out of special uvm_objects whose
100 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
101 * are "special" and never die). all kernel objects should be thought of
102 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
103 * object is equal to the size of kernel virtual address space (i.e. the
104 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
105 *
106 * note that just because a kernel object spans the entire kernel virtual
107 * address space doesn't mean that it has to be mapped into the entire space.
108 * large chunks of a kernel object's space go unused either because
109 * that area of kernel VM is unmapped, or there is some other type of
110 * object mapped into that range (e.g. a vnode). for submap's kernel
111 * objects, the only part of the object that can ever be populated is the
112 * offsets that are managed by the submap.
113 *
114 * note that the "offset" in a kernel object is always the kernel virtual
115 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
116 * example:
117 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
118 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
119 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
120 * then that means that the page at offset 0x235000 in kernel_object is
121 * mapped at 0xf8235000.
122 *
123 * kernel object have one other special property: when the kernel virtual
124 * memory mapping them is unmapped, the backing memory in the object is
125 * freed right away. this is done with the uvm_km_pgremove() function.
126 * this has to be done because there is no backing store for kernel pages
127 * and no need to save them after they are no longer referenced.
128 */
129
130 #include <sys/cdefs.h>
131 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.101.4.2.4.11 2012/04/12 19:38:27 matt Exp $");
132
133 #include "opt_uvmhist.h"
134
135 #include <sys/param.h>
136 #include <sys/atomic.h>
137 #include <sys/malloc.h>
138 #include <sys/systm.h>
139 #include <sys/proc.h>
140 #include <sys/pool.h>
141
142 #include <uvm/uvm.h>
143
144 /*
145 * global data structures
146 */
147
148 struct vm_map *kernel_map = NULL;
149
150 /*
151 * local data structues
152 */
153
154 static struct vm_map_kernel kernel_map_store;
155 static struct vm_map_entry kernel_first_mapent_store;
156
157 #if !defined(PMAP_MAP_POOLPAGE)
158
159 /*
160 * kva cache
161 *
162 * XXX maybe it's better to do this at the uvm_map layer.
163 */
164
165 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
166
167 static void *km_vacache_alloc(struct pool *, int);
168 static void km_vacache_free(struct pool *, void *);
169 static void km_vacache_init(struct vm_map *, const char *, size_t);
170
171 /* XXX */
172 #define KM_VACACHE_POOL_TO_MAP(pp) \
173 ((struct vm_map *)((char *)(pp) - \
174 offsetof(struct vm_map_kernel, vmk_vacache)))
175
176 static void *
177 km_vacache_alloc(struct pool *pp, int flags)
178 {
179 vaddr_t va;
180 size_t size;
181 struct vm_map *map;
182 size = pp->pr_alloc->pa_pagesz;
183
184 map = KM_VACACHE_POOL_TO_MAP(pp);
185
186 va = vm_map_min(map); /* hint */
187 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
188 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
189 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
190 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
191 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
192 return NULL;
193
194 return (void *)va;
195 }
196
197 static void
198 km_vacache_free(struct pool *pp, void *v)
199 {
200 vaddr_t va = (vaddr_t)v;
201 size_t size = pp->pr_alloc->pa_pagesz;
202 struct vm_map *map;
203
204 map = KM_VACACHE_POOL_TO_MAP(pp);
205 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
206 }
207
208 /*
209 * km_vacache_init: initialize kva cache.
