uvm_km.c revision 1.108 1 /* $NetBSD: uvm_km.c,v 1.108 2011/02/02 15:25:27 chuck Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps, including:
87 * kmem_map => contains only wired kernel memory for the kernel
88 * malloc.
89 * pager_map => used to map "buf" structures into kernel space
90 * exec_map => used during exec to handle exec args
91 * etc...
92 *
93 * the kernel allocates its private memory out of special uvm_objects whose
94 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
95 * are "special" and never die). all kernel objects should be thought of
96 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
97 * object is equal to the size of kernel virtual address space (i.e. the
98 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
99 *
100 * note that just because a kernel object spans the entire kernel virtual
101 * address space doesn't mean that it has to be mapped into the entire space.
102 * large chunks of a kernel object's space go unused either because
103 * that area of kernel VM is unmapped, or there is some other type of
104 * object mapped into that range (e.g. a vnode). for submap's kernel
105 * objects, the only part of the object that can ever be populated is the
106 * offsets that are managed by the submap.
107 *
108 * note that the "offset" in a kernel object is always the kernel virtual
109 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
110 * example:
111 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
112 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
113 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
114 * then that means that the page at offset 0x235000 in kernel_object is
115 * mapped at 0xf8235000.
116 *
117 * kernel object have one other special property: when the kernel virtual
118 * memory mapping them is unmapped, the backing memory in the object is
119 * freed right away. this is done with the uvm_km_pgremove() function.
120 * this has to be done because there is no backing store for kernel pages
121 * and no need to save them after they are no longer referenced.
122 */
123
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.108 2011/02/02 15:25:27 chuck Exp $");
126
127 #include "opt_uvmhist.h"
128
129 #include <sys/param.h>
130 #include <sys/malloc.h>
131 #include <sys/systm.h>
132 #include <sys/proc.h>
133 #include <sys/pool.h>
134
135 #include <uvm/uvm.h>
136
137 /*
138 * global data structures
139 */
140
141 struct vm_map *kernel_map = NULL;
142
143 /*
144 * local data structues
145 */
146
147 static struct vm_map_kernel kernel_map_store;
148 static struct vm_map_entry kernel_first_mapent_store;
149
150 #if !defined(PMAP_MAP_POOLPAGE)
151
152 /*
153 * kva cache
154 *
155 * XXX maybe it's better to do this at the uvm_map layer.
156 */
157
158 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */
159
160 static void *km_vacache_alloc(struct pool *, int);
161 static void km_vacache_free(struct pool *, void *);
162 static void km_vacache_init(struct vm_map *, const char *, size_t);
163
164 /* XXX */
165 #define KM_VACACHE_POOL_TO_MAP(pp) \
166 ((struct vm_map *)((char *)(pp) - \
167 offsetof(struct vm_map_kernel, vmk_vacache)))
168
169 static void *
170 km_vacache_alloc(struct pool *pp, int flags)
171 {
172 vaddr_t va;
173 size_t size;
174 struct vm_map *map;
175 size = pp->pr_alloc->pa_pagesz;
176
177 map = KM_VACACHE_POOL_TO_MAP(pp);
178
179 va = vm_map_min(map); /* hint */
180 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
181 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
182 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
183 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
184 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
185 return NULL;
186
187 return (void *)va;
188 }
189
190 static void
191 km_vacache_free(struct pool *pp, void *v)
192 {
193 vaddr_t va = (vaddr_t)v;
194 size_t size = pp->pr_alloc->pa_pagesz;
195 struct vm_map *map;
196
197 map = KM_VACACHE_POOL_TO_MAP(pp);
198 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
199 }
200
201 /*
202 * km_vacache_init: initialize kva cache.
