Home | History | Annotate | Line # | Download | only in uvm
uvm_km.c revision 1.120.2.3.2.1
      1 /*	$NetBSD: uvm_km.c,v 1.120.2.3.2.1 2013/11/25 08:30:20 bouyer Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
      5  * Copyright (c) 1991, 1993, The Regents of the University of California.
      6  *
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to Berkeley by
     10  * The Mach Operating System project at Carnegie-Mellon University.
     11  *
     12  * Redistribution and use in source and binary forms, with or without
     13  * modification, are permitted provided that the following conditions
     14  * are met:
     15  * 1. Redistributions of source code must retain the above copyright
     16  *    notice, this list of conditions and the following disclaimer.
     17  * 2. Redistributions in binary form must reproduce the above copyright
     18  *    notice, this list of conditions and the following disclaimer in the
     19  *    documentation and/or other materials provided with the distribution.
     20  * 3. Neither the name of the University nor the names of its contributors
     21  *    may be used to endorse or promote products derived from this software
     22  *    without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     34  * SUCH DAMAGE.
     35  *
     36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
     37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
     38  *
     39  *
     40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
     41  * All rights reserved.
     42  *
     43  * Permission to use, copy, modify and distribute this software and
     44  * its documentation is hereby granted, provided that both the copyright
     45  * notice and this permission notice appear in all copies of the
     46  * software, derivative works or modified versions, and any portions
     47  * thereof, and that both notices appear in supporting documentation.
     48  *
     49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     52  *
     53  * Carnegie Mellon requests users of this software to return to
     54  *
     55  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     56  *  School of Computer Science
     57  *  Carnegie Mellon University
     58  *  Pittsburgh PA 15213-3890
     59  *
     60  * any improvements or extensions that they make and grant Carnegie the
     61  * rights to redistribute these changes.
     62  */
     63 
     64 /*
     65  * uvm_km.c: handle kernel memory allocation and management
     66  */
     67 
     68 /*
     69  * overview of kernel memory management:
     70  *
     71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
     72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
     73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
     74  *
     75  * the kernel_map has several "submaps."   submaps can only appear in
     76  * the kernel_map (user processes can't use them).   submaps "take over"
     77  * the management of a sub-range of the kernel's address space.  submaps
     78  * are typically allocated at boot time and are never released.   kernel
     79  * virtual address space that is mapped by a submap is locked by the
     80  * submap's lock -- not the kernel_map's lock.
     81  *
     82  * thus, the useful feature of submaps is that they allow us to break
     83  * up the locking and protection of the kernel address space into smaller
     84  * chunks.
     85  *
     86  * the vm system has several standard kernel submaps, including:
     87  *   pager_map => used to map "buf" structures into kernel space
     88  *   exec_map => used during exec to handle exec args
     89  *   etc...
     90  *
     91  * the kernel allocates its private memory out of special uvm_objects whose
     92  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
     93  * are "special" and never die).   all kernel objects should be thought of
     94  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
     95  * object is equal to the size of kernel virtual address space (i.e. the
     96  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
     97  *
     98  * note that just because a kernel object spans the entire kernel virtual
     99  * address space doesn't mean that it has to be mapped into the entire space.
    100  * large chunks of a kernel object's space go unused either because
    101  * that area of kernel VM is unmapped, or there is some other type of
    102  * object mapped into that range (e.g. a vnode).    for submap's kernel
    103  * objects, the only part of the object that can ever be populated is the
    104  * offsets that are managed by the submap.
    105  *
    106  * note that the "offset" in a kernel object is always the kernel virtual
    107  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
    108  * example:
    109  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
    110  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
    111  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
    112  *   then that means that the page at offset 0x235000 in kernel_object is
    113  *   mapped at 0xf8235000.
    114  *
    115  * kernel object have one other special property: when the kernel virtual
    116  * memory mapping them is unmapped, the backing memory in the object is
    117  * freed right away.   this is done with the uvm_km_pgremove() function.
    118  * this has to be done because there is no backing store for kernel pages
    119  * and no need to save them after they are no longer referenced.
    120  */
    121 
    122 #include <sys/cdefs.h>
    123 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.120.2.3.2.1 2013/11/25 08:30:20 bouyer Exp $");
    124 
    125 #include "opt_uvmhist.h"
    126 
    127 #include "opt_kmempages.h"
    128 
    129 #ifndef NKMEMPAGES
    130 #define NKMEMPAGES 0
    131 #endif
    132 
    133 /*
    134  * Defaults for lower and upper-bounds for the kmem_arena page count.
