Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.104.2.3
      1 /*	$NetBSD: uvm_km.c,v 1.104.2.3 2010/04/30 14:44:38 uebayasi Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. All advertising materials mentioning features or use of this software
     21  *    must display the following acknowledgement:
     22  *	This product includes software developed by Charles D. Cranor,
     23  *      Washington University, the University of California, Berkeley and
     24  *      its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     43  *
     44  *
     45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     46  * All rights reserved.
     47  *
     48  * Permission to use, copy, modify and distribute this software and
     49  * its documentation is hereby granted, provided that both the copyright
     50  * notice and this permission notice appear in all copies of the
     51  * software, derivative works or modified versions, and any portions
     52  * thereof, and that both notices appear in supporting documentation.
     53  *
     54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     57  *
     58  * Carnegie Mellon requests users of this software to return to
     59  *
     60  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     61  *  School of Computer Science
     62  *  Carnegie Mellon University
     63  *  Pittsburgh PA 15213-3890
     64  *
     65  * any improvements or extensions that they make and grant Carnegie the
     66  * rights to redistribute these changes.
     67  */
     68 
     69 /*
     70  * uvm_km.c: handle kernel memory allocation and management
     71  */
     72 
     73 /*
     74  * overview of kernel memory management:
     75  *
     76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     79  *
     80  * the kernel_map has several "submaps."   submaps can only appear in
     81  * the kernel_map (user processes can't use them).   submaps "take over"
     82  * the management of a sub-range of the kernel's address space.  submaps
     83  * are typically allocated at boot time and are never released.   kernel
     84  * virtual address space that is mapped by a submap is locked by the
     85  * submap's lock -- not the kernel_map's lock.
     86  *
     87  * thus, the useful feature of submaps is that they allow us to break
     88  * up the locking and protection of the kernel address space into smaller
     89  * chunks.
     90  *
     91  * the vm system has several standard kernel submaps, including:
     92  *   kmem_map => contains only wired kernel memory for the kernel
     93  *		malloc.
     94  *   pager_map => used to map "buf" structures into kernel space
     95  *   exec_map => used during exec to handle exec args
     96  *   etc...
     97  *
     98  * the kernel allocates its private memory out of special uvm_objects whose
     99  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
    100  * are "special" and never die).   all kernel objects should be thought of
    101  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
    102  * object is equal to the size of kernel virtual address space (i.e. the
    103  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
    104  *
    105  * note that just because a kernel object spans the entire kernel virtual
    106  * address space doesn't mean that it has to be mapped into the entire space.
    107  * large chunks of a kernel object's space go unused either because
    108  * that area of kernel VM is unmapped, or there is some other type of
    109  * object mapped into that range (e.g. a vnode).    for submap's kernel
    110  * objects, the only part of the object that can ever be populated is the
    111  * offsets that are managed by the submap.
    112  *
    113  * note that the "offset" in a kernel object is always the kernel virtual
    114  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    115  * example:
    116  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    117  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    118  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    119  *   then that means that the page at offset 0x235000 in kernel_object is
    120  *   mapped at 0xf8235000.
    121  *
    122  * kernel object have one other special property: when the kernel virtual
    123  * memory mapping them is unmapped, the backing memory in the object is
    124  * freed right away.   this is done with the uvm_km_pgremove() function.
    125  * this has to be done because there is no backing store for kernel pages
    126  * and no need to save them after they are no longer referenced.
    127  */
    128 
    129 #include <sys/cdefs.h>
    130 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.104.2.3 2010/04/30 14:44:38 uebayasi Exp $");
    131 
    132 #include "opt_uvmhist.h"
    133 #include "opt_device_page.h"
    134 #include "opt_xip.h"
    135 
    136 #include <sys/param.h>
    137 #include <sys/malloc.h>
    138 #include <sys/systm.h>
    139 #include <sys/proc.h>
    140 #include <sys/pool.h>
    141 #include <sys/once.h>
    142 
    143 #include <uvm/uvm.h>
    144 
    145 /*
    146  * global data structures
    147  */
    148 
    149 struct vm_map *kernel_map = NULL;
    150 
    151 /*
    152  * local data structues
    153  */
    154 
    155 static struct vm_map_kernel	kernel_map_store;
    156 static struct vm_map_entry	kernel_first_mapent_store;
    157 
    158 #if !defined(PMAP_MAP_POOLPAGE)
    159 
    160 /*
    161  * kva cache
    162  *
    163  * XXX maybe it's better to do this at the uvm_map layer.