210 */
211
212 static void
213 km_vacache_init(struct vm_map *map, const char *name, size_t size)
214 {
215 struct vm_map_kernel *vmk;
216 struct pool *pp;
217 struct pool_allocator *pa;
218 int ipl;
219
220 KASSERT(VM_MAP_IS_KERNEL(map));
221 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
222
223
224 vmk = vm_map_to_kernel(map);
225 pp = &vmk->vmk_vacache;
226 pa = &vmk->vmk_vacache_allocator;
227 memset(pa, 0, sizeof(*pa));
228 pa->pa_alloc = km_vacache_alloc;
229 pa->pa_free = km_vacache_free;
230 pa->pa_pagesz = (unsigned int)size;
231 pa->pa_backingmap = map;
232 pa->pa_backingmapptr = NULL;
233
234 if ((map->flags & VM_MAP_INTRSAFE) != 0)
235 ipl = IPL_VM;
236 else
237 ipl = IPL_NONE;
238
239 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
240 ipl);
241 }
242
243 void
244 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
245 {
246
247 map->flags |= VM_MAP_VACACHE;
248 if (size == 0)
249 size = KM_VACACHE_SIZE;
250 km_vacache_init(map, name, size);
251 }
252
253 #else /* !defined(PMAP_MAP_POOLPAGE) */
254
255 void
256 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 {
258
259 /* nothing */
260 }
261
262 #endif /* !defined(PMAP_MAP_POOLPAGE) */
263
264 void
265 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
266 {
267 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
268
269 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
270 }
271
272 /*
273 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
274 * KVM already allocated for text, data, bss, and static data structures).
275 *
276 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
277 * we assume that [vmin -> start] has already been allocated and that
278 * "end" is the end.
279 */
280
281 void
282 uvm_km_init(vaddr_t start, vaddr_t end)
283 {
284 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
285
286 /*
287 * next, init kernel memory objects.
288 */
289
290 /* kernel_object: for pageable anonymous kernel memory */
291 uao_init();
292 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
293 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
294
295 /*
296 * init the map and reserve any space that might already
297 * have been allocated kernel space before installing.
298 */
299
300 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
301 kernel_map_store.vmk_map.pmap = pmap_kernel();
302 if (start != base) {
303 int error;
304 struct uvm_map_args args;
305
306 error = uvm_map_prepare(&kernel_map_store.vmk_map,
307 base, start - base,
308 NULL, UVM_UNKNOWN_OFFSET, 0,
309 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
310 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
311 if (!error) {
312 kernel_first_mapent_store.flags =
313 UVM_MAP_KERNEL | UVM_MAP_FIRST;
314 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
315 &kernel_first_mapent_store);
316 }
317
318 if (error)
319 panic(
320 "uvm_km_init: could not reserve space for kernel");
321 }
322
323 /*
324 * install!
325 */
326
327 kernel_map = &kernel_map_store.vmk_map;
328 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
329 }
330
331 /*
332 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
333 * is allocated all references to that area of VM must go through it. this
334 * allows the locking of VAs in kernel_map to be broken up into regions.
335 *
336 * => if `fixed' is true, *vmin specifies where the region described
337 * by the submap must start
338 * => if submap is non NULL we use that as the submap, otherwise we
339 * alloc a new map
340 */
341
342 struct vm_map *
343 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
344 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
345 struct vm_map_kernel *submap)
346 {
347 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
348
349 KASSERT(vm_map_pmap(map) == pmap_kernel());
350
351 size = round_page(size); /* round up to pagesize */
352 size += uvm_mapent_overhead(size, flags);
353
354 /*
355 * first allocate a blank spot in the parent map
356 */
357
358 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
359 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
360 UVM_ADV_RANDOM, mapflags)) != 0) {
361 panic("uvm_km_suballoc: unable to allocate space in parent map");
362 }
363
364 /*
365 * set VM bounds (vmin is filled in by uvm_map)
366 */
367
368 *vmax = *vmin + size;
369
370 /*
371 * add references to pmap and create or init the submap
372 */
373
374 pmap_reference(vm_map_pmap(map));
375 if (submap == NULL) {
376 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
377 if (submap == NULL)
378 panic("uvm_km_suballoc: unable to create submap");
379 }
380 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
381 submap->vmk_map.pmap = vm_map_pmap(map);
382
383 /*
384 * now let uvm_map_submap plug in it...
385 */
386
387 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
388 panic("uvm_km_suballoc: submap allocation failed");
389
390 return(&submap->vmk_map);
391 }
392
393 /*
394 * uvm_km_pgremove: remove pages from a kernel uvm_object.
395 *
396 * => when you unmap a part of anonymous kernel memory you want to toss
397 * the pages right away. (this gets called from uvm_unmap_...).