    135  * Can be overridden by kernel config options.
    136  */
    137 #ifndef NKMEMPAGES_MIN
    138 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
    139 #endif
    140 
    141 #ifndef NKMEMPAGES_MAX
    142 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
    143 #endif
    144 
    145 
    146 #include <sys/param.h>
    147 #include <sys/systm.h>
    148 #include <sys/proc.h>
    149 #include <sys/pool.h>
    150 #include <sys/vmem.h>
    151 #include <sys/kmem.h>
    152 
    153 #include <uvm/uvm.h>
    154 
    155 /*
    156  * global data structures
    157  */
    158 
    159 struct vm_map *kernel_map = NULL;
    160 
    161 /*
    162  * local data structues
    163  */
    164 
    165 static struct vm_map		kernel_map_store;
    166 static struct vm_map_entry	kernel_image_mapent_store;
    167 static struct vm_map_entry	kernel_kmem_mapent_store;
    168 
    169 int nkmempages = 0;
    170 vaddr_t kmembase;
    171 vsize_t kmemsize;
    172 
    173 vmem_t *kmem_arena = NULL;
    174 vmem_t *kmem_va_arena;
    175 
    176 /*
    177  * kmeminit_nkmempages: calculate the size of kmem_arena.
    178  */
    179 void
    180 kmeminit_nkmempages(void)
    181 {
    182 	int npages;
    183 
    184 	if (nkmempages != 0) {
    185 		/*
    186 		 * It's already been set (by us being here before)
    187 		 * bail out now;
    188 		 */
    189 		return;
    190 	}
    191 
    192 #if defined(PMAP_MAP_POOLPAGE)
    193 	npages = (physmem / 4);
    194 #else
    195 	npages = (physmem / 3) * 2;
    196 #endif /* defined(PMAP_MAP_POOLPAGE) */
    197 
    198 #ifndef NKMEMPAGES_MAX_UNLIMITED
    199 	if (npages > NKMEMPAGES_MAX)
    200 		npages = NKMEMPAGES_MAX;
    201 #endif
    202 
    203 	if (npages < NKMEMPAGES_MIN)
    204 		npages = NKMEMPAGES_MIN;
    205 
    206 	nkmempages = npages;
    207 }
    208 
    209 /*
    210  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
    211  * KVM already allocated for text, data, bss, and static data structures).
    212  *
    213  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
    214  *    we assume that [vmin -> start] has already been allocated and that
    215  *    "end" is the end.
    216  */
    217 
    218 void
    219 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
    220 {
    221 	bool kmem_arena_small;
    222 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
    223 	struct uvm_map_args args;
    224 	int error;
    225 
    226 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    227 	UVMHIST_LOG(maphist, "start=%"PRIxVADDR" end=%#"PRIxVADDR,
    228 	    start, end, 0,0);
    229 
    230 	kmeminit_nkmempages();
    231 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
    232 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
    233 
    234 	UVMHIST_LOG(maphist, "kmemsize=%#"PRIxVSIZE, kmemsize, 0,0,0);
    235 
    236 	/*
    237 	 * next, init kernel memory objects.
    238 	 */
    239 
    240 	/* kernel_object: for pageable anonymous kernel memory */
    241 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
    242 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
    243 
    244 	/*
    245 	 * init the map and reserve any space that might already
    246 	 * have been allocated kernel space before installing.
    247 	 */
    248 
    249 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
    250 	kernel_map_store.pmap = pmap_kernel();
    251 	if (start != base) {
    252 		error = uvm_map_prepare(&kernel_map_store,
    253 		    base, start - base,
    254 		    NULL, UVM_UNKNOWN_OFFSET, 0,
    255 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    256 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    257 		if (!error) {
    258 			kernel_image_mapent_store.flags =
    259 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    260 			error = uvm_map_enter(&kernel_map_store, &args,
    261 			    &kernel_image_mapent_store);
    262 		}
    263 
    264 		if (error)
    265 			panic(
    266 			    "uvm_km_bootstrap: could not reserve space for kernel");
    267 
    268 		kmembase = args.uma_start + args.uma_size;
    269 	} else {
    270 		kmembase = base;
    271 	}
    272 
    273 	error = uvm_map_prepare(&kernel_map_store,
    274 	    kmembase, kmemsize,
    275 	    NULL, UVM_UNKNOWN_OFFSET, 0,
    276 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    277 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
    278 	if (!error) {
    279 		kernel_kmem_mapent_store.flags =
    280 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
    281 		error = uvm_map_enter(&kernel_map_store, &args,
    282 		    &kernel_kmem_mapent_store);
    283 	}
    284 
    285 	if (error)
    286 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
    287 
    288 	/*
    289 	 * install!