203 */
204
205 static void
206 km_vacache_init(struct vm_map *map, const char *name, size_t size)
207 {
208 struct vm_map_kernel *vmk;
209 struct pool *pp;
210 struct pool_allocator *pa;
211 int ipl;
212
213 KASSERT(VM_MAP_IS_KERNEL(map));
214 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
215
216
217 vmk = vm_map_to_kernel(map);
218 pp = &vmk->vmk_vacache;
219 pa = &vmk->vmk_vacache_allocator;
220 memset(pa, 0, sizeof(*pa));
221 pa->pa_alloc = km_vacache_alloc;
222 pa->pa_free = km_vacache_free;
223 pa->pa_pagesz = (unsigned int)size;
224 pa->pa_backingmap = map;
225 pa->pa_backingmapptr = NULL;
226
227 if ((map->flags & VM_MAP_INTRSAFE) != 0)
228 ipl = IPL_VM;
229 else
230 ipl = IPL_NONE;
231
232 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
233 ipl);
234 }
235
236 void
237 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
238 {
239
240 map->flags |= VM_MAP_VACACHE;
241 if (size == 0)
242 size = KM_VACACHE_SIZE;
243 km_vacache_init(map, name, size);
244 }
245
246 #else /* !defined(PMAP_MAP_POOLPAGE) */
247
248 void
249 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
250 {
251
252 /* nothing */
253 }
254
255 #endif /* !defined(PMAP_MAP_POOLPAGE) */
256
257 void
258 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
259 {
260 struct vm_map_kernel *vmk = vm_map_to_kernel(map);
261
262 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
263 }
264
265 /*
266 * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
267 * KVM already allocated for text, data, bss, and static data structures).
268 *
269 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
270 * we assume that [vmin -> start] has already been allocated and that
271 * "end" is the end.
272 */
273
274 void
275 uvm_km_init(vaddr_t start, vaddr_t end)
276 {
277 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
278
279 /*
280 * next, init kernel memory objects.
281 */
282
283 /* kernel_object: for pageable anonymous kernel memory */
284 uao_init();
285 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
286 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
287
288 /*
289 * init the map and reserve any space that might already
290 * have been allocated kernel space before installing.
291 */
292
293 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
294 kernel_map_store.vmk_map.pmap = pmap_kernel();
295 if (start != base) {
296 int error;
297 struct uvm_map_args args;
298
299 error = uvm_map_prepare(&kernel_map_store.vmk_map,
300 base, start - base,
301 NULL, UVM_UNKNOWN_OFFSET, 0,
302 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
303 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
304 if (!error) {
305 kernel_first_mapent_store.flags =
306 UVM_MAP_KERNEL | UVM_MAP_FIRST;
307 error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
308 &kernel_first_mapent_store);
309 }
310
311 if (error)
312 panic(
313 "uvm_km_init: could not reserve space for kernel");
314 }
315
316 /*
317 * install!
318 */
319
320 kernel_map = &kernel_map_store.vmk_map;
321 uvm_km_vacache_init(kernel_map, "kvakernel", 0);
322 }
323
324 /*
325 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
326 * is allocated all references to that area of VM must go through it. this
327 * allows the locking of VAs in kernel_map to be broken up into regions.
328 *
329 * => if `fixed' is true, *vmin specifies where the region described
330 * by the submap must start
331 * => if submap is non NULL we use that as the submap, otherwise we
332 * alloc a new map
333 */
334
335 struct vm_map *
336 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
337 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
338 struct vm_map_kernel *submap)
339 {
340 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
341
342 KASSERT(vm_map_pmap(map) == pmap_kernel());
343
344 size = round_page(size); /* round up to pagesize */
345 size += uvm_mapent_overhead(size, flags);
346
347 /*
348 * first allocate a blank spot in the parent map
349 */
350
351 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
352 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
353 UVM_ADV_RANDOM, mapflags)) != 0) {
354 panic("uvm_km_suballoc: unable to allocate space in parent map");
355 }
356
357 /*
358 * set VM bounds (vmin is filled in by uvm_map)
359 */
360
361 *vmax = *vmin + size;
362
363 /*
364 * add references to pmap and create or init the submap
365 */
366
367 pmap_reference(vm_map_pmap(map));
368 if (submap == NULL) {
369 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
370 if (submap == NULL)
371 panic("uvm_km_suballoc: unable to create submap");
372 }
373 uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
374 submap->vmk_map.pmap = vm_map_pmap(map);
375
376 /*
377 * now let uvm_map_submap plug in it...
