uvm_km.c revision 1.113 1 /* $NetBSD: uvm_km.c,v 1.113 2012/01/29 12:37:01 para Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps, including:
87 * pager_map => used to map "buf" structures into kernel space
88 * exec_map => used during exec to handle exec args
89 * etc...
90 *
91 * the kernel allocates its private memory out of special uvm_objects whose
92 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 * are "special" and never die). all kernel objects should be thought of
94 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 * object is equal to the size of kernel virtual address space (i.e. the
96 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 *
98 * note that just because a kernel object spans the entire kernel virtual
99 * address space doesn't mean that it has to be mapped into the entire space.
100 * large chunks of a kernel object's space go unused either because
101 * that area of kernel VM is unmapped, or there is some other type of
102 * object mapped into that range (e.g. a vnode). for submap's kernel
103 * objects, the only part of the object that can ever be populated is the
104 * offsets that are managed by the submap.
105 *
106 * note that the "offset" in a kernel object is always the kernel virtual
107 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 * example:
109 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 * then that means that the page at offset 0x235000 in kernel_object is
113 * mapped at 0xf8235000.
114 *
115 * kernel object have one other special property: when the kernel virtual
116 * memory mapping them is unmapped, the backing memory in the object is
117 * freed right away. this is done with the uvm_km_pgremove() function.
118 * this has to be done because there is no backing store for kernel pages
119 * and no need to save them after they are no longer referenced.
120 */
121
122 #include <sys/cdefs.h>
123 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.113 2012/01/29 12:37:01 para Exp $");
124
125 #include "opt_uvmhist.h"
126
127 #include <sys/param.h>
128 #include <sys/systm.h>
129 #include <sys/proc.h>
130 #include <sys/pool.h>
131 #include <sys/vmem.h>
132 #include <sys/kmem.h>
133
134 #include <uvm/uvm.h>
135
136 /*
137 * global data structures
138 */
139
140 struct vm_map *kernel_map = NULL;
141
142 /*
143 * local data structues
144 */
145
146 static struct vm_map kernel_map_store;
147 static struct vm_map_entry kernel_image_mapent_store;
148 static struct vm_map_entry kernel_kmem_mapent_store;
149
150 vaddr_t kmembase;
151 vsize_t kmemsize;
152
153 vmem_t *kmem_arena;
154 vmem_t *kmem_va_arena;
155
156 /*
157 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
158 * KVM already allocated for text, data, bss, and static data structures).
159 *
160 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
161 * we assume that [vmin -> start] has already been allocated and that
162 * "end" is the end.
163 */
164
165 void
166 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
167 {
168 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
169
170 kmemsize = MIN(((((vsize_t)(end - start)) / 3) * 2),
171 ((((vsize_t)uvmexp.npages) * PAGE_SIZE)));
172 kmemsize = round_page(kmemsize);
173
174 /*
175 * next, init kernel memory objects.
176 */
177
178 /* kernel_object: for pageable anonymous kernel memory */
179 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
180 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
181
182 /*
183 * init the map and reserve any space that might already
184 * have been allocated kernel space before installing.
185 */
186
187 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
188 kernel_map_store.pmap = pmap_kernel();
189 if (start != base) {
190 int error;
191 struct uvm_map_args args;
192
193 error = uvm_map_prepare(&kernel_map_store,
194 base, start - base,
195 NULL, UVM_UNKNOWN_OFFSET, 0,
196 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
197 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
198 if (!error) {
199 kernel_image_mapent_store.flags =
200 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
201 error = uvm_map_enter(&kernel_map_store, &args,
202 &kernel_image_mapent_store);
203 }
204
205 if (error)
206 panic(
207 "uvm_km_bootstrap: could not reserve space for kernel");
208
209 kmembase = args.uma_start + args.uma_size;
210 error = uvm_map_prepare(&kernel_map_store,
211 kmembase, kmemsize,
212 NULL, UVM_UNKNOWN_OFFSET, 0,
213 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
214 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
215 if (!error) {
216 kernel_kmem_mapent_store.flags =
217 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
218 error = uvm_map_enter(&kernel_map_store, &args,
219 &kernel_kmem_mapent_store);
220 }
221
222 if (error)
223 panic(
224 "uvm_km_bootstrap: could not reserve kernel kmem");
225 }
226
227 /*
228 * install!