    290 	 */
    291 
    292 	kernel_map = &kernel_map_store;
    293 
    294 	pool_subsystem_init();
    295 	vmem_bootstrap();
    296 
    297 	kmem_arena = vmem_create("kmem", kmembase, kmemsize, PAGE_SIZE,
    298 	    NULL, NULL, NULL,
    299 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    300 #ifdef PMAP_GROWKERNEL
    301 	/*
    302 	 * kmem_arena VA allocations happen independently of uvm_map.
    303 	 * grow kernel to accommodate the kmem_arena.
    304 	 */
    305 	if (uvm_maxkaddr < kmembase + kmemsize) {
    306 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
    307 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
    308 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
    309 		    uvm_maxkaddr, kmembase, kmemsize);
    310 	}
    311 #endif
    312 
    313 	vmem_init(kmem_arena);
    314 
    315 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#"PRIxVADDR
    316 	    ", size=%#"PRIxVSIZE, kmembase, kmemsize, 0,0);
    317 
    318 	kmem_va_arena = vmem_create("kva", 0, 0, PAGE_SIZE,
    319 	    vmem_alloc, vmem_free, kmem_arena,
    320 	    (kmem_arena_small ? 4 : 8) * PAGE_SIZE,
    321 	    VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
    322 
    323 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
    324 }
    325 
    326 /*
    327  * uvm_km_init: init the kernel maps virtual memory caches
    328  * and start the pool/kmem allocator.
    329  */
    330 void
    331 uvm_km_init(void)
    332 {
    333 
    334 	kmem_init();
    335 
    336 	kmeminit(); // killme
    337 }
    338 
    339 /*
    340  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
    341  * is allocated all references to that area of VM must go through it.  this
    342  * allows the locking of VAs in kernel_map to be broken up into regions.
    343  *
    344  * => if `fixed' is true, *vmin specifies where the region described
    345  *   pager_map => used to map "buf" structures into kernel space
    346  *      by the submap must start
    347  * => if submap is non NULL we use that as the submap, otherwise we
    348  *	alloc a new map
    349  */
    350 
    351 struct vm_map *
    352 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
    353     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
    354     struct vm_map *submap)
    355 {
    356 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
    357 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    358 
    359 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    360 
    361 	size = round_page(size);	/* round up to pagesize */
    362 
    363 	/*
    364 	 * first allocate a blank spot in the parent map
    365 	 */
    366 
    367 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
    368 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    369 	    UVM_ADV_RANDOM, mapflags)) != 0) {
    370 		panic("%s: unable to allocate space in parent map", __func__);
    371 	}
    372 
    373 	/*
    374 	 * set VM bounds (vmin is filled in by uvm_map)
    375 	 */
    376 
    377 	*vmax = *vmin + size;
    378 
    379 	/*
    380 	 * add references to pmap and create or init the submap
    381 	 */
    382 
    383 	pmap_reference(vm_map_pmap(map));
    384 	if (submap == NULL) {
    385 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
    386 		if (submap == NULL)
    387 			panic("uvm_km_suballoc: unable to create submap");
    388 	}
    389 	uvm_map_setup(submap, *vmin, *vmax, flags);
    390 	submap->pmap = vm_map_pmap(map);
    391 
    392 	/*
    393 	 * now let uvm_map_submap plug in it...
    394 	 */
    395 
    396 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
    397 		panic("uvm_km_suballoc: submap allocation failed");
    398 
    399 	return(submap);
    400 }
    401 
    402 /*
    403  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
    404  */
    405 
    406 void
    407 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
    408 {
    409 	struct uvm_object * const uobj = uvm_kernel_object;
    410 	const voff_t start = startva - vm_map_min(kernel_map);
    411 	const voff_t end = endva - vm_map_min(kernel_map);
    412 	struct vm_page *pg;
    413 	voff_t curoff, nextoff;
    414 	int swpgonlydelta = 0;
    415 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    416 
    417 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
    418 	KASSERT(startva < endva);
    419 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
    420 
    421 	mutex_enter(uobj->vmobjlock);
    422 	pmap_remove(pmap_kernel(), startva, endva);
    423 	for (curoff = start; curoff < end; curoff = nextoff) {
    424 		nextoff = curoff + PAGE_SIZE;
    425 		pg = uvm_pagelookup(uobj, curoff);
    426 		if (pg != NULL && pg->flags & PG_BUSY) {
    427 			pg->flags |= PG_WANTED;
    428 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
    429 				    "km_pgrm", 0);
    430 			mutex_enter(uobj->vmobjlock);
    431 			nextoff = curoff;
    432 			continue;
    433 		}
    434 
    435 		/*
    436 		 * free the swap slot, then the page.
