uvm_km.c revision 1.118 1 /* $NetBSD: uvm_km.c,v 1.118 2012/02/03 19:25:07 matt Exp $ */
2
3 /*
4 * Copyright (c) 1997 Charles D. Cranor and Washington University.
5 * Copyright (c) 1991, 1993, The Regents of the University of California.
6 *
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to Berkeley by
10 * The Mach Operating System project at Carnegie-Mellon University.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94
37 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38 *
39 *
40 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41 * All rights reserved.
42 *
43 * Permission to use, copy, modify and distribute this software and
44 * its documentation is hereby granted, provided that both the copyright
45 * notice and this permission notice appear in all copies of the
46 * software, derivative works or modified versions, and any portions
47 * thereof, and that both notices appear in supporting documentation.
48 *
49 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52 *
53 * Carnegie Mellon requests users of this software to return to
54 *
55 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
56 * School of Computer Science
57 * Carnegie Mellon University
58 * Pittsburgh PA 15213-3890
59 *
60 * any improvements or extensions that they make and grant Carnegie the
61 * rights to redistribute these changes.
62 */
63
64 /*
65 * uvm_km.c: handle kernel memory allocation and management
66 */
67
68 /*
69 * overview of kernel memory management:
70 *
71 * the kernel virtual address space is mapped by "kernel_map." kernel_map
72 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74 *
75 * the kernel_map has several "submaps." submaps can only appear in
76 * the kernel_map (user processes can't use them). submaps "take over"
77 * the management of a sub-range of the kernel's address space. submaps
78 * are typically allocated at boot time and are never released. kernel
79 * virtual address space that is mapped by a submap is locked by the
80 * submap's lock -- not the kernel_map's lock.
81 *
82 * thus, the useful feature of submaps is that they allow us to break
83 * up the locking and protection of the kernel address space into smaller
84 * chunks.
85 *
86 * the vm system has several standard kernel submaps, including:
87 * pager_map => used to map "buf" structures into kernel space
88 * exec_map => used during exec to handle exec args
89 * etc...
90 *
91 * the kernel allocates its private memory out of special uvm_objects whose
92 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
93 * are "special" and never die). all kernel objects should be thought of
94 * as large, fixed-sized, sparsely populated uvm_objects. each kernel
95 * object is equal to the size of kernel virtual address space (i.e. the
96 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
97 *
98 * note that just because a kernel object spans the entire kernel virtual
99 * address space doesn't mean that it has to be mapped into the entire space.
100 * large chunks of a kernel object's space go unused either because
101 * that area of kernel VM is unmapped, or there is some other type of
102 * object mapped into that range (e.g. a vnode). for submap's kernel
103 * objects, the only part of the object that can ever be populated is the
104 * offsets that are managed by the submap.
105 *
106 * note that the "offset" in a kernel object is always the kernel virtual
107 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
108 * example:
109 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
110 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
111 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000,
112 * then that means that the page at offset 0x235000 in kernel_object is
113 * mapped at 0xf8235000.
114 *
115 * kernel object have one other special property: when the kernel virtual
116 * memory mapping them is unmapped, the backing memory in the object is
117 * freed right away. this is done with the uvm_km_pgremove() function.
118 * this has to be done because there is no backing store for kernel pages
119 * and no need to save them after they are no longer referenced.
120 */
121
122 #include <sys/cdefs.h>
123 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.118 2012/02/03 19:25:07 matt Exp $");
124
125 #include "opt_uvmhist.h"
126
127 #include "opt_kmempages.h"
128
129 #ifndef NKMEMPAGES
130 #define NKMEMPAGES 0
131 #endif
132
133 /*
134 * Defaults for lower and upper-bounds for the kmem_arena page count.
135 * Can be overridden by kernel config options.