229 */
230
231 kernel_map = &kernel_map_store;
232
233 pool_subsystem_init();
234 vmem_bootstrap();
235
236 kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
237 NULL, NULL, NULL,
238 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
239
240 vmem_init(kmem_arena);
241
242 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
243 vmem_alloc, vmem_free, kmem_arena,
244 16 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
245 }
246
247 /*
248 * uvm_km_init: init the kernel maps virtual memory caches
249 * and start the pool/kmem allocator.
250 */
251 void
252 uvm_km_init(void)
253 {
254
255 kmem_init();
256
257 kmeminit(); // killme
258 }
259
260 /*
261 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
262 * is allocated all references to that area of VM must go through it. this
263 * allows the locking of VAs in kernel_map to be broken up into regions.
264 *
265 * => if `fixed' is true, *vmin specifies where the region described
266 * pager_map => used to map "buf" structures into kernel space
267 * by the submap must start
268 * => if submap is non NULL we use that as the submap, otherwise we
269 * alloc a new map
270 */
271
272 struct vm_map *
273 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
274 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
275 struct vm_map *submap)
276 {
277 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
278
279 KASSERT(vm_map_pmap(map) == pmap_kernel());
280
281 size = round_page(size); /* round up to pagesize */
282
283 /*
284 * first allocate a blank spot in the parent map
285 */
286
287 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
288 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
289 UVM_ADV_RANDOM, mapflags)) != 0) {
290 panic("uvm_km_suballoc: unable to allocate space in parent map");
291 }
292
293 /*
294 * set VM bounds (vmin is filled in by uvm_map)
295 */
296
297 *vmax = *vmin + size;
298
299 /*
300 * add references to pmap and create or init the submap
301 */
302
303 pmap_reference(vm_map_pmap(map));
304 if (submap == NULL) {
305 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
306 if (submap == NULL)
307 panic("uvm_km_suballoc: unable to create submap");
308 }
309 uvm_map_setup(submap, *vmin, *vmax, flags);
310 submap->pmap = vm_map_pmap(map);
311
312 /*
313 * now let uvm_map_submap plug in it...
314 */
315
316 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
317 panic("uvm_km_suballoc: submap allocation failed");
318
319 return(submap);
320 }
321
322 /*
323 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
324 */
325
326 void
327 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
328 {
329 struct uvm_object * const uobj = uvm_kernel_object;
330 const voff_t start = startva - vm_map_min(kernel_map);
331 const voff_t end = endva - vm_map_min(kernel_map);
332 struct vm_page *pg;
333 voff_t curoff, nextoff;
334 int swpgonlydelta = 0;
335 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
336
337 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
338 KASSERT(startva < endva);
339 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
340
341 mutex_enter(uobj->vmobjlock);
342 pmap_remove(pmap_kernel(), startva, endva);
343 for (curoff = start; curoff < end; curoff = nextoff) {
344 nextoff = curoff + PAGE_SIZE;
345 pg = uvm_pagelookup(uobj, curoff);
346 if (pg != NULL && pg->flags & PG_BUSY) {
347 pg->flags |= PG_WANTED;
348 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
349 "km_pgrm", 0);
350 mutex_enter(uobj->vmobjlock);
351 nextoff = curoff;
352 continue;
353 }
354
355 /*
356 * free the swap slot, then the page.
357 */
358
359 if (pg == NULL &&
360 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
361 swpgonlydelta++;
362 }
363 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
364 if (pg != NULL) {
365 mutex_enter(&uvm_pageqlock);
366 uvm_pagefree(pg);
367 mutex_exit(&uvm_pageqlock);
368 }
369 }
370 mutex_exit(uobj->vmobjlock);
371
372 if (swpgonlydelta > 0) {
373 mutex_enter(&uvm_swap_data_lock);
374 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
375 uvmexp.swpgonly -= swpgonlydelta;
376 mutex_exit(&uvm_swap_data_lock);
377 }
378 }
379
380
381 /*
382 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
383 * regions.
384 *
385 * => when you unmap a part of anonymous kernel memory you want to toss
386 * the pages right away. (this is called from uvm_unmap_...).
387 * => none of the pages will ever be busy, and none of them will ever
388 * be on the active or inactive queues (because they have no object).