    437 		 */
    438 
    439 		if (pg == NULL &&
    440 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
    441 			swpgonlydelta++;
    442 		}
    443 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
    444 		if (pg != NULL) {
    445 			mutex_enter(&uvm_pageqlock);
    446 			uvm_pagefree(pg);
    447 			mutex_exit(&uvm_pageqlock);
    448 		}
    449 	}
    450 	mutex_exit(uobj->vmobjlock);
    451 
    452 	if (swpgonlydelta > 0) {
    453 		mutex_enter(&uvm_swap_data_lock);
    454 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    455 		uvmexp.swpgonly -= swpgonlydelta;
    456 		mutex_exit(&uvm_swap_data_lock);
    457 	}
    458 }
    459 
    460 
    461 /*
    462  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
    463  *    regions.
    464  *
    465  * => when you unmap a part of anonymous kernel memory you want to toss
    466  *    the pages right away.    (this is called from uvm_unmap_...).
    467  * => none of the pages will ever be busy, and none of them will ever
    468  *    be on the active or inactive queues (because they have no object).
    469  */
    470 
    471 void
    472 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
    473 {
    474 #define __PGRM_BATCH 16
    475 	struct vm_page *pg;
    476 	paddr_t pa[__PGRM_BATCH];
    477 	int npgrm, i;
    478 	vaddr_t va, batch_vastart;
    479 
    480 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    481 
    482 	KASSERT(VM_MAP_IS_KERNEL(map));
    483 	KASSERT(vm_map_min(map) <= start);
    484 	KASSERT(start < end);
    485 	KASSERT(end <= vm_map_max(map));
    486 
    487 	for (va = start; va < end;) {
    488 		batch_vastart = va;
    489 		/* create a batch of at most __PGRM_BATCH pages to free */
    490 		for (i = 0;
    491 		     i < __PGRM_BATCH && va < end;
    492 		     va += PAGE_SIZE) {
    493 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
    494 				continue;
    495 			}
    496 			i++;
    497 		}
    498 		npgrm = i;
    499 		/* now remove the mappings */
    500 		pmap_kremove(batch_vastart, PAGE_SIZE * npgrm);
    501 		/* and free the pages */
    502 		for (i = 0; i < npgrm; i++) {
    503 			pg = PHYS_TO_VM_PAGE(pa[i]);
    504 			KASSERT(pg);
    505 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
    506 			KASSERT((pg->flags & PG_BUSY) == 0);
    507 			uvm_pagefree(pg);
    508 		}
    509 	}
    510 #undef __PGRM_BATCH
    511 }
    512 
    513 #if defined(DEBUG)
    514 void
    515 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
    516 {
    517 	struct vm_page *pg;
    518 	vaddr_t va;
    519 	paddr_t pa;
    520 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    521 
    522 	KDASSERT(VM_MAP_IS_KERNEL(map));
    523 	KDASSERT(vm_map_min(map) <= start);
    524 	KDASSERT(start < end);
    525 	KDASSERT(end <= vm_map_max(map));
    526 
    527 	for (va = start; va < end; va += PAGE_SIZE) {
    528 		if (pmap_extract(pmap_kernel(), va, &pa)) {
    529 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
    530 			    (void *)va, (long long)pa);
    531 		}
    532 		if ((map->flags & VM_MAP_INTRSAFE) == 0) {
    533 			mutex_enter(uvm_kernel_object->vmobjlock);
    534 			pg = uvm_pagelookup(uvm_kernel_object,
    535 			    va - vm_map_min(kernel_map));
    536 			mutex_exit(uvm_kernel_object->vmobjlock);
    537 			if (pg) {
    538 				panic("uvm_km_check_empty: "
    539 				    "has page hashed at %p", (const void *)va);
    540 			}
    541 		}
    542 	}
    543 }
    544 #endif /* defined(DEBUG) */
    545 
    546 /*
    547  * uvm_km_alloc: allocate an area of kernel memory.