398 */
399
400 void
401 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
402 {
403 struct uvm_object * const uobj = uvm_kernel_object;
404 const voff_t start = startva - vm_map_min(kernel_map);
405 const voff_t end = endva - vm_map_min(kernel_map);
406 struct vm_page *pg;
407 voff_t curoff, nextoff;
408 int swpgonlydelta = 0;
409 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
410
411 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
412 KASSERT(startva < endva);
413 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
414
415 mutex_enter(&uobj->vmobjlock);
416
417 for (curoff = start; curoff < end; curoff = nextoff) {
418 nextoff = curoff + PAGE_SIZE;
419 pg = uvm_pagelookup(uobj, curoff);
420 if (pg != NULL && pg->flags & PG_BUSY) {
421 pg->flags |= PG_WANTED;
422 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
423 "km_pgrm", 0);
424 mutex_enter(&uobj->vmobjlock);
425 nextoff = curoff;
426 continue;
427 }
428
429 /*
430 * free the swap slot, then the page.
431 */
432
433 if (pg == NULL &&
434 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
435 swpgonlydelta++;
436 }
437 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
438 if (pg != NULL) {
439 mutex_enter(&uvm_pageqlock);
440 uvm_pagedequeue(pg);
441 uvm_pagefree(pg);
442 mutex_exit(&uvm_pageqlock);
443 }
444 }
445 mutex_exit(&uobj->vmobjlock);
446
447 if (swpgonlydelta > 0) {
448 mutex_enter(&uvm_swap_data_lock);
449 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
450 uvmexp.swpgonly -= swpgonlydelta;
451 mutex_exit(&uvm_swap_data_lock);
452 }
453 }
454
455
456 /*
457 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
458 * regions.
459 *
460 * => when you unmap a part of anonymous kernel memory you want to toss
461 * the pages right away. (this is called from uvm_unmap_...).
462 * => none of the pages will ever be busy, and none of them will ever
463 * be on the active or inactive queues (because they have no object).
464 */
465
466 void
467 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
468 {
469 struct vm_page *pg;
470 paddr_t pa;
471 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
472
473 KASSERT(VM_MAP_IS_KERNEL(map));
474 KASSERT(vm_map_min(map) <= start);
475 KASSERT(start < end);
476 KASSERT(end <= vm_map_max(map));
477
478 for (; start < end; start += PAGE_SIZE) {
479 if (!pmap_extract(pmap_kernel(), start, &pa)) {
480 continue;
481 }
482 pg = PHYS_TO_VM_PAGE(pa);
483 KASSERT(pg);
484 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
485 uvm_km_pagefree(pg);
486 }
487 }
488
489 #if defined(DEBUG)
490 void
491 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
492 {
493 struct vm_page *pg;
494 vaddr_t va;
495 paddr_t pa;
496
497 KDASSERT(VM_MAP_IS_KERNEL(map));
498 KDASSERT(vm_map_min(map) <= start);
499 KDASSERT(start < end);
500 KDASSERT(end <= vm_map_max(map));
501
502 for (va = start; va < end; va += PAGE_SIZE) {
503 if (pmap_extract(pmap_kernel(), va, &pa)) {
504 panic("uvm_km_check_empty: va %p has pa 0x%llx",
505 (void *)va, (long long)pa);
506 }
507 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
508 mutex_enter(&uvm_kernel_object->vmobjlock);
509 pg = uvm_pagelookup(uvm_kernel_object,
510 va - vm_map_min(kernel_map));
511 mutex_exit(&uvm_kernel_object->vmobjlock);
512 if (pg) {
513 panic("uvm_km_check_empty: "
514 "has page hashed at %p", (const void *)va);
515 }
516 }
517 }
518 }
519 #endif /* defined(DEBUG) */
520
521 /*
522 * uvm_km_alloc: allocate an area of kernel memory.
523 *
524 * => NOTE: we can return 0 even if we can wait if there is not enough
525 * free VM space in the map... caller should be prepared to handle
526 * this case.