389 */
390
391 void
392 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
393 {
394 struct vm_page *pg;
395 paddr_t pa;
396 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
397
398 KASSERT(VM_MAP_IS_KERNEL(map));
399 KASSERT(vm_map_min(map) <= start);
400 KASSERT(start < end);
401 KASSERT(end <= vm_map_max(map));
402
403 for (; start < end; start += PAGE_SIZE) {
404 if (!pmap_extract(pmap_kernel(), start, &pa)) {
405 continue;
406 }
407 pg = PHYS_TO_VM_PAGE(pa);
408 KASSERT(pg);
409 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
410 KASSERT((pg->flags & PG_BUSY) == 0);
411 uvm_pagefree(pg);
412 }
413 }
414
415 #if defined(DEBUG)
416 void
417 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
418 {
419 struct vm_page *pg;
420 vaddr_t va;
421 paddr_t pa;
422
423 KDASSERT(VM_MAP_IS_KERNEL(map));
424 KDASSERT(vm_map_min(map) <= start);
425 KDASSERT(start < end);
426 KDASSERT(end <= vm_map_max(map));
427
428 for (va = start; va < end; va += PAGE_SIZE) {
429 if (pmap_extract(pmap_kernel(), va, &pa)) {
430 panic("uvm_km_check_empty: va %p has pa 0x%llx",
431 (void *)va, (long long)pa);
432 }
433 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
434 mutex_enter(uvm_kernel_object->vmobjlock);
435 pg = uvm_pagelookup(uvm_kernel_object,
436 va - vm_map_min(kernel_map));
437 mutex_exit(uvm_kernel_object->vmobjlock);
438 if (pg) {
439 panic("uvm_km_check_empty: "
440 "has page hashed at %p", (const void *)va);
441 }
442 }
443 }
444 }
445 #endif /* defined(DEBUG) */
446
447 /*
448 * uvm_km_alloc: allocate an area of kernel memory.
449 *
450 * => NOTE: we can return 0 even if we can wait if there is not enough
451 * free VM space in the map... caller should be prepared to handle
452 * this case.
453 * => we return KVA of memory allocated
454 */
455
456 vaddr_t
457 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
458 {
459 vaddr_t kva, loopva;
460 vaddr_t offset;
461 vsize_t loopsize;
462 struct vm_page *pg;
463 struct uvm_object *obj;
464 int pgaflags;
465 vm_prot_t prot;
466 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
467
468 KASSERT(vm_map_pmap(map) == pmap_kernel());
469 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
470 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
471 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
472 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
473 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
474
475 /*
476 * setup for call
477 */
478
479 kva = vm_map_min(map); /* hint */
480 size = round_page(size);
481 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
482 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
483 map, obj, size, flags);
484
485 /*
486 * allocate some virtual space
487 */
488
489 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
490 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
491 UVM_ADV_RANDOM,
492 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
493 | UVM_KMF_COLORMATCH)))) != 0)) {
494 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
495 return(0);
496 }
497
498 /*
499 * if all we wanted was VA, return now
500 */
501
502 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
503 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
504 return(kva);
505 }
506
507 /*
508 * recover object offset from virtual address
509 */
510
511 offset = kva - vm_map_min(kernel_map);
512 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
513
514 /*
515 * now allocate and map in the memory... note that we are the only ones
516 * whom should ever get a handle on this area of VM.
517 */
518
519 loopva = kva;
520 loopsize = size;
521
522 pgaflags = UVM_FLAG_COLORMATCH;
523 if (flags & UVM_KMF_NOWAIT)
524 pgaflags |= UVM_PGA_USERESERVE;
525 if (flags & UVM_KMF_ZERO)
526 pgaflags |= UVM_PGA_ZERO;
527 prot = VM_PROT_READ | VM_PROT_WRITE;
528 if (flags & UVM_KMF_EXEC)
529 prot |= VM_PROT_EXECUTE;
530 while (loopsize) {
531 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
532
533 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
534 #ifdef UVM_KM_VMFREELIST
535 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
536 #else
537 UVM_PGA_STRAT_NORMAL, 0
538 #endif
539 );
540
541 /*
542 * out of memory?