    548  *
    549  * => NOTE: we can return 0 even if we can wait if there is not enough
    550  *	free VM space in the map... caller should be prepared to handle
    551  *	this case.
    552  * => we return KVA of memory allocated
    553  */
    554 
    555 vaddr_t
    556 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
    557 {
    558 	vaddr_t kva, loopva;
    559 	vaddr_t offset;
    560 	vsize_t loopsize;
    561 	struct vm_page *pg;
    562 	struct uvm_object *obj;
    563 	int pgaflags;
    564 	vm_prot_t prot;
    565 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    566 
    567 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    568 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    569 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    570 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    571 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
    572 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
    573 
    574 	/*
    575 	 * setup for call
    576 	 */
    577 
    578 	kva = vm_map_min(map);	/* hint */
    579 	size = round_page(size);
    580 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
    581 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
    582 		    map, obj, size, flags);
    583 
    584 	/*
    585 	 * allocate some virtual space
    586 	 */
    587 
    588 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
    589 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
    590 	    UVM_ADV_RANDOM,
    591 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
    592 	     | UVM_KMF_COLORMATCH)))) != 0)) {
    593 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
    594 		return(0);
    595 	}
    596 
    597 	/*
    598 	 * if all we wanted was VA, return now
    599 	 */
    600 
    601 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
    602 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
    603 		return(kva);
    604 	}
    605 
    606 	/*
    607 	 * recover object offset from virtual address
    608 	 */
    609 
    610 	offset = kva - vm_map_min(kernel_map);
    611 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
    612 
    613 	/*
    614 	 * now allocate and map in the memory... note that we are the only ones
    615 	 * whom should ever get a handle on this area of VM.
    616 	 */
    617 
    618 	loopva = kva;
    619 	loopsize = size;
    620 
    621 	pgaflags = UVM_FLAG_COLORMATCH;
    622 	if (flags & UVM_KMF_NOWAIT)
    623 		pgaflags |= UVM_PGA_USERESERVE;
    624 	if (flags & UVM_KMF_ZERO)
    625 		pgaflags |= UVM_PGA_ZERO;
    626 	prot = VM_PROT_READ | VM_PROT_WRITE;
    627 	if (flags & UVM_KMF_EXEC)
    628 		prot |= VM_PROT_EXECUTE;
    629 	while (loopsize) {
    630 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    631 		    "loopva=%#"PRIxVADDR, loopva);
    632 
    633 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
    634 #ifdef UVM_KM_VMFREELIST
    635 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
    636 #else
    637 		   UVM_PGA_STRAT_NORMAL, 0
    638 #endif
    639 		   );
    640 
    641 		/*
    642 		 * out of memory?
    643 		 */
    644 
    645 		if (__predict_false(pg == NULL)) {
    646 			if ((flags & UVM_KMF_NOWAIT) ||
    647 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
    648 				/* free everything! */
    649 				uvm_km_free(map, kva, size,
    650 				    flags & UVM_KMF_TYPEMASK);
    651 				return (0);
    652 			} else {
    653 				uvm_wait("km_getwait2");	/* sleep here */
    654 				continue;
    655 			}
    656 		}
    657 
    658 		pg->flags &= ~PG_BUSY;	/* new page */
    659 		UVM_PAGE_OWN(pg, NULL);
    660 
    661 		/*
    662 		 * map it in
    663 		 */
    664 
    665 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    666 		    prot, PMAP_KMPAGE);
    667 		loopva += PAGE_SIZE;
    668 		offset += PAGE_SIZE;
    669 		loopsize -= PAGE_SIZE;
    670 	}
    671 
    672 	pmap_update(pmap_kernel());
    673 
    674 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
    675 	return(kva);
    676 }
    677 
    678 /*
    679  * uvm_km_free: free an area of kernel memory
    680  */
    681 
    682 void
    683 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
    684 {
    685 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
    686 
    687 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
    688 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
    689 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
    690 	KASSERT((addr & PAGE_MASK) == 0);
    691 	KASSERT(vm_map_pmap(map) == pmap_kernel());
    692 
    693 	size = round_page(size);
    694 
    695 	if (flags & UVM_KMF_PAGEABLE) {
    696 		uvm_km_pgremove(addr, addr + size);
    697 	} else if (flags & UVM_KMF_WIRED) {
    698 		/*
    699 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
    700 		 * remove it after.  See comment below about KVA visibility.