378 */
379
380 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
381 panic("uvm_km_suballoc: submap allocation failed");
382
383 return(&submap->vmk_map);
384 }
385
386 /*
387 * uvm_km_pgremove: remove pages from a kernel uvm_object.
388 *
389 * => when you unmap a part of anonymous kernel memory you want to toss
390 * the pages right away. (this gets called from uvm_unmap_...).
391 */
392
393 void
394 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
395 {
396 struct uvm_object * const uobj = uvm_kernel_object;
397 const voff_t start = startva - vm_map_min(kernel_map);
398 const voff_t end = endva - vm_map_min(kernel_map);
399 struct vm_page *pg;
400 voff_t curoff, nextoff;
401 int swpgonlydelta = 0;
402 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
403
404 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
405 KASSERT(startva < endva);
406 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
407
408 mutex_enter(&uobj->vmobjlock);
409
410 for (curoff = start; curoff < end; curoff = nextoff) {
411 nextoff = curoff + PAGE_SIZE;
412 pg = uvm_pagelookup(uobj, curoff);
413 if (pg != NULL && pg->flags & PG_BUSY) {
414 pg->flags |= PG_WANTED;
415 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
416 "km_pgrm", 0);
417 mutex_enter(&uobj->vmobjlock);
418 nextoff = curoff;
419 continue;
420 }
421
422 /*
423 * free the swap slot, then the page.
424 */
425
426 if (pg == NULL &&
427 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
428 swpgonlydelta++;
429 }
430 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
431 if (pg != NULL) {
432 mutex_enter(&uvm_pageqlock);
433 uvm_pagefree(pg);
434 mutex_exit(&uvm_pageqlock);
435 }
436 }
437 mutex_exit(&uobj->vmobjlock);
438
439 if (swpgonlydelta > 0) {
440 mutex_enter(&uvm_swap_data_lock);
441 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
442 uvmexp.swpgonly -= swpgonlydelta;
443 mutex_exit(&uvm_swap_data_lock);
444 }
445 }
446
447
448 /*
449 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
450 * regions.
451 *
452 * => when you unmap a part of anonymous kernel memory you want to toss
453 * the pages right away. (this is called from uvm_unmap_...).
454 * => none of the pages will ever be busy, and none of them will ever
455 * be on the active or inactive queues (because they have no object).
456 */
457
458 void
459 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
460 {
461 struct vm_page *pg;
462 paddr_t pa;
463 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
464
465 KASSERT(VM_MAP_IS_KERNEL(map));
466 KASSERT(vm_map_min(map) <= start);
467 KASSERT(start < end);
468 KASSERT(end <= vm_map_max(map));
469
470 for (; start < end; start += PAGE_SIZE) {
471 if (!pmap_extract(pmap_kernel(), start, &pa)) {
472 continue;
473 }
474 pg = PHYS_TO_VM_PAGE(pa);
475 KASSERT(pg);
476 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
477 uvm_pagefree(pg);
478 }
479 }
480
481 #if defined(DEBUG)
482 void
483 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
484 {
485 struct vm_page *pg;
486 vaddr_t va;
487 paddr_t pa;
488
489 KDASSERT(VM_MAP_IS_KERNEL(map));
490 KDASSERT(vm_map_min(map) <= start);
491 KDASSERT(start < end);
492 KDASSERT(end <= vm_map_max(map));
493
494 for (va = start; va < end; va += PAGE_SIZE) {
495 if (pmap_extract(pmap_kernel(), va, &pa)) {
496 panic("uvm_km_check_empty: va %p has pa 0x%llx",
497 (void *)va, (long long)pa);
498 }
499 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
500 mutex_enter(&uvm_kernel_object->vmobjlock);
501 pg = uvm_pagelookup(uvm_kernel_object,
502 va - vm_map_min(kernel_map));
503 mutex_exit(&uvm_kernel_object->vmobjlock);
504 if (pg) {
505 panic("uvm_km_check_empty: "
506 "has page hashed at %p", (const void *)va);
507 }
508 }
509 }
510 }
511 #endif /* defined(DEBUG) */
512
513 /*
514 * uvm_km_alloc: allocate an area of kernel memory.