527 * => we return KVA of memory allocated
528 */
529
530 vaddr_t
531 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
532 {
533 vaddr_t kva, loopva;
534 vaddr_t offset;
535 vsize_t loopsize;
536 struct vm_page *pg;
537 struct uvm_object *obj;
538 int pgaflags;
539 vm_prot_t prot;
540 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
541
542 KASSERT(vm_map_pmap(map) == pmap_kernel());
543 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
544 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
545 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
546 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
547 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
548
549 /*
550 * setup for call
551 */
552
553 kva = vm_map_min(map); /* hint */
554 size = round_page(size);
555 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
556 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
557 map, obj, size, flags);
558
559 /*
560 * allocate some virtual space
561 */
562
563 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
564 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
565 UVM_ADV_RANDOM,
566 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA | UVM_KMF_COLORMATCH))
567 | UVM_FLAG_QUANTUM)) != 0)) {
568 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
569 return(0);
570 }
571
572 /*
573 * if all we wanted was VA, return now
574 */
575
576 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
577 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
578 return(kva);
579 }
580
581 /*
582 * recover object offset from virtual address
583 */
584
585 offset = kva - vm_map_min(kernel_map);
586 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
587
588 /*
589 * now allocate and map in the memory... note that we are the only ones
590 * whom should ever get a handle on this area of VM.
591 */
592
593 loopva = kva;
594 loopsize = size;
595
596 pgaflags = UVM_FLAG_COLORMATCH;
597 if (flags & UVM_KMF_NOWAIT)
598 pgaflags |= UVM_PGA_USERESERVE;
599 if (flags & UVM_KMF_ZERO)
600 pgaflags |= UVM_PGA_ZERO;
601 prot = VM_PROT_READ | VM_PROT_WRITE;
602 if (flags & UVM_KMF_EXEC)
603 prot |= VM_PROT_EXECUTE;
604 while (loopsize) {
605 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
606
607 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
608 #ifdef UVM_KM_VMFREELIST
609 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
610 #else
611 UVM_PGA_STRAT_NORMAL, 0
612 #endif
613 );
614
615 /*
616 * out of memory?
617 */
618
619 if (__predict_false(pg == NULL)) {
620 if ((flags & UVM_KMF_NOWAIT)
621 || ((flags & UVM_KMF_CANFAIL)
622 && !uvm_reclaimable(
623 atop(offset) & uvmexp.colormask, true))) {
624 /* free everything! */
625 uvm_km_free(map, kva, size,
626 flags & UVM_KMF_TYPEMASK);
627 return (0);
628 } else {
629 uvm_wait("km_getwait2"); /* sleep here */
630 continue;
631 }
632 }
633
634 uvm_km_pageclaim(pg);
635
636 pg->flags &= ~PG_BUSY; /* new page */
637 UVM_PAGE_OWN(pg, NULL, NULL);
638
639 /*
640 * map it in
641 */
642
643 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot|PMAP_KMPAGE);
644 loopva += PAGE_SIZE;
645 offset += PAGE_SIZE;
646 loopsize -= PAGE_SIZE;
647 }
648
649 pmap_update(pmap_kernel());
650
651 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
652 return(kva);
653 }
654
655 /*
656 * uvm_km_free: free an area of kernel memory
657 */
658
659 void
660 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
661 {
662
663 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
664 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
665 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
666 KASSERT((addr & PAGE_MASK) == 0);
667 KASSERT(vm_map_pmap(map) == pmap_kernel());
668
669 size = round_page(size);
670
671 if (flags & UVM_KMF_PAGEABLE) {
672 uvm_km_pgremove(addr, addr + size);
673 pmap_remove(pmap_kernel(), addr, addr + size);
674 } else if (flags & UVM_KMF_WIRED) {
675 uvm_km_pgremove_intrsafe(map, addr, addr + size);
676 pmap_kremove(addr, size);
677 }
678
679 /*
680 * uvm_unmap_remove calls pmap_update for us.
681 */
682
683 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
684 }
685
686 /* Sanity; must specify both or none. */
687 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
688 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
689 #error Must specify MAP and UNMAP together.
690 #endif
691
692 /*
693 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
694 *
695 * => if the pmap specifies an alternate mapping method, we use it.