    164  */
    165 
    166 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
    167 
    168 static void *km_vacache_alloc(struct pool *, int);
    169 static void km_vacache_free(struct pool *, void *);
    170 static void km_vacache_init(struct vm_map *, const char *, size_t);
    171 
    172 /* XXX */
    173 #define	KM_VACACHE_POOL_TO_MAP(pp) \
    174 	((struct vm_map *)((char *)(pp) - \
    175 	    offsetof(struct vm_map_kernel, vmk_vacache)))
    176 
    177 static void *
    178 km_vacache_alloc(struct pool *pp, int flags)
    179 {
    180 	vaddr_t va;
    181 	size_t size;
    182 	struct vm_map *map;
    183 	size = pp->pr_alloc->pa_pagesz;
    184 
    185 	map = KM_VACACHE_POOL_TO_MAP(pp);
    186 
    187 	va = vm_map_min(map); /* hint */
    188 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
    189 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    190 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
    191 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
    192 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
    193 		return NULL;
    194 
    195 	return (void *)va;
    196 }
    197 
    198 static void
    199 km_vacache_free(struct pool *pp, void *v)
    200 {
    201 	vaddr_t va = (vaddr_t)v;
    202 	size_t size = pp->pr_alloc->pa_pagesz;
    203 	struct vm_map *map;
    204 
    205 	map = KM_VACACHE_POOL_TO_MAP(pp);
    206 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    207 }
    208 
    209 /*
    210  * km_vacache_init: initialize kva cache.
    211  */
    212 
    213 static void
    214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
    215 {
    216 	struct vm_map_kernel *vmk;
    217 	struct pool *pp;
    218 	struct pool_allocator *pa;
    219 	int ipl;
    220 
    221 	KASSERT(VM_MAP_IS_KERNEL(map));
    222 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
    223 
    224 
    225 	vmk = vm_map_to_kernel(map);
    226 	pp = &vmk->vmk_vacache;
    227 	pa = &vmk->vmk_vacache_allocator;
    228 	memset(pa, 0, sizeof(*pa));
    229 	pa->pa_alloc = km_vacache_alloc;
    230 	pa->pa_free = km_vacache_free;
    231 	pa->pa_pagesz = (unsigned int)size;
    232 	pa->pa_backingmap = map;
    233 	pa->pa_backingmapptr = NULL;
    234 
    235 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
    236 		ipl = IPL_VM;
    237 	else
    238 		ipl = IPL_NONE;
    239 
    240 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
    241 	    ipl);
    242 }
    243 
    244 void
    245 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    246 {
    247 
    248 	map->flags |= VM_MAP_VACACHE;
    249 	if (size == 0)
    250 		size = KM_VACACHE_SIZE;
    251 	km_vacache_init(map, name, size);
    252 }
    253 
    254 #else /* !defined(PMAP_MAP_POOLPAGE) */
    255 
    256 void
    257 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
    258 {
    259 
    260 	/* nothing */
    261 }
    262 
    263 #endif /* !defined(PMAP_MAP_POOLPAGE) */
    264 
    265 void
    266 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
    267 {
    268 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
    269 
    270 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
    271 }
    272 
    273 /*
    274  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
    275  * KVM already allocated for text, data, bss, and static data structures).
    276  *
    277  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    278  *    we assume that [vmin -> start] has already been allocated and that
    279  *    "end" is the end.
    280  */
    281 
    282 void
    283 uvm_km_init(vaddr_t start, vaddr_t end)
    284 {
    285 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    286 
    287 	/*
    288 	 * next, init kernel memory objects.
    289 	 */
    290 
    291 	/* kernel_object: for pageable anonymous kernel memory */
    292 	uao_init();
    293 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    294 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    295 
    296 	/*
    297 	 * init the map and reserve any space that might already
    298 	 * have been allocated kernel space before installing.