515 *
516 * => NOTE: we can return 0 even if we can wait if there is not enough
517 * free VM space in the map... caller should be prepared to handle
518 * this case.
519 * => we return KVA of memory allocated
520 */
521
522 vaddr_t
523 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
524 {
525 vaddr_t kva, loopva;
526 vaddr_t offset;
527 vsize_t loopsize;
528 struct vm_page *pg;
529 struct uvm_object *obj;
530 int pgaflags;
531 vm_prot_t prot;
532 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
533
534 KASSERT(vm_map_pmap(map) == pmap_kernel());
535 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
536 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
537 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
538
539 /*
540 * setup for call
541 */
542
543 kva = vm_map_min(map); /* hint */
544 size = round_page(size);
545 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
546 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
547 map, obj, size, flags);
548
549 /*
550 * allocate some virtual space
551 */
552
553 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
554 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
555 UVM_ADV_RANDOM,
556 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
557 | UVM_FLAG_QUANTUM)) != 0)) {
558 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
559 return(0);
560 }
561
562 /*
563 * if all we wanted was VA, return now
564 */
565
566 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
567 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
568 return(kva);
569 }
570
571 /*
572 * recover object offset from virtual address
573 */
574
575 offset = kva - vm_map_min(kernel_map);
576 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
577
578 /*
579 * now allocate and map in the memory... note that we are the only ones
580 * whom should ever get a handle on this area of VM.
581 */
582
583 loopva = kva;
584 loopsize = size;
585
586 pgaflags = UVM_FLAG_COLORMATCH;
587 if (flags & UVM_KMF_NOWAIT)
588 pgaflags |= UVM_PGA_USERESERVE;
589 if (flags & UVM_KMF_ZERO)
590 pgaflags |= UVM_PGA_ZERO;
591 prot = VM_PROT_READ | VM_PROT_WRITE;
592 if (flags & UVM_KMF_EXEC)
593 prot |= VM_PROT_EXECUTE;
594 while (loopsize) {
595 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
596
597 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
598 #ifdef UVM_KM_VMFREELIST
599 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
600 #else
601 UVM_PGA_STRAT_NORMAL, 0
602 #endif
603 );
604
605 /*
606 * out of memory?
607 */
608
609 if (__predict_false(pg == NULL)) {
610 if ((flags & UVM_KMF_NOWAIT) ||
611 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
612 /* free everything! */
613 uvm_km_free(map, kva, size,
614 flags & UVM_KMF_TYPEMASK);
615 return (0);
616 } else {
617 uvm_wait("km_getwait2"); /* sleep here */
618 continue;
619 }
620 }
621
622 pg->flags &= ~PG_BUSY; /* new page */
623 UVM_PAGE_OWN(pg, NULL);
624
625 /*
626 * map it in
627 */
628
629 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
630 prot, PMAP_KMPAGE);
631 loopva += PAGE_SIZE;
632 offset += PAGE_SIZE;
633 loopsize -= PAGE_SIZE;
634 }
635
636 pmap_update(pmap_kernel());
637
638 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
639 return(kva);
640 }
641
642 /*
643 * uvm_km_free: free an area of kernel memory
644 */
645
646 void
647 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
648 {
649
650 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
651 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
652 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
653 KASSERT((addr & PAGE_MASK) == 0);
654 KASSERT(vm_map_pmap(map) == pmap_kernel());
655
656 size = round_page(size);
657
658 if (flags & UVM_KMF_PAGEABLE) {
659 uvm_km_pgremove(addr, addr + size);
660 pmap_remove(pmap_kernel(), addr, addr + size);
661 } else if (flags & UVM_KMF_WIRED) {
662 uvm_km_pgremove_intrsafe(map, addr, addr + size);
663 pmap_kremove(addr, size);
664 }
665
666 /*
667 * uvm_unmap_remove calls pmap_update for us.