136 */
137 #ifndef NKMEMPAGES_MIN
138 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
139 #endif
140
141 #ifndef NKMEMPAGES_MAX
142 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
143 #endif
144
145
146 #include <sys/param.h>
147 #include <sys/systm.h>
148 #include <sys/proc.h>
149 #include <sys/pool.h>
150 #include <sys/vmem.h>
151 #include <sys/kmem.h>
152
153 #include <uvm/uvm.h>
154
155 /*
156 * global data structures
157 */
158
159 struct vm_map *kernel_map = NULL;
160
161 /*
162 * local data structues
163 */
164
165 static struct vm_map kernel_map_store;
166 static struct vm_map_entry kernel_image_mapent_store;
167 static struct vm_map_entry kernel_kmem_mapent_store;
168
169 int nkmempages = 0;
170 vaddr_t kmembase;
171 vsize_t kmemsize;
172
173 vmem_t *kmem_arena;
174 vmem_t *kmem_va_arena;
175
176 /*
177 * kmeminit_nkmempages: calculate the size of kmem_arena.
178 */
179 void
180 kmeminit_nkmempages(void)
181 {
182 int npages;
183
184 if (nkmempages != 0) {
185 /*
186 * It's already been set (by us being here before)
187 * bail out now;
188 */
189 return;
190 }
191
192 npages = physmem;
193
194 if (npages > NKMEMPAGES_MAX)
195 npages = NKMEMPAGES_MAX;
196
197 if (npages < NKMEMPAGES_MIN)
198 npages = NKMEMPAGES_MIN;
199
200 nkmempages = npages;
201 }
202
203 /*
204 * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
205 * KVM already allocated for text, data, bss, and static data structures).
206 *
207 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
208 * we assume that [vmin -> start] has already been allocated and that
209 * "end" is the end.
210 */
211
212 void
213 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
214 {
215 vaddr_t base = VM_MIN_KERNEL_ADDRESS;
216 struct uvm_map_args args;
217 int error;
218
219 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
220 UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
221 start, end, 0,0);
222
223 kmeminit_nkmempages();
224 kmemsize = nkmempages * PAGE_SIZE;
225
226 /* kmemsize = MIN((((vsize_t)(end - start)) / 3),
227 ((((vsize_t)uvmexp.npages) * PAGE_SIZE) / 2));
228 kmemsize = round_page(kmemsize); */
229
230 UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
231
232 /*
233 * next, init kernel memory objects.
234 */
235
236 /* kernel_object: for pageable anonymous kernel memory */
237 uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
238 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
239
240 /*
241 * init the map and reserve any space that might already
242 * have been allocated kernel space before installing.
243 */
244
245 uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
246 kernel_map_store.pmap = pmap_kernel();
247 if (start != base) {
248 error = uvm_map_prepare(&kernel_map_store,
249 base, start - base,
250 NULL, UVM_UNKNOWN_OFFSET, 0,
251 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
252 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
253 if (!error) {
254 kernel_image_mapent_store.flags =
255 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
256 error = uvm_map_enter(&kernel_map_store, &args,
257 &kernel_image_mapent_store);
258 }
259
260 if (error)
261 panic(
262 "uvm_km_bootstrap: could not reserve space for kernel");
263
264 kmembase = args.uma_start + args.uma_size;
265 } else {
266 kmembase = base;
267 }
268
269 error = uvm_map_prepare(&kernel_map_store,
270 kmembase, kmemsize,
271 NULL, UVM_UNKNOWN_OFFSET, 0,
272 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
273 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
274 if (!error) {
275 kernel_kmem_mapent_store.flags =
276 UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
277 error = uvm_map_enter(&kernel_map_store, &args,
278 &kernel_kmem_mapent_store);
279 }
280
281 if (error)
282 panic("uvm_km_bootstrap: could not reserve kernel kmem");
283
284 /*
285 * install!
286 */
287
288 kernel_map = &kernel_map_store;
289
290 pool_subsystem_init();
291 vmem_bootstrap();
292
293 kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
294 NULL, NULL, NULL,
295 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
296
297 vmem_init(kmem_arena);
298
299 UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
300 ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
301
302 kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
303 vmem_alloc, vmem_free, kmem_arena,
304 16 * PAGE_SIZE, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
305
306 UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
307 }
308
309 /*
310 * uvm_km_init: init the kernel maps virtual memory caches
311 * and start the pool/kmem allocator.
312 */
313 void
314 uvm_km_init(void)
315 {
316
317 kmem_init();
318
319 kmeminit(); // killme
320 }
321
322 /*
323 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap
324 * is allocated all references to that area of VM must go through it. this
325 * allows the locking of VAs in kernel_map to be broken up into regions.