    299 	 */
    300 
    301 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    302 	kernel_map_store.vmk_map.pmap = pmap_kernel();
    303 	if (start != base) {
    304 		int error;
    305 		struct uvm_map_args args;
    306 
    307 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
    308 		    base, start - base,
    309 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    310 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    311 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    312 		if (!error) {
    313 			kernel_first_mapent_store.flags =
    314 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
    315 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
    316 			    &kernel_first_mapent_store);
    317 		}
    318 
    319 		if (error)
    320 			panic(
    321 			    "uvm_km_init: could not reserve space for kernel");
    322 	}
    323 
    324 	/*
    325 	 * install!
    326 	 */
    327 
    328 	kernel_map = &kernel_map_store.vmk_map;
    329 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
    330 }
    331 
    332 /*
    333  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    334  * is allocated all references to that area of VM must go through it.  this
    335  * allows the locking of VAs in kernel_map to be broken up into regions.
    336  *
    337  * => if `fixed' is true, *vmin specifies where the region described
    338  *      by the submap must start
    339  * => if submap is non NULL we use that as the submap, otherwise we
    340  *	alloc a new map
    341  */
    342 
    343 struct vm_map *
    344 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    345     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    346     struct vm_map_kernel *submap)
    347 {
    348 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    349 
    350 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    351 
    352 	size = round_page(size);	/* round up to pagesize */
    353 	size += uvm_mapent_overhead(size, flags);
    354 
    355 	/*
    356 	 * first allocate a blank spot in the parent map
    357 	 */
    358 
    359 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    360 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    361 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    362 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
    363 	}
    364 
    365 	/*
    366 	 * set VM bounds (vmin is filled in by uvm_map)
    367 	 */
    368 
    369 	*vmax = *vmin + size;
    370 
    371 	/*
    372 	 * add references to pmap and create or init the submap
    373 	 */
    374 
    375 	pmap_reference(vm_map_pmap(map));
    376 	if (submap == NULL) {
    377 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
    378 		if (submap == NULL)
    379 			panic("uvm_km_suballoc: unable to create submap");
    380 	}
    381 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
    382 	submap->vmk_map.pmap = vm_map_pmap(map);
    383 
    384 	/*
    385 	 * now let uvm_map_submap plug in it...
    386 	 */
    387 
    388 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
    389 		panic("uvm_km_suballoc: submap allocation failed");
    390 
    391 	return(&submap->vmk_map);
    392 }
    393 
    394 /*
    395  * uvm_km_pgremove: remove pages from a kernel uvm_object.
    396  *
    397  * => when you unmap a part of anonymous kernel memory you want to toss
    398  *    the pages right away.    (this gets called from uvm_unmap_...).
    399  */
    400 
    401 void
    402 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    403 {
    404 	struct uvm_object * const uobj = uvm_kernel_object;
    405 	const voff_t start = startva - vm_map_min(kernel_map);
    406 	const voff_t end = endva - vm_map_min(kernel_map);
    407 	struct vm_page *pg;
    408 	voff_t curoff, nextoff;
    409 	int swpgonlydelta = 0;
    410 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
    411 
    412 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    413 	KASSERT(startva < endva);
    414 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    415 
    416 	mutex_enter(&uobj->vmobjlock);
    417 
    418 	for (curoff = start; curoff < end; curoff = nextoff) {
    419 		nextoff = curoff + PAGE_SIZE;
    420 		pg = uvm_pagelookup(uobj, curoff);
    421 		if (pg != NULL && pg->flags & PG_BUSY) {
    422 			pg->flags |= PG_WANTED;
    423 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    424 				    "km_pgrm", 0);
    425 			mutex_enter(&uobj->vmobjlock);
    426 			nextoff = curoff;
    427 			continue;
    428 		}
    429 
    430 		/*
    431 		 * free the swap slot, then the page.