543 */
544
545 if (__predict_false(pg == NULL)) {
546 if ((flags & UVM_KMF_NOWAIT) ||
547 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
548 /* free everything! */
549 uvm_km_free(map, kva, size,
550 flags & UVM_KMF_TYPEMASK);
551 return (0);
552 } else {
553 uvm_wait("km_getwait2"); /* sleep here */
554 continue;
555 }
556 }
557
558 pg->flags &= ~PG_BUSY; /* new page */
559 UVM_PAGE_OWN(pg, NULL);
560
561 /*
562 * map it in
563 */
564
565 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
566 prot, PMAP_KMPAGE);
567 loopva += PAGE_SIZE;
568 offset += PAGE_SIZE;
569 loopsize -= PAGE_SIZE;
570 }
571
572 pmap_update(pmap_kernel());
573
574 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
575 return(kva);
576 }
577
578 /*
579 * uvm_km_free: free an area of kernel memory
580 */
581
582 void
583 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
584 {
585
586 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
587 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
588 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
589 KASSERT((addr & PAGE_MASK) == 0);
590 KASSERT(vm_map_pmap(map) == pmap_kernel());
591
592 size = round_page(size);
593
594 if (flags & UVM_KMF_PAGEABLE) {
595 uvm_km_pgremove(addr, addr + size);
596 } else if (flags & UVM_KMF_WIRED) {
597 /*
598 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
599 * remove it after. See comment below about KVA visibility.
600 */
601 uvm_km_pgremove_intrsafe(map, addr, addr + size);
602 pmap_kremove(addr, size);
603 }
604
605 /*
606 * Note: uvm_unmap_remove() calls pmap_update() for us, before
607 * KVA becomes globally available.
608 */
609
610 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
611 }
612
613 /* Sanity; must specify both or none. */
614 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
615 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
616 #error Must specify MAP and UNMAP together.
617 #endif
618
619 int
620 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
621 vmem_addr_t *addr)
622 {
623 struct vm_page *pg;
624 vmem_addr_t va;
625 int rc;
626 vaddr_t loopva;
627 vsize_t loopsize;
628
629 size = round_page(size);
630
631 #if defined(PMAP_MAP_POOLPAGE)
632 if (size == PAGE_SIZE) {
633 again:
634 #ifdef PMAP_ALLOC_POOLPAGE
635 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
636 0 : UVM_PGA_USERESERVE);
637 #else
638 pg = uvm_pagealloc(NULL, 0, NULL,
639 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
640 #endif /* PMAP_ALLOC_POOLPAGE */
641 if (__predict_false(pg == NULL)) {
642 if (flags & VM_SLEEP) {
643 uvm_wait("plpg");
644 goto again;
645 }
646 }
647 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
648 if (__predict_false(va == 0)) {
649 uvm_pagefree(pg);
650 return ENOMEM;
651 }
652 *addr = va;
653 return 0;
654 }
655 #endif /* PMAP_MAP_POOLPAGE */
656
657 rc = vmem_alloc(vm, size, flags, &va);
658 if (rc != 0)
659 return rc;
660
661 loopva = va;
662 loopsize = size;
663
664 while (loopsize) {
665 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
666
667 pg = uvm_pagealloc(NULL, 0, NULL,
668 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
669 if (__predict_false(pg == NULL)) {
670 if (flags & VM_SLEEP) {
671 uvm_wait("plpg");
672 continue;
673 } else {
674 uvm_km_pgremove_intrsafe(kernel_map, va,
675 va + size);
676 pmap_kremove(va, size);
677 vmem_free(kmem_va_arena, va, size);
678 return ENOMEM;
679 }
680 }
681
682 pg->flags &= ~PG_BUSY; /* new page */
683 UVM_PAGE_OWN(pg, NULL);
684 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
685 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
686
687 loopva += PAGE_SIZE;
688 loopsize -= PAGE_SIZE;
689 }
690 pmap_update(pmap_kernel());
691
692 *addr = va;
693
694 return 0;
695 }
696
697 void
698 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
699 {
700
701 size = round_page(size);
702 #if defined(PMAP_UNMAP_POOLPAGE)
703 if (size == PAGE_SIZE) {
704 paddr_t pa;
705
706 pa = PMAP_UNMAP_POOLPAGE(addr);
707 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
708 return;
709 }
710 #endif /* PMAP_UNMAP_POOLPAGE */
711 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
712 pmap_kremove(addr, size);
713 pmap_update(pmap_kernel());
714
715 vmem_free(vm, addr, size);
716 }
717
718 bool
719 uvm_km_va_starved_p(void)
720 {
721 vmem_size_t total;
722 vmem_size_t free;
723
724 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
725 free = vmem_size(kmem_arena, VMEM_FREE);
726
727 return (free < (total / 10));
728 }
729
730