    701 		 */
    702 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
    703 	}
    704 
    705 	/*
    706 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
    707 	 * KVA becomes globally available.
    708 	 */
    709 
    710 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
    711 }
    712 
    713 /* Sanity; must specify both or none. */
    714 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
    715     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
    716 #error Must specify MAP and UNMAP together.
    717 #endif
    718 
    719 int
    720 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
    721     vmem_addr_t *addr)
    722 {
    723 	struct vm_page *pg;
    724 	vmem_addr_t va;
    725 	int rc;
    726 	vaddr_t loopva;
    727 	vsize_t loopsize;
    728 
    729 	size = round_page(size);
    730 
    731 #if defined(PMAP_MAP_POOLPAGE)
    732 	if (size == PAGE_SIZE) {
    733 again:
    734 #ifdef PMAP_ALLOC_POOLPAGE
    735 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
    736 		   0 : UVM_PGA_USERESERVE);
    737 #else
    738 		pg = uvm_pagealloc(NULL, 0, NULL,
    739 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
    740 #endif /* PMAP_ALLOC_POOLPAGE */
    741 		if (__predict_false(pg == NULL)) {
    742 			if (flags & VM_SLEEP) {
    743 				uvm_wait("plpg");
    744 				goto again;
    745 			}
    746 			return ENOMEM;
    747 		}
    748 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
    749 		if (__predict_false(va == 0)) {
    750 			uvm_pagefree(pg);
    751 			return ENOMEM;
    752 		}
    753 		*addr = va;
    754 		return 0;
    755 	}
    756 #endif /* PMAP_MAP_POOLPAGE */
    757 
    758 	rc = vmem_alloc(vm, size, flags, &va);
    759 	if (rc != 0)
    760 		return rc;
    761 
    762 #ifdef PMAP_GROWKERNEL
    763 	/*
    764 	 * These VA allocations happen independently of uvm_map
    765 	 * so this allocation must not extend beyond the current limit.
    766 	 */
    767 	KASSERTMSG(uvm_maxkaddr >= va + size,
    768 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
    769 	    uvm_maxkaddr, va, size);
    770 #endif
    771 
    772 	loopva = va;
    773 	loopsize = size;
    774 
    775 	while (loopsize) {
    776 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
    777 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE" vmem=%p",
    778 		    loopva, loopsize, vm);
    779 
    780 		pg = uvm_pagealloc(NULL, loopva, NULL,
    781 		    UVM_FLAG_COLORMATCH
    782 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
    783 		if (__predict_false(pg == NULL)) {
    784 			if (flags & VM_SLEEP) {
    785 				uvm_wait("plpg");
    786 				continue;
    787 			} else {
    788 				uvm_km_pgremove_intrsafe(kernel_map, va,
    789 				    va + size);
    790 				vmem_free(vm, va, size);
    791 				return ENOMEM;
    792 			}
    793 		}
    794 
    795 		pg->flags &= ~PG_BUSY;	/* new page */
    796 		UVM_PAGE_OWN(pg, NULL);
    797 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
    798 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
    799 
    800 		loopva += PAGE_SIZE;
    801 		loopsize -= PAGE_SIZE;
    802 	}
    803 	pmap_update(pmap_kernel());
    804 
    805 	*addr = va;
    806 
    807 	return 0;
    808 }
    809 
    810 void
    811 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
    812 {
    813 
    814 	size = round_page(size);
    815 #if defined(PMAP_UNMAP_POOLPAGE)
    816 	if (size == PAGE_SIZE) {
    817 		paddr_t pa;
    818 
    819 		pa = PMAP_UNMAP_POOLPAGE(addr);
    820 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
    821 		return;
    822 	}
    823 #endif /* PMAP_UNMAP_POOLPAGE */
    824 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
    825 	pmap_update(pmap_kernel());
    826 
    827 	vmem_free(vm, addr, size);
    828 }
    829 
    830 bool
    831 uvm_km_va_starved_p(void)
    832 {
    833 	vmem_size_t total;
    834 	vmem_size_t free;
    835 
    836 	if (kmem_arena == NULL)
    837 		return false;
    838 
    839 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
    840 	free = vmem_size(kmem_arena, VMEM_FREE);
    841 
    842 	return (free < (total / 10));
    843 }
    844