    432 		 */
    433 
    434 		if (pg == NULL &&
    435 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    436 			swpgonlydelta++;
    437 		}
    438 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    439 		if (pg != NULL) {
    440 			mutex_enter(&uvm_pageqlock);
    441 			uvm_pagefree(pg);
    442 			mutex_exit(&uvm_pageqlock);
    443 		}
    444 	}
    445 	mutex_exit(&uobj->vmobjlock);
    446 
    447 	if (swpgonlydelta > 0) {
    448 		mutex_enter(&uvm_swap_data_lock);
    449 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    450 		uvmexp.swpgonly -= swpgonlydelta;
    451 		mutex_exit(&uvm_swap_data_lock);
    452 	}
    453 }
    454 
    455 
    456 /*
    457  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    458  *    regions.
    459  *
    460  * => when you unmap a part of anonymous kernel memory you want to toss
    461  *    the pages right away.    (this is called from uvm_unmap_...).
    462  * => none of the pages will ever be busy, and none of them will ever
    463  *    be on the active or inactive queues (because they have no object).
    464  */
    465 
    466 void
    467 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    468 {
    469 	struct vm_page *pg;
    470 	paddr_t pa;
    471 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
    472 
    473 	KASSERT(VM_MAP_IS_KERNEL(map));
    474 	KASSERT(vm_map_min(map) <= start);
    475 	KASSERT(start < end);
    476 	KASSERT(end <= vm_map_max(map));
    477 
    478 	for (; start < end; start += PAGE_SIZE) {
    479 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
    480 			continue;
    481 		}
    482 		pg = PHYS_TO_VM_PAGE(pa);
    483 		KASSERT(pg);
    484 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    485 		uvm_pagefree(pg);
    486 	}
    487 }
    488 
    489 #if defined(DEBUG)
    490 void
    491 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    492 {
    493 	struct vm_page *pg;
    494 	vaddr_t va;
    495 	paddr_t pa;
    496 
    497 	KDASSERT(VM_MAP_IS_KERNEL(map));
    498 	KDASSERT(vm_map_min(map) <= start);
    499 	KDASSERT(start < end);
    500 	KDASSERT(end <= vm_map_max(map));
    501 
    502 	for (va = start; va < end; va += PAGE_SIZE) {
    503 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    504 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    505 			    (void *)va, (long long)pa);
    506 		}
    507 		if ((map->flags & VM_MAP_INTRSAFE) == 0) {
    508 			mutex_enter(&uvm_kernel_object->vmobjlock);
    509 			pg = uvm_pagelookup(uvm_kernel_object,
    510 			    va - vm_map_min(kernel_map));
    511 			mutex_exit(&uvm_kernel_object->vmobjlock);
    512 			if (pg) {
    513 				panic("uvm_km_check_empty: "
    514 				    "has page hashed at %p", (const void *)va);
    515 			}
    516 		}
    517 	}
    518 }
    519 #endif /* defined(DEBUG) */
    520 
    521 /*
    522  * uvm_km_alloc: allocate an area of kernel memory.
    523  *
    524  * => NOTE: we can return 0 even if we can wait if there is not enough
    525  *	free VM space in the map... caller should be prepared to handle
    526  *	this case.
    527  * => we return KVA of memory allocated
    528  */
    529 
    530 vaddr_t
    531 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    532 {
    533 	vaddr_t kva, loopva;
    534 	vaddr_t offset;
    535 	vsize_t loopsize;
    536 	struct vm_page *pg;
    537 	struct uvm_object *obj;
    538 	int pgaflags;
    539 	vm_prot_t prot;
    540 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    541 
    542 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    543 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    544 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    545 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    546 
    547 	/*
    548 	 * setup for call
    549 	 */
    550 
    551 	kva = vm_map_min(map);	/* hint */
    552 	size = round_page(size);
    553 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    554 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    555 		    map, obj, size, flags);
    556 
    557 	/*
    558 	 * allocate some virtual space
    559 	 */
    560 
    561 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    562 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    563 	    UVM_ADV_RANDOM,
    564 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
    565 	    | UVM_FLAG_QUANTUM)) != 0)) {
    566 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    567 		return(0);
    568 	}
    569 
    570 	/*
    571 	 * if all we wanted was VA, return now
    572 	 */
    573 
    574 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    575 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    576 		return(kva);
    577 	}
    578 
    579 	/*
    580 	 * recover object offset from virtual address
    581 	 */
    582 
    583 	offset = kva - vm_map_min(kernel_map);
    584 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    585 
    586 	/*
    587 	 * now allocate and map in the memory... note that we are the only ones
    588 	 * whom should ever get a handle on this area of VM.