326 *
327 * => if `fixed' is true, *vmin specifies where the region described
328 * pager_map => used to map "buf" structures into kernel space
329 * by the submap must start
330 * => if submap is non NULL we use that as the submap, otherwise we
331 * alloc a new map
332 */
333
334 struct vm_map *
335 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
336 vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
337 struct vm_map *submap)
338 {
339 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
340 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
341
342 KASSERT(vm_map_pmap(map) == pmap_kernel());
343
344 size = round_page(size); /* round up to pagesize */
345
346 /*
347 * first allocate a blank spot in the parent map
348 */
349
350 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
351 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
352 UVM_ADV_RANDOM, mapflags)) != 0) {
353 panic("%s: unable to allocate space in parent map", __func__);
354 }
355
356 /*
357 * set VM bounds (vmin is filled in by uvm_map)
358 */
359
360 *vmax = *vmin + size;
361
362 /*
363 * add references to pmap and create or init the submap
364 */
365
366 pmap_reference(vm_map_pmap(map));
367 if (submap == NULL) {
368 submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
369 if (submap == NULL)
370 panic("uvm_km_suballoc: unable to create submap");
371 }
372 uvm_map_setup(submap, *vmin, *vmax, flags);
373 submap->pmap = vm_map_pmap(map);
374
375 /*
376 * now let uvm_map_submap plug in it...
377 */
378
379 if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
380 panic("uvm_km_suballoc: submap allocation failed");
381
382 return(submap);
383 }
384
385 /*
386 * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
387 */
388
389 void
390 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
391 {
392 struct uvm_object * const uobj = uvm_kernel_object;
393 const voff_t start = startva - vm_map_min(kernel_map);
394 const voff_t end = endva - vm_map_min(kernel_map);
395 struct vm_page *pg;
396 voff_t curoff, nextoff;
397 int swpgonlydelta = 0;
398 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
399
400 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
401 KASSERT(startva < endva);
402 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
403
404 mutex_enter(uobj->vmobjlock);
405 pmap_remove(pmap_kernel(), startva, endva);
406 for (curoff = start; curoff < end; curoff = nextoff) {
407 nextoff = curoff + PAGE_SIZE;
408 pg = uvm_pagelookup(uobj, curoff);
409 if (pg != NULL && pg->flags & PG_BUSY) {
410 pg->flags |= PG_WANTED;
411 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
412 "km_pgrm", 0);
413 mutex_enter(uobj->vmobjlock);
414 nextoff = curoff;
415 continue;
416 }
417
418 /*
419 * free the swap slot, then the page.
420 */
421
422 if (pg == NULL &&
423 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
424 swpgonlydelta++;
425 }
426 uao_dropswap(uobj, curoff >> PAGE_SHIFT);
427 if (pg != NULL) {
428 mutex_enter(&uvm_pageqlock);
429 uvm_pagefree(pg);
430 mutex_exit(&uvm_pageqlock);
431 }
432 }
433 mutex_exit(uobj->vmobjlock);
434
435 if (swpgonlydelta > 0) {
436 mutex_enter(&uvm_swap_data_lock);
437 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
438 uvmexp.swpgonly -= swpgonlydelta;
439 mutex_exit(&uvm_swap_data_lock);
440 }
441 }
442
443
444 /*
445 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
446 * regions.
447 *
448 * => when you unmap a part of anonymous kernel memory you want to toss
449 * the pages right away. (this is called from uvm_unmap_...).
450 * => none of the pages will ever be busy, and none of them will ever
451 * be on the active or inactive queues (because they have no object).