668 */
669
670 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
671 }
672
673 /* Sanity; must specify both or none. */
674 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
675 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
676 #error Must specify MAP and UNMAP together.
677 #endif
678
679 /*
680 * uvm_km_alloc_poolpage: allocate a page for the pool allocator
681 *
682 * => if the pmap specifies an alternate mapping method, we use it.
683 */
684
685 /* ARGSUSED */
686 vaddr_t
687 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
688 {
689 #if defined(PMAP_MAP_POOLPAGE)
690 return uvm_km_alloc_poolpage(map, waitok);
691 #else
692 struct vm_page *pg;
693 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
694 vaddr_t va;
695
696 if ((map->flags & VM_MAP_VACACHE) == 0)
697 return uvm_km_alloc_poolpage(map, waitok);
698
699 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
700 if (va == 0)
701 return 0;
702 KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
703 again:
704 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
705 if (__predict_false(pg == NULL)) {
706 if (waitok) {
707 uvm_wait("plpg");
708 goto again;
709 } else {
710 pool_put(pp, (void *)va);
711 return 0;
712 }
713 }
714 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
715 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
716 pmap_update(pmap_kernel());
717
718 return va;
719 #endif /* PMAP_MAP_POOLPAGE */
720 }
721
722 vaddr_t
723 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
724 {
725 #if defined(PMAP_MAP_POOLPAGE)
726 struct vm_page *pg;
727 vaddr_t va;
728
729
730 again:
731 #ifdef PMAP_ALLOC_POOLPAGE
732 pg = PMAP_ALLOC_POOLPAGE(waitok ? 0 : UVM_PGA_USERESERVE);
733 #else
734 pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
735 #endif
736 if (__predict_false(pg == NULL)) {
737 if (waitok) {
738 uvm_wait("plpg");
739 goto again;
740 } else
741 return (0);
742 }
743 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
744 if (__predict_false(va == 0))
745 uvm_pagefree(pg);
746 return (va);
747 #else
748 vaddr_t va;
749
750 va = uvm_km_alloc(map, PAGE_SIZE, 0,
751 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
752 return (va);
753 #endif /* PMAP_MAP_POOLPAGE */
754 }
755
756 /*
757 * uvm_km_free_poolpage: free a previously allocated pool page
758 *
759 * => if the pmap specifies an alternate unmapping method, we use it.
760 */
761
762 /* ARGSUSED */
763 void
764 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
765 {
766 #if defined(PMAP_UNMAP_POOLPAGE)
767 uvm_km_free_poolpage(map, addr);
768 #else
769 struct pool *pp;
770
771 if ((map->flags & VM_MAP_VACACHE) == 0) {
772 uvm_km_free_poolpage(map, addr);
773 return;
774 }
775
776 KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
777 uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
778 pmap_kremove(addr, PAGE_SIZE);
779 #if defined(DEBUG)
780 pmap_update(pmap_kernel());
781 #endif
782 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
783 pp = &vm_map_to_kernel(map)->vmk_vacache;
784 pool_put(pp, (void *)addr);
785 #endif
786 }
787
788 /* ARGSUSED */
789 void
790 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
791 {
792 #if defined(PMAP_UNMAP_POOLPAGE)
793 paddr_t pa;
794
795 pa = PMAP_UNMAP_POOLPAGE(addr);
796 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
797 #else
798 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
799 #endif /* PMAP_UNMAP_POOLPAGE */
800 }
801