    589 	 */
    590 
    591 	loopva = kva;
    592 	loopsize = size;
    593 
    594 	pgaflags = 0;
    595 	if (flags & UVM_KMF_NOWAIT)
    596 		pgaflags |= UVM_PGA_USERESERVE;
    597 	if (flags & UVM_KMF_ZERO)
    598 		pgaflags |= UVM_PGA_ZERO;
    599 	prot = VM_PROT_READ | VM_PROT_WRITE;
    600 	if (flags & UVM_KMF_EXEC)
    601 		prot |= VM_PROT_EXECUTE;
    602 	while (loopsize) {
    603 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
    604 
    605 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
    606 
    607 		/*
    608 		 * out of memory?
    609 		 */
    610 
    611 		if (__predict_false(pg == NULL)) {
    612 			if ((flags & UVM_KMF_NOWAIT) ||
    613 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    614 				/* free everything! */
    615 				uvm_km_free(map, kva, size,
    616 				    flags & UVM_KMF_TYPEMASK);
    617 				return (0);
    618 			} else {
    619 				uvm_wait("km_getwait2");	/* sleep here */
    620 				continue;
    621 			}
    622 		}
    623 
    624 		pg->flags &= ~PG_BUSY;	/* new page */
    625 		UVM_PAGE_OWN(pg, NULL);
    626 
    627 		/*
    628 		 * map it in
    629 		 */
    630 
    631 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    632 		    prot | PMAP_KMPAGE, 0);
    633 		loopva += PAGE_SIZE;
    634 		offset += PAGE_SIZE;
    635 		loopsize -= PAGE_SIZE;
    636 	}
    637 
    638        	pmap_update(pmap_kernel());
    639 
    640 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    641 	return(kva);
    642 }
    643 
    644 /*
    645  * uvm_km_free: free an area of kernel memory
    646  */
    647 
    648 void
    649 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    650 {
    651 
    652 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    653 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    654 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    655 	KASSERT((addr & PAGE_MASK) == 0);
    656 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    657 
    658 	size = round_page(size);
    659 
    660 	if (flags & UVM_KMF_PAGEABLE) {
    661 		uvm_km_pgremove(addr, addr + size);
    662 		pmap_remove(pmap_kernel(), addr, addr + size);
    663 	} else if (flags & UVM_KMF_WIRED) {
    664 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    665 		pmap_kremove(addr, size);
    666 	}
    667 
    668 	/*
    669 	 * uvm_unmap_remove calls pmap_update for us.
    670 	 */
    671 
    672 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
    673 }
    674 
    675 /* Sanity; must specify both or none. */
    676 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    677     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    678 #error Must specify MAP and UNMAP together.
    679 #endif
    680 
    681 /*
    682  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
    683  *
    684  * => if the pmap specifies an alternate mapping method, we use it.
    685  */
    686 
    687 /* ARGSUSED */
    688 vaddr_t
    689 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
    690 {
    691 #if defined(PMAP_MAP_POOLPAGE)
    692 	return uvm_km_alloc_poolpage(map, waitok);
    693 #else
    694 	struct vm_page *pg;
    695 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
    696 	vaddr_t va;
    697 
    698 	if ((map->flags & VM_MAP_VACACHE) == 0)
    699 		return uvm_km_alloc_poolpage(map, waitok);
    700 
    701 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
    702 	if (va == 0)
    703 		return 0;
    704 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
    705 again:
    706 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
    707 	if (__predict_false(pg == NULL)) {
    708 		if (waitok) {
    709 			uvm_wait("plpg");
    710 			goto again;
    711 		} else {
    712 			pool_put(pp, (void *)va);
    713 			return 0;
    714 		}
    715 	}
    716 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
    717 	    VM_PROT_READ|VM_PROT_WRITE|PMAP_KMPAGE, 0);
    718 	pmap_update(pmap_kernel());
    719 
    720 	return va;
    721 #endif /* PMAP_MAP_POOLPAGE */
    722 }
    723 
    724 vaddr_t
    725 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
    726 {
    727 #if defined(PMAP_MAP_POOLPAGE)
    728 	struct vm_page *pg;
    729 	vaddr_t va;
    730 
    731  again:
    732 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
    733 	if (__predict_false(pg == NULL)) {
    734 		if (waitok) {
    735 			uvm_wait("plpg");
    736 			goto again;
    737 		} else
    738 			return (0);
    739 	}
    740 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    741 	if (__predict_false(va == 0))
    742 		uvm_pagefree(pg);
    743 	return (va);
    744 #else
    745 	vaddr_t va;
    746 
    747 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
    748 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
    749 	return (va);
    750 #endif /* PMAP_MAP_POOLPAGE */
    751 }
    752 
    753 /*
    754  * uvm_km_free_poolpage: free a previously allocated pool page
    755  *
    756  * => if the pmap specifies an alternate unmapping method, we use it.