452 */
453
454 void
455 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
456 {
457 struct vm_page *pg;
458 paddr_t pa;
459 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
460
461 KASSERT(VM_MAP_IS_KERNEL(map));
462 KASSERT(vm_map_min(map) <= start);
463 KASSERT(start < end);
464 KASSERT(end <= vm_map_max(map));
465
466 for (; start < end; start += PAGE_SIZE) {
467 if (!pmap_extract(pmap_kernel(), start, &pa)) {
468 continue;
469 }
470 pg = PHYS_TO_VM_PAGE(pa);
471 KASSERT(pg);
472 KASSERT(pg->uobject == NULL && pg->uanon == NULL);
473 KASSERT((pg->flags & PG_BUSY) == 0);
474 uvm_pagefree(pg);
475 }
476 }
477
478 #if defined(DEBUG)
479 void
480 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
481 {
482 struct vm_page *pg;
483 vaddr_t va;
484 paddr_t pa;
485 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
486
487 KDASSERT(VM_MAP_IS_KERNEL(map));
488 KDASSERT(vm_map_min(map) <= start);
489 KDASSERT(start < end);
490 KDASSERT(end <= vm_map_max(map));
491
492 for (va = start; va < end; va += PAGE_SIZE) {
493 if (pmap_extract(pmap_kernel(), va, &pa)) {
494 panic("uvm_km_check_empty: va %p has pa 0x%llx",
495 (void *)va, (long long)pa);
496 }
497 if ((map->flags & VM_MAP_INTRSAFE) == 0) {
498 mutex_enter(uvm_kernel_object->vmobjlock);
499 pg = uvm_pagelookup(uvm_kernel_object,
500 va - vm_map_min(kernel_map));
501 mutex_exit(uvm_kernel_object->vmobjlock);
502 if (pg) {
503 panic("uvm_km_check_empty: "
504 "has page hashed at %p", (const void *)va);
505 }
506 }
507 }
508 }
509 #endif /* defined(DEBUG) */
510
511 /*
512 * uvm_km_alloc: allocate an area of kernel memory.
513 *
514 * => NOTE: we can return 0 even if we can wait if there is not enough
515 * free VM space in the map... caller should be prepared to handle
516 * this case.
517 * => we return KVA of memory allocated
518 */
519
520 vaddr_t
521 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
522 {
523 vaddr_t kva, loopva;
524 vaddr_t offset;
525 vsize_t loopsize;
526 struct vm_page *pg;
527 struct uvm_object *obj;
528 int pgaflags;
529 vm_prot_t prot;
530 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
531
532 KASSERT(vm_map_pmap(map) == pmap_kernel());
533 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
534 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
535 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
536 KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
537 KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
538
539 /*
540 * setup for call
541 */
542
543 kva = vm_map_min(map); /* hint */
544 size = round_page(size);
545 obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
546 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
547 map, obj, size, flags);
548
549 /*
550 * allocate some virtual space
551 */
552
553 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
554 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
555 UVM_ADV_RANDOM,
556 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
557 | UVM_KMF_COLORMATCH)))) != 0)) {
558 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
559 return(0);
560 }
561
562 /*
563 * if all we wanted was VA, return now
564 */
565
566 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
567 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
568 return(kva);
569 }
570
571 /*
572 * recover object offset from virtual address
573 */
574
575 offset = kva - vm_map_min(kernel_map);
576 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0);
577
578 /*
579 * now allocate and map in the memory... note that we are the only ones
580 * whom should ever get a handle on this area of VM.
581 */
582
583 loopva = kva;
584 loopsize = size;
585
586 pgaflags = UVM_FLAG_COLORMATCH;
587 if (flags & UVM_KMF_NOWAIT)
588 pgaflags |= UVM_PGA_USERESERVE;
589 if (flags & UVM_KMF_ZERO)
590 pgaflags |= UVM_PGA_ZERO;
591 prot = VM_PROT_READ | VM_PROT_WRITE;
592 if (flags & UVM_KMF_EXEC)
593 prot |= VM_PROT_EXECUTE;
594 while (loopsize) {
595 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
596 "loopva=%#"PRIxVADDR, loopva);
597
598 pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
599 #ifdef UVM_KM_VMFREELIST
600 UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
601 #else
602 UVM_PGA_STRAT_NORMAL, 0
603 #endif
604 );
605
606 /*
607 * out of memory?