696 */
697
698 /* ARGSUSED */
699 vaddr_t
700 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
701 {
702 #if defined(PMAP_MAP_POOLPAGE)
703 return uvm_km_alloc_poolpage(map, waitok);
704 #else
705 struct vm_page *pg;
706 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
707 vaddr_t va;
708
709 if ((map->flags & VM_MAP_VACACHE) == 0)
710 return uvm_km_alloc_poolpage(map, waitok);
711
712 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
713 if (va == 0)
714 return 0;
715 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
716 again:
717 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
718 if (__predict_false(pg == NULL)) {
719 if (waitok) {
720 uvm_wait("plpg");
721 goto again;
722 } else {
723 pool_put(pp, (void *)va);
724 return 0;
725 }
726 }
727 uvm_km_pageclaim(pg);
728 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
729 VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE);
730 pmap_update(pmap_kernel());
731
732 return va;
733 #endif /* PMAP_MAP_POOLPAGE */
734 }
735
736 vaddr_t
737 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
738 {
739 #if defined(PMAP_MAP_POOLPAGE)
740 struct vm_page *pg;
741 vaddr_t va;
742
743
744 again:
745 #ifdef PMAP_ALLOC_POOLPAGE
746 pg = PMAP_ALLOC_POOLPAGE(waitok ? 0 : UVM_PGA_USERESERVE);
747 #else
748 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
749 #endif
750 if (__predict_false(pg == NULL)) {
751 if (waitok) {
752 uvm_wait("plpg");
753 goto again;
754 } else
755 return (0);
756 }
757 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
758 if (__predict_false(va == 0)) {
759 uvm_pagefree(pg);
760 } else {
761 uvm_km_pageclaim(pg);
762 }
763 return (va);
764 #else
765 vaddr_t va;
766
767 va = uvm_km_alloc(map, PAGE_SIZE, 0,
768 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
769 return (va);
770 #endif /* PMAP_MAP_POOLPAGE */
771 }
772
773 /*
774 * uvm_km_free_poolpage: free a previously allocated pool page
775 *
776 * => if the pmap specifies an alternate unmapping method, we use it.
777 */
778
779 /* ARGSUSED */
780 void
781 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
782 {
783 #if defined(PMAP_UNMAP_POOLPAGE)
784 uvm_km_free_poolpage(map, addr);
785 #else
786 struct pool *pp;
787
788 if ((map->flags & VM_MAP_VACACHE) == 0) {
789 uvm_km_free_poolpage(map, addr);
790 return;
791 }
792
793 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
794 uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
795 pmap_kremove(addr, PAGE_SIZE);
796 #if defined(DEBUG)
797 pmap_update(pmap_kernel());
798 #endif
799 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
800 pp = &vm_map_to_kernel(map)->vmk_vacache;
801 pool_put(pp, (void *)addr);
802 #endif
803 }
804
805 /* ARGSUSED */
806 void
807 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
808 {
809 #if defined(PMAP_UNMAP_POOLPAGE)
810 paddr_t pa = PMAP_UNMAP_POOLPAGE(addr);
811 struct vm_page *pg = PHYS_TO_VM_PAGE(pa);
812 uvm_km_pagefree(pg);
813 #else
814 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
815 #endif /* PMAP_UNMAP_POOLPAGE */
816 }
817
818 void
819 uvm_km_pageclaim(struct vm_page *pg)
820 {
821 KASSERT(!(pg->pqflags & (PQ_PRIVATE1|PQ_PRIVATE2)));
822 atomic_inc_uint(&uvm_page_to_pggroup(pg)->pgrp_kmempages);
823 TAILQ_INSERT_TAIL(&uvm.kmem_pageq, pg, pageq.queue);
824 }
825
826 void
827 uvm_km_pagefree(struct vm_page *pg)
828 {
829 KASSERT(!(pg->pqflags & (PQ_PRIVATE1|PQ_PRIVATE2)));
830 atomic_dec_uint(&uvm_page_to_pggroup(pg)->pgrp_kmempages);
831 TAILQ_REMOVE(&uvm.kmem_pageq, pg, pageq.queue);
832 uvm_pagefree(pg);
833 }
834