    757  */
    758 
    759 /* ARGSUSED */
    760 void
    761 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
    762 {
    763 #if defined(PMAP_UNMAP_POOLPAGE)
    764 	uvm_km_free_poolpage(map, addr);
    765 #else
    766 	struct pool *pp;
    767 
    768 	if ((map->flags & VM_MAP_VACACHE) == 0) {
    769 		uvm_km_free_poolpage(map, addr);
    770 		return;
    771 	}
    772 
    773 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
    774 	uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
    775 	pmap_kremove(addr, PAGE_SIZE);
    776 #if defined(DEBUG)
    777 	pmap_update(pmap_kernel());
    778 #endif
    779 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
    780 	pp = &vm_map_to_kernel(map)->vmk_vacache;
    781 	pool_put(pp, (void *)addr);
    782 #endif
    783 }
    784 
    785 /* ARGSUSED */
    786 void
    787 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
    788 {
    789 #if defined(PMAP_UNMAP_POOLPAGE)
    790 	paddr_t pa;
    791 
    792 	pa = PMAP_UNMAP_POOLPAGE(addr);
    793 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    794 #else
    795 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
    796 #endif /* PMAP_UNMAP_POOLPAGE */
    797 }
    798 
    799 #ifdef XIP
    800 /*
    801  * uvm_pageofzero_xip: return a read-only page filled with zeroes.
    802  *
    803  * XXXUEBS Need better names.
    804  */
    805 
    806 static void *uvm_pageofzero_xip_vaddr;
    807 static paddr_t uvm_pageofzero_xip_paddr;
    808 static int uvm_pageofzero_xip_init(void);
    809 
    810 void *
    811 uvm_pageofzero_xip(void)
    812 {
    813 	static ONCE_DECL(uvm_pageofzero_xip_inited);
    814 
    815 	RUN_ONCE(&uvm_pageofzero_xip_inited, uvm_pageofzero_xip_init);
    816 	return uvm_pageofzero_xip_vaddr;
    817 }
    818 
    819 paddr_t
    820 uvm_pageofzero_xip_phys_addr(void)
    821 {
    822 	static ONCE_DECL(uvm_pageofzero_xip_inited);
    823 
    824 	RUN_ONCE(&uvm_pageofzero_xip_inited, uvm_pageofzero_xip_init);
    825 	return uvm_pageofzero_xip_paddr;
    826 }
    827 
    828 static int
    829 uvm_pageofzero_xip_init(void)
    830 {
    831 	bool rv;
    832 
    833 	ASSERT_SLEEPABLE();
    834 
    835 	uvm_pageofzero_xip_vaddr = (void *)uvm_km_alloc_poolpage(kernel_map, true);
    836 	KASSERT(uvm_pageofzero_xip_vaddr != NULL);
    837 
    838 	rv = pmap_extract(pmap_kernel(), (vaddr_t)uvm_pageofzero_xip_vaddr,
    839 	    &uvm_pageofzero_xip_paddr);
    840 	KASSERT(rv == true && uvm_pageofzero_xip_paddr != 0);
    841 
    842 	return 0;
    843 }
    844 #endif
    845