608 */
609
610 if (__predict_false(pg == NULL)) {
611 if ((flags & UVM_KMF_NOWAIT) ||
612 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
613 /* free everything! */
614 uvm_km_free(map, kva, size,
615 flags & UVM_KMF_TYPEMASK);
616 return (0);
617 } else {
618 uvm_wait("km_getwait2"); /* sleep here */
619 continue;
620 }
621 }
622
623 pg->flags &= ~PG_BUSY; /* new page */
624 UVM_PAGE_OWN(pg, NULL);
625
626 /*
627 * map it in
628 */
629
630 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
631 prot, PMAP_KMPAGE);
632 loopva += PAGE_SIZE;
633 offset += PAGE_SIZE;
634 loopsize -= PAGE_SIZE;
635 }
636
637 pmap_update(pmap_kernel());
638
639 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
640 return(kva);
641 }
642
643 /*
644 * uvm_km_free: free an area of kernel memory
645 */
646
647 void
648 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
649 {
650 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
651
652 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
653 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
654 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
655 KASSERT((addr & PAGE_MASK) == 0);
656 KASSERT(vm_map_pmap(map) == pmap_kernel());
657
658 size = round_page(size);
659
660 if (flags & UVM_KMF_PAGEABLE) {
661 uvm_km_pgremove(addr, addr + size);
662 } else if (flags & UVM_KMF_WIRED) {
663 /*
664 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
665 * remove it after. See comment below about KVA visibility.
666 */
667 uvm_km_pgremove_intrsafe(map, addr, addr + size);
668 pmap_kremove(addr, size);
669 }
670
671 /*
672 * Note: uvm_unmap_remove() calls pmap_update() for us, before
673 * KVA becomes globally available.
674 */
675
676 uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
677 }
678
679 /* Sanity; must specify both or none. */
680 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
681 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
682 #error Must specify MAP and UNMAP together.
683 #endif
684
685 int
686 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
687 vmem_addr_t *addr)
688 {
689 struct vm_page *pg;
690 vmem_addr_t va;
691 int rc;
692 vaddr_t loopva;
693 vsize_t loopsize;
694
695 size = round_page(size);
696
697 #if defined(PMAP_MAP_POOLPAGE)
698 if (size == PAGE_SIZE) {
699 again:
700 #ifdef PMAP_ALLOC_POOLPAGE
701 pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
702 0 : UVM_PGA_USERESERVE);
703 #else
704 pg = uvm_pagealloc(NULL, 0, NULL,
705 (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
706 #endif /* PMAP_ALLOC_POOLPAGE */
707 if (__predict_false(pg == NULL)) {
708 if (flags & VM_SLEEP) {
709 uvm_wait("plpg");
710 goto again;
711 }
712 }
713 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
714 if (__predict_false(va == 0)) {
715 uvm_pagefree(pg);
716 return ENOMEM;
717 }
718 *addr = va;
719 return 0;
720 }
721 #endif /* PMAP_MAP_POOLPAGE */
722
723 rc = vmem_alloc(vm, size, flags, &va);
724 if (rc != 0)
725 return rc;
726
727 loopva = va;
728 loopsize = size;
729
730 while (loopsize) {
731 KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
732 "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
733 loopva, loopsize, vm);
734
735 pg = uvm_pagealloc(NULL, loopva, NULL,
736 UVM_FLAG_COLORMATCH
737 | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
738 if (__predict_false(pg == NULL)) {
739 if (flags & VM_SLEEP) {
740 uvm_wait("plpg");
741 continue;
742 } else {
743 uvm_km_pgremove_intrsafe(kernel_map, va,
744 va + size);
745 pmap_kremove(va, size);
746 vmem_free(kmem_va_arena, va, size);
747 return ENOMEM;
748 }
749 }
750
751 pg->flags &= ~PG_BUSY; /* new page */
752 UVM_PAGE_OWN(pg, NULL);
753 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
754 VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
755
756 loopva += PAGE_SIZE;
757 loopsize -= PAGE_SIZE;
758 }
759 pmap_update(pmap_kernel());
760
761 *addr = va;
762
763 return 0;
764 }
765
766 void
767 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
768 {
769
770 size = round_page(size);
771 #if defined(PMAP_UNMAP_POOLPAGE)
772 if (size == PAGE_SIZE) {
773 paddr_t pa;
774
775 pa = PMAP_UNMAP_POOLPAGE(addr);
776 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
777 return;
778 }
779 #endif /* PMAP_UNMAP_POOLPAGE */
780 uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
781 pmap_kremove(addr, size);
782 pmap_update(pmap_kernel());
783
784 vmem_free(vm, addr, size);
785 }
786
787 bool
788 uvm_km_va_starved_p(void)
789 {
790 vmem_size_t total;
791 vmem_size_t free;
792
793 total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
794 free = vmem_size(kmem_arena, VMEM_FREE);
795
796 return (free < (total / 10));
797 }
798
799